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Abstract. Contact tracing is among the most important interventions
to mitigate the spread of any pandemic, usually in the form of manual
contact tracing. Smartphone-facilitated digital contact tracing may help to
increase tracing capabilities and extend the coverage to those contacts one
does not know in person. Most implemented protocols use local Bluetooth
Low Energy (BLE) communication to detect contagion-relevant proximity,
together with cryptographic protections, as necessary to improve the
privacy of the users of such a system. However, current decentralized
protocols, including DP3T [T+20], do not sufficiently protect infected
users from having their status revealed to their contacts, which raises
fear of stigmatization.
We alleviate this by proposing a new and practical solution with stronger
privacy guarantees against active adversaries. It is based on the upload-
what-you-observed paradigm, includes a separation of duties on the
server side, and a mechanism to ensure that users cannot deduce which
encounter caused a warning with high time resolution. Finally, we present
a simulation-based security notion of digital contact tracing in the real–
ideal setting, and prove the security of our protocol in this framework.

Keywords: Digital Contact Tracing · Privacy · Transmissible Diseases ·
Active Security · Anonymity · Security Modeling · Ideal Functionality

1 Introduction

During the early stages of a pandemic, when a vaccine is not yet available, one of
the most important interventions to contain its spread, is – besides the reduction
of face-to-face encounters in general – the consequent isolation of infected persons,
as well as those who have been in close contact with them (“contacts”) to break
the chain of infections. In phases with low case numbers of the SARS-CoV-2
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pandemic, contact tracing has been the used to keep case numbers in check (for
a longer time). However, tracing contacts manually (by interviews with infected
persons) is not feasible when the number of infections is too high. Hence, more
scalable and automated solutions are needed to safely relax restrictions of personal
freedom imposed by a strict lockdown, without the risk of returning to a phase
of exponential spread of infections. Digital contact tracing using off-the-shelf
smartphones is used as an additional measure that is more scalable, does not
depend on infected persons’ ability to recall their location history during the
days before the interview, and can even track contacts between strangers.

In many digital contact tracing protocols, e.g. [AHL18; C+20; R+20; CTV20;
R+; T+20; P20a; BRS20; CIY20; BBH+20; AG20], users’ devices perform automatic
proximity detection via short-distance wireless communication mechanisms, such
as Bluetooth Low Energy (BLE), and jointly perform an ongoing cryptographic
protocol which enables users to check whether they have been colocated with
contagious users. However, näıve designs for digital contact tracing pose a signifi-
cant risk to users’ privacy, as they process confidential information about users’
location history, meeting history, and health condition [KBS21].

This has sparked a considerable research effort to design protocols for privacy-
preserving contact tracing, most of which revolve around the following idea:
Participating devices continuously broadcast ephemeral, short-lived pseudonyms
and record pseudonyms broadcast by close-by devices. When a user is diagnosed,
she submits either all the pseudonyms her device used while she was contagious or
all the pseudonyms her device has recorded (during the same period) to a server.
The first approach is the upload-what-you-sent paradigm, while the second is
called upload-what-you-observed paradigm. Users’ devices are then either actively
notified by the server, or they regularly query the server for pseudonyms uploaded
by infected users.

Some of the designs that received the most attention are the centralized
PEPP-PT proposals [P20c; P20b], as well as the more decentralized approach
of [CTV20] and DP3T [T+20], which served as sketches for the subsequently
proposed Apple/Google-API (GAEN) [AG20]. While the “centralized” approaches
of PEPP-PT do not provide any privacy guarantees towards the users against
the central server infrastructure [D20b; D20c] (unless they are augmented by,
e.g. mix-nets), the DP3T approach [T+20], as well as the similar protocol by
Canetti, Trachtenberg, and Varia [CTV20], expose the ephemeral pseudonyms of
every infected user, which enables her contacts to learn whether she is infected.
A detailed comparison is given in [F20].

We argue that both, protection against a centralized actor, as well as protection
of infected users from being stigmatized for their status3, is important for any
real-world solution. By specifying a protocol that achieves both of these goals and
detailing the corresponding design choices, we aim to contribute to the ongoing
discussion on privacy-preserving digital contact tracing.

3 See https://coronadetective.eu for a service that detects the contacts that caused a
warning for DP3T-based approaches.
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1.1 Contribution

We propose a strong and encompassing simulation-based security notion via an
ideal contact tracing functionality (in Section 5) that allows us to capture the
following privacy and security guarantees.

– It makes the exact leakage an attacker would gather explicit. This leakage
can be described by a partially anonymized, partially pseudonymized contact
graph (described and motivated in detail in Section 5 and Figure 3), a list of
positively tested and corrupted participants, and their warning status. This
(minimal) leakage is inherent to BLE-based contact tracing schemes.

– It captures that the locally exchanged identifiers do change quickly (each
“short-term epoch”) in an unlinkable fashion, but the time of an encounter
causing a warning can only be narrowed down on a more coarse-grained
timescale. In other words, while observed identifiers change, e.g. every 15
minutes, a warning does only give away the day (or another globally-fixed
“long-term epoch”) of the encounter.

– It captures the worst-case guarantees in the sense that our guarantees hold,
no matter how history unfolds, people meet, move and get infected, i.e., the
environment can fully control the (directed) contact graph and infection
status per short-term epoch.

– It provides guarantees against not being warned despite a (BLE-detectable)
risk contact with an honest user (false negatives). For this, we assume that
an attacker does not jam any local communication.

– It provides guarantees against being warned without a corresponding risk
contact (false positives), unless the user was in proximity to a corrupted user
and a corrupted user is infected or in proximity to an infected user. (This
restriction is necessary, as in any protocol not protecting against malicious
replays of proximity beacons, any attacker can cause a false positive under
these conditions. However, protecting against replays would require processing
time and location information, which is deemed undesirable.)

As a second part, we specify a privacy-preserving contact tracing protocol that
achieves this security notion. It follows the upload-what-you-observed paradigm
and achieves its goals by the following mechanisms:

– We split up the identifiers into short-lived public identifiers (pids) used for
broadcasting, and longer-lived secret identifiers used for querying for warnings
(cf. Sections 3.1 and 3.2).

– We employ a strict server separation concept, where the servers (for up-
loading the lookup table for this split-up identifiers, for matching, and for
warning queries) carry out different functions (cf. Section 3.3). For reasons
of complexity reduction, the ideal functionality in the main body does not
include server corruptions. However, the case of passive server corruptions is
given informally in Section 6.2 and formally in the full version [BDH+20].

– We employ strong, but anonymous anti-Sybil protections coupled to, e.g.,
an SMS challenge, to ensure that the guarantees cannot be circumvented by
registering multiple Sybil identities (cf. Section 3.4).
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Additionally, we argue that our protocol is similar in efficiency to DP3T, on
the side of the smartphone used, see our efficiency analysis on p. 17. While our
protocol was designed with the current COVID-19 pandemic in mind, note that
it can easily be generalized to perform contact tracing for other transmissible
diseases and enable an effective containment in case a new virus is about to hit a
population without any immunity from prior exposition.

The full version also includes an appendix that identifies the timing of
Bluetooth beacons as a side-channel that can be exploited to link distinct public
identifiers, and using secret sharing to ensure a lower bound on necessary contact
time for a warning.

1.2 Outline

We define our informal security model for BLE-based contact tracing in Section 2,
the formal version is given in Section 5. For this protocol, Section 3 proposes
a number of core security mechanisms in a modular way, which are applied to
obtain our overall protocol presented in Section 4. An informal security and
privacy analysis of the protocol follows in Section 6.

2 Security Model

Our main goals are privacy, i.e. limiting disclosure of information about partici-
pating individuals, and security, i.e. limiting malicious users’ abilities to produce
“wrong protocol outcomes”, such as being warned without a (BLE-detectable)
risk contact (false negatives), or not being warned despite a risk contact (false
positives). For privacy, we consider the following types of private information:
(i) where users have been at which point in time, (ii) whom they have met (and
when and where), (iii) whether a user has been infected, (iv) whether a user has
received a warning because she was colocated with an infected user. We have a
precise analysis of which of these goals are achieved under which conditions, and
refer to Sections 5 and 6 for details. We refer the interested reader to [KBS21] for
a systematization of different privacy desiderata.

Ideal–Real Paradigm. Formally, we cast our security guarantees in the ideal–
real paradigm [MR91; B92], to obtain strong, simulation-based security definitions,
as is also common in proofs in the Universal Composability framework [C01].
In contrast to a fixed list of security properties, which might leave doubt about
whether everything the system should guarantee is captured, this has the advan-
tage that the correctness guarantees and exact privacy leakage (dependent on
the behavior of the adversary) are made explicit. We refer the interested reader
to [L17]. Slightly more specific, we consider a scenario in which an interactive
distinguisher Z (also called environment) that can choose the parties’ inputs,
observe their outputs and can communicate with the adversary arbitrarily during
the execution, has to find out if it is running within a “real” experiment (“real
world”) or an “ideal” experiment (“ideal world”).
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In the “real” experiment, the protocol is executed and an attacker interferes
with it. In the “ideal” experiment, the attacker is replaced by a Simulator S
(which simulates protocol messages so that they look like in the real experiment)
and all honest parties calculate their result via an ideal (contact tracing) func-
tionality FCT (later given in Section 5). The real-world protocol is considered
secure if no PPT distinguisher Z has a non-negligible advantage in distinguishing
an execution of the real protocol (in the “real” setting) from an execution in the
ideal setting. In this sense, the real world only permits attacks that would also
be possible in the ideal world, which behaves perfectly as prescribed/is secure
by definition. Hence, FCT formalizes the security guarantees we require for a
contact tracing protocol.

Modeling Time. We assume time is divided into disjoint, consecutive intervals
called epochs (or short-term epochs). A long-term epoch is the union of a fixed
number of consecutive short-term epochs. Again, all long-term epochs are disjoint
and consecutive. In the following, we assume each short-term epoch corresponds to
a 15 minute interval, and each long-term epoch corresponds to a day. Hence, there
are 96 short-term epochs in a long-term epoch, and a tuple from N×Z96 specifies
a short-term epoch. (These durations are parameters, but for concreteness we
describe our protocol with these parameters fixed.)

Allowing the Distinguisher to Define Reality. We let the distinguisher Z
define the physical reality for each epoch t ∈ N × Z96, i.e. who meets whom
(defined by a contact graph Gt) and who is infected (a set of parties Pinfected,t).
Nodes in Gt correspond to participating parties, and Gt contains an edge (P1, P2)
if P2 registered a contact with P1. Since who registered a contact with whom
might not be a symmetric relation (e.g. due to noise in the wireless signal), each
Gt is a directed graph.4 (We do not impose any restrictions on Gt or Pinfected,t,
the environment may set these arbitrarily, even in ways that would be impossible
in the physical world.) The distinguisher Z defines these values by sending them
to a party Pmat (named after the ideal functionality Fmat as explained below).
Each such input marks the beginning of a new short-term epoch. In the ideal
experiment, this is a dummy party which forwards these inputs to FCT. In the real
experiment, Pmat sends Pinfected to Fmed and G to Fmat. This hybrid (i.e. ideal,
but used in the real world to abstract from a realization of it) functionality Fmat

represents the “world state” or “material world”5, including a representation of
who met whom (controlable by the environment), and a synchronized “epoch-
wise” clock. This functionality is used for local broadcast and to decide which
participant receives a particular public identifier pid. Here, Servers constitutes a
set of centralized servers, see Section 3.3.

4 This captures a relaxed notion of “proximity”, as high-gain antennas could be used
to register a contact, although not physically being in proximity.

5 Internally, the author(s) humorously prefer to read the name of Fmat as “the matrix”.
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Fmat(P, Pmat,Servers)

State:
– Current contact graph G = (P, E)
– Current time e = (elt, est) ∈ N× Z96.

Set Neighborhood:
1. Receive and store directed contact graph G = (P, E) from party Pmat.
2. Increment est (in Z96). If est = 0, increment elt and send

(newLongTermEpoch) to all servers, and then to all parties except Pmat.

Receiving Broadcasts:
1. Receive (pid) from a participant P , where pid is a public identifier.
2. Send (pid) to all P ′ with (P, P ′) ∈ E.

As mentioned above, the incorruptible party Pmat just forwards the contact graph
G and the set of infected parties Pinfected to the relevant functionalities Fmat

and Fmed (which represents the medical professional that is informed about who
is infected, and will be given in Section 4 on p. 13), respectively.

Protocol of Pmat in the Real Setting

Update Neighborhood and Infections:
1. Receive a contact graph G and a set of infected parties Pinfected from

the environment as input.
2. Send G to Fmat.
3. Send Pinfected to Fmed.

Communication Channels. Channels between the parties, functionalities and
the servers are assumed to be confidential and authentic (in the fitting direction).
We assume the attacker does not jam any wireless communication between honest
parties. (The distinguisher Z can emulate a suppression of broadcasts by leaving
out edges in the contact graph.)

When a user, e.g. uploads data used in the protocol that should not be linked
to the person (e.g. public or secret identifiers), the server can easily link these
pairs with communication metadata (such as the user’s IP address), which might
be used to ultimately link this data to a specific individual. We therefore use an
anonymous communication channel for all communication with the servers. In
practice, one can communicate via publicly available proxies that are managed
by operators separate from the protocol servers. Alternatively, one might also
employ the TOR onion routing network [TOR]. (We analyze the load that would
be placed on TOR on p. 17.)
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Corruption Model. In the formal modeling and our security proofs – to keep
the complexity of the description and proofs manageable – centralized servers
are perfectly trusted. However, the protocol was designed in a way that the
information leakage to the servers is still acceptable in the case of a passive
(honest-but-curious) server corruption, as will be explained in Section 6.2. (A
formal security notion with passive server corruptions is given in the full version.

Regarding the users, we do only consider static corruptions, i.e. corruptions
that happen at the beginning the the protocol execution. We do not distinguish
between “the attacker” and corrupted, malicious, or compromised parties.

Modeling Medical Professionals. Furthermore, we trust medical profession-
als to not disclose data regarding the users who are under their care, as is their
duty under standard medical confidentiality. This is abstracted by introducing a
hybrid functionality Fmed, which represents medical professionals who are aware
about the infection status of all users. Fmed is defined in Section 4 on p. 13.

3 Core Security Mechanisms

We start by giving a relatively generic, abstract template of contact tracing
protocols, which are characterized by send-what-you-observed upon infection.
This allows us to put our core security mechanisms in context and serve as a
starting point for describing them.

Generation of “Random” Identifiers. For every time period t, the user’s
device generates an identifier pidt. (These identifiers can look uniformly
random and be computationally unlinkable, unless they incorporate additional
time/location information for replay/relay protections.)

Broadcasting and Recording. During the time period t the identifier pidt is
repeatedly broadcast so nearby participants can record it, together with the
date/time (maybe involving additional postcomputation before storing).

Warning Co-located Users. When a user is tested positive, one extracts a
list of all recorded pid′ from the infected user’s device (assuming that old
ones are periodically deleted). The user is then given a TAN code that she
can use to send this list to a central server. The server marks the respective
pids as potentially infected, and then allows users to query for a given pid,
answering whether it is marked as potentially infected.

We now describe the security mechanisms our protocol is built upon:

3.1 Splitting of Identifiers

We propose to use, instead of just one public identifier pid that is used for both,
broadcasts and warning queries, two versions of identifiers: public identifiers pid
that are used for broadcasting, and a secret identifiers sid which are used to
query the server for warnings. The server internally keeps a table linking sids to
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pids, where users can submit new entries to. This split-up of identifiers achieves
better privacy, because malicious users cannot just use public identifiers they
have observed to query the server for the warning status of the pids’ owners. Note
that later mechanisms from Sections 3.2 and 3.3 will further modify this.

Generation of “Random” Identifiers. For every time period t, the device
generates pidt, sidt in a such way that one cannot efficiently derive sidt from
pidt. Moreover, given a set of pids which are either all from the same user,
or all from different users, it should not be possible to distinguish which is
the case. Finally, we require that only the user to whom these ids belong can
submit them, e.g. by her knowing a preimage that is used to generate both
in tandem and also submitting the preimage.6

Broadcasting and Recording. Proceeds as above.
Warning Co-Located Users. When an infected user sends a list of all recorded

pid′ as above, the server looks up the respective sids in his database of (sid, pid)
tuples and marks them as potentially infected. The server then allows users
to query for sids, answering whether they are marked as potentially infected.

3.2 Lower-Resolution Secret Identifiers for Improved
Infection-Status Privacy

In the protocol sketch described in Section 3.1, users receiving a warning can
immediately observe which of their secret identifiers sid was published. By cor-
relating this information with the knowledge on when they used which public
identifier pid, they can learn at which time they have met an infected person,
which poses a threat to the infected person’s privacy. Note that the DP3T protocol
[T+20] and [CTV20] succumb to analogous problems, see [V20a].

To mitigate this risk, we propose to associate a secret identifier sid with many
public identifiers pid, i.e. we use the same sid during a long-term epoch, but
change pids per short-term epoch. As the example of deriving (sidt, pidt) pairs for
time epoch t from Footnote 6 does not allow such longer-term secret identifiers,
we modify this procedure as follows:

Generation of “Random” Identifiers. The user generates a single random
key, now called warning identifier, once per long-term epoch. More concretely,
a user generates a random warning identifier widelt ←$ {0, 1}n per long-term
epoch elt (e.g. a day), and encrypts it with the server’s public key pkW to
obtain sid := Enc(pkW ,widelt), using a rerandomizable public-key encryption
scheme. For each shorter time period t (e.g., 15 minutes), the user generates

6 We give a simple example of how this might be done. Note however, our protocol
uses a different method, see Section 3.2. For this example, let H be a hash function,
such that H(k‖x) is a pseudorandom function (PRF) with key k ∈ {0, 1}n evaluated
on input x. For every time period t, the device generates a random key kt ←$ {0, 1}n,
and computes sidt := H(kt‖0) and pidt := H(kt‖1), stores them, and anonymously
uploads kt to the central server, who recomputes sidt, pidt in the same way. Both
parties store (sidt, pidt).

8



Bob

Alice

Home Work

Alice

Carlos

Carol

Bob

Alice

Home

Query for 
Warning

Query for
Warning

Submission Server Matching Server Warning Server

Upload 
Public/Secret 

Identities

TOR/Proxy

Fig. 1. Overview of the application’s infrastructure. The figure depicts different possible
scenarios: In the morning, Alice uploads her daily public/secret identifiers to the
submission server, and periodically queries the warning server for warnings. Throughout
the day, while she is in proximity to Bob, Carlos and Carol, the application exchanges
public identifiers with their phones.

a rerandomization sid′t of sid, where the randomness is derived from a PRG,
and computes pidt := H(sid′t). Once per long-term epoch, the user uploads
sid and the PRG seed to the server, who performs the same rerandomization,
obtaining the same pidt values, and the corresponding widelt by decryption.

The user then broadcasts the pidt in random order during the current long-term
epoch. The warning of co-located users proceeds as before, with the only change
that the server maintains a database of (wid, pid) tuples, and allows users to
query for wids (instead of sids).

There is a trade-off regarding the length of the long-term epochs: While
warnings are more precise for shorter long-term epochs, they also give more
information about when the encounter of the warning happened. In practice,
choosing a long-term epoch of a day is reasonable.

3.3 Splitting-Up the Server into a Pipeline

The change introduced in Section 3.2 allows to split the process of warning
co-located users into three tasks for three non-colluding7 servers, the submission
server, the matching server, and the warning server:

7 To make sure servers do not collude, they should be run by different organizations
whose independence is guaranteed by law, e.g. supervisory agencies on privacy (ideally
multiple different ones per nation-state) and non-governmental organisations that
are widely trusted by the general public.
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– The submission server collects the uploaded secret and public identifiers
from different users (more precisely, it receives sid and the seed for the PRG)
and then computes the (sid′i, pidi) pairs using the PRG with the given seed.
It rerandomizes the sid′i values another time with fresh, non-reproducible
randomness (obtaining sid′′i ), and stores (sid′′i , pidi) for a short period of time.
When the submission server has a sufficient number of submissions, it shuffles
them and sends them to the matching server. For ease of notation, we assume
that this transaction happens at the beginning of the next long-term epoch.
(We assume that enough users participate, for the batching to make sense.)

– The matching server collects the (sid′′i , pidi) pairs and stores them. Upon
receiving the pids recorded by the devices of infected users, which we call
a match request, the matching server looks up the respective sid′′i s of all
potentially infected users and sends them to the warning server.

– The warning server decrypts sid′′i to recover wid := DecskW (sid′′i ) for all
potentially infected users. It then allows to query for warning ids by the users,
which we call warning query in the following.

For illustration, see Figure 1. We assume all communication between the servers
uses confidential and authenticated channels. Section 6.2 contains a privacy
analysis in case of compromised, honest-but-curious and partly colluding servers.

3.4 Protecting from Encounter-wise Warning Identifiers and Sybil
Attacks

Our measures from Section 3.2, namely having a lower resolution for the se-
cret/warning identifiers are not yet sufficient to hide the infection against the
following, more motivated attack: An attacker that is able to upload an unlimited
number of sid and PRG seed values to the submission server, can change to a set
of pids that belong to a different warning identifier, after each short-term epoch.
Upon warning, the attacker can then deduce which of the warning identifiers have
been warned, and from that deduce the exact short-term epoch the encounter
happened. A simple rate-limiting on the side of the app is ineffective against
malicious attackers, and a simple traffic-based rate-limiting on the side of the
servers per app instance is not possible due to the anonymized communication.
Moreover, the above attacker can run a so-called Sybil attack, i.e. creating multiple
(seemingly) independent app instances. Hence, we aim to prevent this type of
attack and ideally to ensure a limitation of uploads to the submission server to
one per user (identifier) per day. For this, it is helpful to use a users identifier
that is difficult to obtain in larger numbers, to force the adversary to invest
additional resources for spawning Sybil instances. While there are a number of
solutions, for concreteness, we propose to bind each app instance to a phone
number (as the aforementioned user identifier) and require a registration process
using an SMS challenge. (Note that this approach does not prevent an attacker
from performing a Sybil attack on lower scale, as the attacker might own multiple
phone numbers.8)

8 One might use remotely verifiable electronic ID cards instead.
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Binding an app to an identifiable resource (such as a valid phone number)
while ensuring the user’s anonymity, requires a bit of care. For this, we use the
periodic n-times anonymous authentication scheme from [CHK+06]. In such a
scheme, token dispensers are issued to parties using an Obtain protocol. These
dispensers can be used n times in a Show protocol in a given epoch. The server
participating in the Obtain protocol can not link these requests to the executions
of the Show protocol. The formal definition is given as follows, where the security
notions are included in the full version (alternatively, see [CHK+06]).

Definition 1 (E-token dispenser scheme [CHK+06]).

– GenI(1k) is the key generation algorithm of the e-token issuer I. It outputs
a key pair (pkI , skI).

– GenU creates the user’s key pair (pkU , skU ) analogously.

– Obtain(U(pkI , skU , n), I(pkU , skI , n)) is a protocol between a user U and an
issuer I. At the end of this protocol, the user U obtains an e-token dispenser
D, usable n times per time period.

– Show(U(D, pkI , t, n),V(pkI , t, n)) is a protocol between a user U and a verifier
V. The verifier outputs a token serial number (TSN) S and a transcript τ .
The user’s output is an updated e-token dispenser D′.

– Identify(pkI , S, τ, τ
′). Given two records (S, τ) and (S, τ ′) output by honest

verifiers in the Show protocol, where τ 6= τ ′, computes a value sU that can
identify the owner of the dispenser D that generated the TSN S.

In our setting, we choose n = 1 and choose as time period the long-term epoch
period, i.e. the user can obtain one “e-token” per long-term epoch to upload a
new sid and PRG seed to the submission server. The submission server validates
the “e-tokens” and only accepts submissions with valid tokens while checking
for double-spending. The token dispenser is then issued to the user during a
registration process, which uses the aforementioned SMS challenges. Formally, we
define the hybrid functionality Freg, which represents the party towards which
parties run the registration protocol, and which keeps a list of registered parties,
and is given below. This is e.g. for obtaining a token dispenser to perform the
regular uploads. To keep the model simple, we do not incorporate SMS challenges
into Freg. (An SMS challenge, as well as the upload TAN, might be modeled
via an authenticated channel from the party, for which an adversary can break
authentication by guessing. See [AGH+19] for a formalization).

Freg(P)

State:
– Set of registered parties and their public keys as pairs RP.
– Issuer secret and public key for e-token dispensers (skI , pkI)
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Registering a Party:
1. Upon (register , pkU ) from party P : if P is not already in a pair in RP,

store (P, pkU ) in RP, else abort.
2. Issue a new e-token dispenser for P acting as U by participating as I in

the protocol Obtain(U(pkI , skU , 1), I(pkU , skI , 1)).

4 Our Contact-Tracing Protocol

We can now describe the full protocol. For this, let n denote the security pa-
rameter, G be a group of prime order such that the decisional Diffie-Hellman
problem in G is intractable. We assume a IND-CPA secure, rerandomizable
public key encryption scheme (Gen,Enc,Dec,ReRand) having message space
M = G. (We propose standard ElGamal for instantiation.) Let PRG be a
secure pseudorandom generator, and H be a one-way function. Finally, let
Σtok = (GenI ,GenU ,Obtain,Show, Identify) be an anonymous e-token dispenser
scheme as in [CHK+06]. The exact definitions can be found in the full version.

App Setup. When the proximity tracing software is first installed on a user’s
device, for anti-Sybil measures as described in Section 3.4, the application
proves possession of a phone number (e.g. via an SMS challenge) and obtains
an e-token dispenser.

Creating Secret Warning Identifiers. For each long-term epoch, the appli-
cation generates a random warning identifier wid←$G.

Deriving Public Identifiers. For each warning identifier wid, the app com-
putes sid := Enc(pkW ,wid), where Enc is the encryption algorithm of a
rerandomizable, IND-CPA-secure public-key encryption scheme, and pkW
is the warning server’s public key. Additionally, the app chooses a random
seed←$ {0, 1}n (rerandomization seed) per warning identifier.
The app (interactively) presents an e-token τ to the submission server via
an anonymous channel, and uploads (sid, seed) to the submission server via
the same channel. If the e-token is invalid (or the server detects double-
spending of this e-token), the server refuses to accept (sid, seed). Both
the submission server and the app compute 96 rerandomization values
r1, . . . , r96 = PRG(seed), and rerandomize sid using these values, obtaining
sid′i := ReRand(sid; ri) for i ∈ {1, . . . , 96}. The ephemeral public identifiers
of the user are defined as pidi := H(sid′i) for all i. The app saves the public
identifiers for broadcasting during the day of validity of wid. The submission
server rerandomizes each sid′i again (using non-reproducible randomness) to
obtain sid′′i and stores the (sid′′i , pid) pairs.

Broadcasting and Recording. During each time period i, the device repeat-
edly broadcasts pidi. When it receives a broadcast value pid′ from someone
else, it stores (elt, pid′), where elt is the current long-term epoch. Every
long-term epoch, the device deletes all pid′s that are old enough to no longer
be epidemiologically relevant.

12



Sending a Warning. When a user is tested positive, the medical personnel
generates a TAN and registers it at the matching server. The user collects a
list of public identifiers pid′ that have been received by his device while the
user was likely infectious, and sends this list together with the TAN to the
matching server, see p. 16.

The medical professional is modeled by the hybrid functionality Fmed, which
gives out a TAN to parties which are deemed infected, as given below. In a
bit more detail, Fmed stores a set Pinfected of infected/positively tested partic-
ipants as provided by the environment Z. If such a participant P ∈ Pinfected

requests a TAN (using warningRequest), Fmed chooses a TAN, registers its
hash value with the matching server and sends it to P . For an illustration,
see Figure 2.

Work

Carlos

Charlie

Carol

Bob

Alice

Home

Doctor

Healthcare

Upload the public 
identities at risk 

and TAN

TOR/Proxy

Send hash value of TAN
and its expiration date

Send TAN and 
its expiration date

Query for
Warning

Submission Server Matching Server Warning Server

Fig. 2. Information flow upon issuing a warning. When the doctor is informed about a
positive test, she generates a new TAN and sends it to the matching server and then
communicates it to positively tested Alice. Then, using this TAN, Alice uploads all
public identifiers she observed during her infectious period. The application regularly
queries for its warnings to its the warning server. In the case of Carlos and Carol, who
have been in contact with Alice in Figure 1, this check will turn out to be positive.

Fmed(Pmat,Matching Server)

State:
– Set of infected parties Pinfected .
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Set Infected:
1. Receive and store the set of infected parties Pinfected from a party Pmat.

Handling Warning Request:
1. Upon (warningRequest) from P ∈ Pinfected .
2. Generate tan ←$ {0, 1}2n.
3. Send (H(tan)) to the Matching Server.
4. Send (tan) to P .

Retrieving Warnings. The application regularly queries the warning server
for the warning identifiers it has used during the last 28 days itself. This is
done via an anonymous channel with proper authentication of the warning
server. If the query returns that the warning identifier has been marked as
at-risk, it informs the user she has been in contact with an infected person
during the long-term epoch when the warning identifier was used.

Protocol of the App/Users
State:
– Current epoch e = (elt, est) ∈ N× Z96

– Current token dispenser D.
– Set of recorded broadcasts of pids.
– Let pkW and pkI be the hardwired public key of the warning server, and

e-token dispenser issuer, respectively.
– Let (skU , pkU ) be the generated user secret/public key pair during the

registration.
– Current Warning identifier wid
– Set of earlier warning identifiers (wid, k), where k is the according long-

term epoch.
– The public identifiers of the current long-term epoch (pidj)j∈[1,...,96]

Register:
1. When a new party is created by the environment, it first generates a token-

dispenser secret/public key pair (skU , pkU ) and then sends (register , pkU )
to Freg.

2. Obtain a token dispenser D by participating as U in
Obtain(U(pkI , skU , 1), I(pkU , skI , 1)) with Freg acting as I.

3. Initialize the state and run “Upload Submission”.

Upload Submission:
1. Generate fresh (wid, seed, sid) and the according list of
{(sid′j , pidj)}j∈[1,··· ,96].

2. Enqueue the current (wid, elt).
3. Submit a token by participating as U in

Show(U(D, pkI , elt, 1),V(pkI , elt, 1)) to the Submission Server, which
acts as V.

4. Send (seed, sid) over the same channel to the Submission Server.
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Scheduled Upload:
1. Upon (newLongTermEpoch) from Fmat.
2. Increment elt.
3. Dequeue outdated wids and recorded pids.
4. Continue as in “Upload Submission”.

Sending Broadcasts:
1. Upon (sendBroadcast) from the environment.
2. Send (pidest) to Fmat and increment est.

Recording Broadcasts:
1. Upon (pid) from Fmat.
2. Enqueue (pid, elt).

Match Request:
1. Upon (positive) from the environment.
2. Send (warningRequest) to Fmed.
3. Receive (tan) from Fmed.
4. Extract the list L of all recorded/received public identifiers from the

queue.
5. Send (L, tan) to the Matching Server.

Querying a Warning:
1. Upon (query , t) from the environment.
2. Find the corresponding wid for long-term epoch t and send (wid) to the

Warning Server.
3. Receive bit b from the warning server.
4. Output b to the environment.

Collecting Daily Submissions. The submission server rerandomizes all the
sid′i values using fresh randomness, obtaining sid′′i := ReRand(sid′i), and saves
a list of the (sid′′i , pidi) tuples. When the submission server has accumulated
a sufficiently large list, originating from sufficiently many submissions, it
shuffles the list, forwards all tuples to the matching server and clears the list.

Protocol of the Submission Server

State:
– Current epoch elt.
– The current batch of {(sid′′kj , pidk

j )}j∈[1,··· ,96].

Handling Submissions:
1. Verify the token by participating as V in

Show(U(D, pkI , elt, 1),V(pkI , elt, 1)).
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2. Detect possible double spending.
3. Receive (seed, sid) from U .
4. Generate {(sid′j , pidj)}j∈[1,··· ,96] with the help of seed.

5. Rerandomize the sid′j using fresh randomness, i.e. sid′′j = ReRand(sid′j)

6. Add the generated tuples (with rerandomization) {(sid′′j , pidj)}j∈[1,··· ,96]
to the batch of elt.

Forwarding Submissions:
1. Upon (newLongTermEpoch) from Fmat.
2. Shuffle the last batch and send the complete batch to the Matching

Server together with elt.
3. Increment elt.
4. Create a new empty batch for the new epoch.

Performing Contact Matching. The matching server maintains a list of hash
values of all TANs issued by medical professionals and all tuples it has received
from the submission server, deleting each tuple after three weeks.9When a user
submits a list of public identifiers together with a valid TAN, the matching
server marks the TAN’s hash value as invalid by deleting it from its list. The
server looks up the corresponding secret identifiers sid and sends them to the
warning server.

Protocol of the Matching Server

State:
– The current epoch elt.
– Per long-term epoch t a set Bt of (sid′, pid) pairs.
– Set of TANs of pending matching requests Tcorrupted .

Removing Outdated Information:
1. Upon (newLongTermEpoch) from Fmat.
2. Increment elt and delete all sets Bt where 0 ≤ t ≤ elt − 14.

Handling Submissions:
1. Receive a set of (sid′, pid) tuples and an epoch t from the Submission

Server and store it as Bt.

Preparing Match Request:
1. Receive (htan) from Fmed and insert (htan, elt) into Tcorrupted .

9 If a user A has been in contact with an infected user B, and if B takes up to three
weeks to show symptoms and have a positive test result, the data retention on the
matching server is sufficient to deliver a warning to A.
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Handling Match Request:
1. Receive (S, tan) from party P , where S is a set of pids.
2. If there is an index t ∈ N such that there is an entry (H(tan), t) ∈
Tcorrupted , remove this entry from Tcorrupted , otherwise abort.

3. Let M :={(sid′l, tl) : ∃pidl ∈ S, tl ∈ N such that (sid′l, pidl) ∈ Btl ∧ tl ≤ t}.
4. Rerandomize all the sid′l ∈M from the previous step and send {(sid′′l :=

ReRand(sid′l), tl) : (sid′l, tl) ∈M} to the warning server.

Processing of Warnings. The warning server decrypts the secret identifiers
received from the matching server to recover the warning identifier wid
contained in them. Users may query the warning server for specific wids. On
such queries, the warning server returns either 1 (if this wid was recovered
by decryption during the last two weeks) or 0 (otherwise).

Protocol of the Warning Server

State:
– The current epoch elt.
– PKE key pair (skW , pkW).
– Set WL of released wids and their validity epoch t.

Removing Outdated Information:
1. Upon (newLongTermEpoch) from Fmat.
2. Increment elt and delete all (wid, t) ∈ WL, with 0 ≤ t ≤ elt − 14.

Issuing Warnings:
1. Receive a list {(sid′′l , tl)} from the Matching Server.
2. Decrypt, deduplicate and add the received warning identifiers {(widl =

DecskW (sid′′), tl)} to WL.

Warning Query:
1. Receive warning identifier (wid).
2. Search all finished epoch for wid and return 1 if a match is found, 0

otherwise.

This concludes the description of our protocol, cf. Figures 1 and 2 for illustration.

4.1 Efficiency

Our protocol incurs computation, communication and storage cost on the smart-
phone, submission server, matching server and the warning server.

First of all we argue that the application on the smartphone does not incur
significantly larger costs than currently deployed solutions. Computation-wise, the
most expensive operations, i.e. operations needed for using the token-dispenser
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scheme and 96 reencryptions, have to be performed only once a day (long-term
epoch). These are 12 multi-base exponentiations in the domain group of a pairing
and 23 multi-base exponentiations in the target group as was shown in [CHK+06].
The remaining computations, i.e. 96 hashes for the pids and the generation of
seed,wid, sid, are cost-wise similar to currently deployed solutions for contact
tracing and thus the overall battery consumption and CPU load are comparable.
The application has to store a constant amount of information of several kilobytes,
i.e. 28× wid, 96× pid. The only growing variable is the set of recorded/observed
pids. We argue that the number of received pids will be rather small as current
studies suggest, i.e. [FM21]. The communication comprises several small requests
a day to different servers and the broadcast/reception of a pid, which we deem
overall negligible.

Next, we analyze the computational cost on the submission server. Consid-
ering that the population of the EU is approximately 448 Mio. and current
experience with the German contact-tracing application CWA shows that 30%
of the German population have adopted the application, we may assume for
further considerations 134 Mio. users in our protocol. The submission server
must perform 2 · 96 reencryptions of the sids per day and user, which means that
2 · 96 · 134 · 106 ≈ 2.6 · 1010 reencryptions a day or ≈ 300000 a second. Using the
ElGamal scheme, the dominant part of the reencryption are two modular expo-
nentiations or scalar multiplications if we use the ECC variant of ElGamal. For
an upper bound we may use current benchmarks for the verification algorithm of
ECDSA, which has two dominant scalar multiplications on elliptic curves as well.
According to [BL21] the verification of ecdonaldp256 on an (2018) AMD EPYC
7371 with 16× 3100MHz requires 425723 cycles, which means that we are able to

verify 16·3100·106
425723 ≈ 116507 signatures a second. We argue therefore that ≈ 300000

reencryptions per second is a realistic requirement and the computational load on
the submission server—while undeniably high—can be handled with a realistic
amount of equipment.

Next, we analyze the amount of data uploaded from the users’ devices to the
submission server. Our estimation shows that a daily upload by our protocol is at
most 240 kbit. With 138 Mio. users the submission server has to handle 33Tbit a
day. By scattering uploads across the span of the day we achieve a lower bound of
0.3Gbit/s, which we deem realistic. While the server may be able to handle this
amount of requests, our protocol requires that the uploads are performed through
an anonymous channel. To this end one may use TOR and we argue that the
EU-wide deployment of our protocol relying on TOR is within TOR’s capacities.
As of 2020 the advertised bandwidth of the TOR network is approx. 500 Gbit/s
and the consumed bandwidth is approx. 250Gbit/s (cf. https://metrics.torproject.
org/bandwidth.html), which is sufficient for our 0.3Gbit/s. Another important
restriction of TOR is the number of active users, which currently is around 2Mio
users (cf. https://metrics.torproject.org/userstats-relay-country.html). If our server
is able to handle 0.3Gbit/s then the amount of users served per second will be
1550, which is a rather small delta to the overall number of TOR users. The
latency added by using TOR is in the magnitude of seconds and has no impact
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on the protocol, as a warning delivered a few seconds later is acceptable. Similar
considerations can be made for the matching and the warning server. However,
the costs of computation and communication are overall smaller than on the
submission server and are hence tamable in the same fashion.

5 Formal Security Notion

Before we are ready to state our ideal contact-tracing functionality, let us begin
with several assumptions that allow us to simplify our proof and reduce complexity:
(i) In this section, we assume that the servers are uncorruptible. However, we
provide a discussion on security against server corruptions in Section 6.2 and give
a strengthened ideal functionality in the full version. (ii) The per-day uploads
are synchronous. We assume that before any pid is broadcast, all parties have
made their per-day upload.10 (iii) All parties, even corrupted ones, send exactly
one broadcast per epoch. (The distinguisher can emulate a single corrupted
party making multiple broadcasts by using additional corrupted parties with
similar/equal sets of recipients.) (iv) For formal reasons, parties can only perform
computations and broadcasts when they receive an input. Hence, we assume
the distinguisher Z inputs a dummy message (sendBroadcast) to all honest
participants at the beginning of a new epoch. (v) Contacts happening on the
day an infected person is uploading their list do not incur immediate warnings.
These are delayed until the next long-term epoch. This is also a privacy feature,
ensuring that no one can learn the time of an encounter with an infected person
with precision higher than a long-term epoch.

We are now ready to describe important aspects and notions used in our
ideal functionality FCT, which formalizes our security and privacy guarantees:
Whenever the environment Z starts a new short-term epoch by sending Gi =
(P, Ei) and Pinfected to FCT (via Pmat), FCT creates two derived graphs G′i and

(P, Êi). G
′
i is a partially anonymized, partially pseudonymized version of Gi. We

let FCT output G′i and Pinfected ∩ Pcorrupted to the simulator, hence this is the

information leakage of our protocol. The edge set Êi represents who will receive
warnings from whom, hence the simulator’s abilities to modify Êi represent the
attacker’s abilities to induce and suppress warnings.

Information Leakage on the Contact Graph. We now describe the ano-
nymization and pseudonymization process for G′i in detail, cf. steps 3 to 5 in “Set
Neighborhood/Infected” below. The process is exemplified by the graphs Gt and
G′t shown in Figure 3 (left and middle, respectively). Nodes corresponding to
uncorrupted parties are renamed to a pseudonym chosen independently for each
epoch (in the example, the nodes of A and C are shown as dashed). This means
that an attacker cannot re-identify participants encountered earlier and hence
cannot track them over time. Edges between uncorrupted parties are removed

10 In practice, parties can make their uploads a few days ahead of time without incurring
additional risk.
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Fig. 3. Left: An example of a contact graph Gt = (P, Et) with two honest parties A
and C and two corrupted parties B and D. The edges indicate where a broadcast is de-
livered. Middle: The pseudonymized graph G′

t = (Qt, E
′
t) of Gt as leaked by FCT to the

simulator. Dashed node borders indicate that the node name is replaced with an opaque
pseudonym. Right: An example for (P, Êt). This graph is initialized with all edges from
Gt between honest parties (shown in solid black). The adversary has already inserted
edges using the commands (relay , t, pseudonymize(C), D,B,pseudonymize((B,A))) as
in “Replay/Relay” (shown in dotted purple) and (sendBroadcast , t, t, B,D) as in “Broad-
casts From Corrupted User” (shown in dashed green). Note that warnings from honest
parties are delivered against the direction of all the edges. So an infected A would warn
C and D, an infected C would warn A and D.

entirely (in the example the edge (A,C) is removed), hence the attacker is
completely oblivious of contacts between honest parties. Edges between corrupted
parties (in the example (B,D)) are preserved without modifications, since we
assume they are fully controlled by the attacker and hence the attacker is
completely aware of any contacts between them. Before the pseudonymization
takes place, nodes corresponding to honest receivers are duplicated for each
incoming edge, leaving only the outgoing edges on the original node, since
corrupted senders cannot detect if they are broadcasting to the same participant.
This step anonymizes edges to honest nodes. In the example the newly introduced
nodes by this step are: (D,A), (B,A) and (B,C). The outgoing edges are left
at their original node (for example from A), since corrupted receivers (in the
example B and D) can easily detect they were in contact with the same person
at approximately the same time by comparing the broadcast values. Note that
this disadvantage is shared by many contact tracing protocols.

Additionally, all users of the protocol can query FCT to check if they have
received a warning, which might enable them to infer additional information
about the infection status of other participants. (However, this information is
inherent to all contact tracing protocols.)

Manipulation of Warnings. We now discuss the attacker’s ability to manipu-
late warnings, i.e. the attacker’s options to influence Êi. Note that Êi is initialized
to contain all edges between honest parties (step 7 in “Set Neighborhood/Infected”
below). The simulator does not have the ability to remove edges from Êi, but it
can introduce new edges (under certain conditions) by causing FCT to execute
“Replay/Relay” and “Broadcasts From Corrupted User”.
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“Replay/Relay” models a situation where a corrupted user re-broadcasts a
value previously broadcast by an honest party: In this scenario – see the dotted
purple edges of Figure 3 (right) – an honest party C broadcasted certain value
during an epoch t, received by the corrupted party D. D cooperates with B and
B re-broadcasts the same value in the presence of A. Hence, in our protocol, if A
was infected, it would cause a warning to be delivered to C (regarding a contact
during epoch t), even if those parties did not meet.

“Broadcasts From Corrupted User” models a situation, see the dashed green
edges of Figure 3 (right), where a corrupted user B broadcasts a pid potentially
uploaded by another corrupted user D, or potentially not even uploaded, yet.
Broadcasting another user’s pid causes warnings to be delivered to that user
(D), as if D had been performing the broadcast instead of B, hence we add
corresponding edges to Êi. Note that the time of broadcast can be different from
the long-term epoch for which the pid was (or will be) uploaded.

In addition to the ability to manipulate Êi discussed above, the attacker is
able to directly send warnings in case a corrupted party is infected. FCT enforces
that the attacker can only send warnings to honest parties who have been in
contact with any corrupted party during the last 14 long-term epochs and a
corrupted party is infected after this encounter took place (see step 6 of “Handling
Match Requests” on p. 23). The simulator is allowed to specify honest parties
fulfilling these conditions (via their pseudonyms). FCT will add these parties to
the set WP of parties who have received a warning. When these parties next
send (query , t) for the corresponding long-term epoch t to FCT, FCT will find
the warning in WP and return 1, indicating a warning has been issued.

FCT(P, Pmat)

State:
– Current epoch (elt, est) ∈ N× Z96 =: I.
– Set of corrupted parties Pcorrupted .
– Set of honest parties Phonest = P \ Pcorrupted .
– A sequence (Pinfected,i)i∈I of sets of infected parties, i.e. the history of

infected parties.
– Set of currently infected parties Pinfected

– A sequence of all contact graphs so-far (Gi = (Pi, Ei))i∈I , i.e. the global
meeting history.

– Current contact graph G = (P, E) = G(elt,est) and its pseudonymized
version G′ = (Q, E′)

– Parties at risk WP ⊆ P × N, which signifies which parties have encoun-
tered a positive participant (that generated a warning) in the last 14
long-term epochs and during which long-term epochs the encounters
took place.

– A sequence of edge sets (Êi)i∈I on Pi which does some bookkeeping
necessary to know who is to be warned. Let Ê be the edge set of the
current epoch.
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Set Neighborhood/Infected:
1. Receive a contact graph G = (P, E) and a set of infected parties Pinfected

from party Pmat.
2. Add G to the global meeting history, and Pinfected to the history of

infected parties.
3. Set E′ = {(P0, P1) ∈ E | P0 ∈ Pcorrupted ∨ P1 ∈ Pcorrupted}.
4. For all α = (P0, P1) ∈ E′ with P0 ∈ Pcorrupted , P1 ∈ Phonest , replace α

with α′ = (P0, α).
5. Select a random, injective mapping pseudonymizei : Phonest ∪

(P × P) → {0, 1}2n where i = (elt, est). Extend it by
pseudonymizei(P ) = P for all P ∈ Pcorrupted . Set E′ :=
{(pseudonymizei(x),pseudonymizei(y)) : (x, y) ∈ E′}, i.e. rename all
nodes in E′. Let Q be the set of nodes used in the set of edges E′.

6. Leak (Q, E′),Pinfected ∩ Pcorrupted to the adversary.

7. Let Ê := (Phonest × Phonest) ∩ E.
8. Increment est (in Z96).
9. If est = 0 then increment elt and delete all (P, t) pairs from WP where

0 ≤ t ≤ elt − 14.

Send Broadcast:
1. Receive and ignore (sendBroadcast) from a participant P .

Broadcasts From Corrupted User:
1. Receive (sendBroadcast , t1, t2, P1, P2) from the adversary, with t1, t2 ∈

[elt− 14, elt]×Z96, P1, P2 ∈ Pcorrupted (with the meaning that P1 broad-
casts in the name of (i.e. the pids registered by) P2).

2. For each (P1, x) ∈ Et1 , add edge (P2, x) to Êt2 .

Replay/Relay:
1. Receive (relay , t, P ′1, P

′
2, P

′
3, P

′
4) from the adversary, where P ′1 ∈

pseudonymize(P), P ′2, P
′
3 ∈ Pcorrupted , P ′4 ∈ pseudonymize(Pcorrupted ×

Phonest).
2. Let Pj := pseudonymize−1i (P ′j) for j = 1, 2, 3, 4. (Note that P2 = P ′2,
P3 = P ′3.)

3. If (P1, P2) ∈ Et, (P ′3, P
′
4) ∈ E′, let P̂4 ∈ P be the node such that

P4 = (P3, P̂4), and add the new edge (P1, P̂4) to Êt.

Handling Match Requests:
1. Receive (positive) from party P .
2. If P ∈ Pcorrupted , skip to step 6.
3. If P /∈ Pinfected , return. Otherwise, continue:
4. Let R := N∩ [elt− 14, elt). For each epoch i ∈ R×Z96 (the relevant time

period), determine the set ∆WPi (new parties at risk) of nodes P ′ such
that (P ′, P ) ∈ Êi.

5. Skip to step 7.
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6. Let lastInfected lt := max{i ∈ N : ∃j ∈ Z96, such that P ∈ Pinfected,(i,j)}.
(Let lastInfected lt := −∞ if this set is empty.) Let R := N ∩
[elt − 14, elt) ∩ [0, lastInfected lt ]. Send (forceWarning) to the adver-
sary, asking for subsets Si of (the pseudonyms of) uncorrupted
parties which have been in proximity to a corrupted party dur-
ing epochs in R, i.e. Si ⊆ {q ∈ pseudonymizei(Phonest) | ∃q′ ∈
Pcorrupted where (pseudonymize−1i (q), q′) ∈ Ei}. After the response, set
∆WPi = pseudonymize−1i (Si) as the set of parties that will be warned
for the current epoch.

7. For each i = (ilt , ist) ∈ R× Z96, add {(P ′, ilt) | P ′ ∈ ∆WPi} to the list
of active warnings WP.

Handling Warning Query:
1. Receive (query , t) from party P
2. Return 1 if (P, t) ∈ WP, otherwise return 0.

6 Security and Privacy Analysis

Our protocol’s security is summarized as follows.

Theorem 1. Under the following list of assumptions, the real protocol (as
specified in Section 4) realizes the ideal protocol FCT (cf. Section 5) in the
Fmed,Fmat,Freg-hybrid model and with static corruptions, assuming that Pmat

as well as the submission, matching and warning server are honest. Assumptions:

– Let ΣR = (GenR,EncR,DecR,ReRand) be an IND-CPA-secure, rerandomiz-
able encryption scheme with message space M = G, ciphertext space C.

– Let PRG be a secure pseudorandom generator.
– Let H : C → {0, 1}2n be a one-way function.
– Let Σtok = (GenI ,GenU ,Obtain,Show, Identify) be a sound, anonymous e-

token dispenser scheme with identification of double-spending.

Having stated the formal security guarantee that we capture with this theorem,
we proceed to discuss the interpretation and limitations on what we achieve
exactly. For exact definitions of the required primitives and the proof see the full
version. For example, the extensive powers of the environment, also in determining
the number and place of corrupted users, make it less clear what, e.g. our anti-
Sybil protections actually achieve w.r.t. the privacy of the users. While in our
argumentation in the full version we state that the e-token dispenser is meant to
guarantee that not too many malicious users/Sybils exists because they are hard
to create, in our formal terms this only corresponds to the guarantee that the
number of daily uploads is bounded by the number of users. Hence, for real-word
security we believe that we can exclude excessive Sybil attacks.

Note that this points at a larger aspect that is typical for security modeling in
general, but also relevant to fully understand the scope of our modeling: Giving
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the environment a lot of power to shape the scenarios in which the protocols
are used, is an instance of a strong worst-case modelling. By quantifying over
all environments (and implicitly over all computable “real world” scenarios of
contact graphs and infection statuses), without a proper analysis of the costs and
impracticalities of achieving this in the real, physical world11, we simplify the
analysis and abstract from the many scenarios that may arise in its actual use.
In the light of this, we give, in the following, an interpretation of our security
guarantees and a discussion of guarantees and limitations not captured by our
model, in the following:

6.1 Privacy

For our privacy analysis, we assume corrupted users can link some public identifiers
they directly observe to the real identities of the corresponding user, e.g. by
accidentally meeting someone they know. This pessimistic approach yields a
worst-case analysis regarding the information available to corrupted users.

Privacy of Positively Tested Participants. In the ideal functionality (FCT

in Section 5), the attacker is provided with Pinfected ∩ Pcorrupted , so the infection
status of honest parties is protected here. The pseudonymized contact graph
is independent of the infection status. Apart from the inherent leakage about
the infection status from warning queries, this models that the protocol does
not introduce any additional information leaks on the infection status of honest
participants. (For example, a motivated “paparazzi” attacker might take a “group
testing” approach in that he tries to get near several subgroups of a larger group
to later single out positively tested participants upon warning.) Note that is in
contrast to DP3T, where short-term identifiers of a whole day can be linked
together, upon uploading data in case of an infection.

Privacy of Warned Participants. Our protocol naturally protects the privacy
of warned participants and their social graph as the published warning identifier
is computationally unlinkable to any information that can be recorded locally
(i.e. pids), and also deciding whether some identifiers belong to the same user, is
impossible. Thus, a wid does not help the attacker in breaking the users’ privacy.

6.2 Privacy in the Case of Compromised Servers

This section presents an analysis of the privacy guarantees offered by our protocol
if servers are compromised. See the full version for the formal guarantees in case
of passively corrupted servers.

11 While it would be perfectly possible for an environment to use as a contact graph
a fresh, and independently sampled random graph on P for each short-term epoch,
the costs of implementing this in real time for 15 minute epochs would be quite
challenging.
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Linking Public Identifiers from the Long-Term Epoch. If the submission
server is compromised, the attacker will be able to link different public identifiers
pid to the same secret sid, and hence can link the public identifiers the user
is using during the same long-term epoch. This poses a privacy threat, if the
attacker additionally has observed some of the targeted public identifiers pid,
which requires users colluding with the server.

Similarly, if both the matching server and the warning server are corrupted,
the attacker can decrypt the sid values stored by the matching server to recover
the wid value, and hence again link public identifiers to the secret identifiers sid
and the respective warning identifier wid. Such an attacker that also colludes
with corrupted users may be able to link public identifiers to times and places
where these identifiers have been broadcast, and hence observe parts of the user’s
location history and track a user for up to one day. We stress that even if all
servers are compromised, an attacker will not be able to link public identifiers
used on different days (assuming the use of anonymous channels).

Contact Information of Infected Users. Information about encounters be-
tween users is stored strictly on the user’s devices. Only the meeting history, i.e.
the list of encountered public identifiers, without times and places of meetings,
of infected users is transmitted to the central servers.

If the attacker has compromised the matching server and is able to link public
identifiers used on the same long-term epoch (as in the previous scenario), the
attacker might be able to infer repeated meetings of the infected user, i.e. she
can learn how many encounters with the same persons the infected user’s device
has registered within each day. If the attacker has additionally observed some of
the warned public identifiers at specific times and places, the attacker will also
learn where and when the encounter took place, and hence learn parts of the
location history of the infected user as well as the warned users.

Warnings Issued. If the attacker has compromised the matching server, she can
immediately observe the public identifiers of all users who have been colocated
with infected users. If the attacker can additionally link a public identifier to a
specific individual, the attacker can conclude this person has received a warning.
(Note that a similar attack is possible in the DP3T protocol [T+20], but even
without compromising a server.)

6.3 Security

We now analyze an attacker’s ability to cause false negatives or false positives.
As above, we assume central servers to follow the protocol. See the full version
for the formal guarantees in case of passively corrupted servers.

Creating False Negatives. A false negative occurs when an uncorrupted
user A has been in colocation with an uncorrupted infected user B but A does
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not receive a warning. These false negatives are not possible in our protocol. In
FCT this property is modeled by, Ê initially containing all edges between honest
users, and during the protocol edges can only be added and never removed. (Note
that we excluded jamming of the BLE signal by the adversary, as motivated in
Section 2.)

Only in the case of a (passively) corrupted matching server can the adversary
evade these guarantees regarding false negatives. This is because a corrupted
matching server will learn the TANs at the time when honest users upload their
list of observed identifiers. Exactly during (in parallel to) this step, an adversary
may “use up” (and thereby invalidate) this TAN (after the matching server
learned it), but before the honest user’s request is finished. However, note that
in this case, it is evident to the honest user that the TAN has been invalidated,
pointing towards a passive corruption of the matching server (which is hence
incentivised to not use this attack.)

False Positives Regarding Honest Users. An honest user A is subject of
a false positive if she has not been colocated with an infected user, but she
nonetheless receives a warning. Our security goal is to prevent false positives,
unless i) A was in proximity to a corrupted user, and ii) the attacker is in
proximity to an infected user, or has been infected themselves.

This is captured by the following fact: In order for an honest party A to be
warned, the party has to be included in WP. It can only be included in WP, if
there is an outgoing edge from A in Ê (warning triggered from an honest party)
or there is an outgoing edge from A to a corrupted party in E (warning triggered
from a corrupt party).

If A was not in proximity to a corrupted user, the attacker cannot use
“Replay/Relay” to add new outgoing edges to Ê (as (P ′3, P

′
4) 6∈ E′ in step 3,

because P ′3 is corrupted and P̂4 = A is not in proximity to a corrupted user) and
hence cannot trigger a false warning from an honest party (unless the submission
or the matching server is passively corrupted, as in this case the adversary learns
otherwise unobserved pids to use for this). The attacker cannot trigger a warning
for an honest that has not been in contact with a corrupt party, as step 6 of
“Handling Match Requests” requires all Si to be empty in this case (unless the
submission or the matching server is passively corrupted).

If the attacker has not been in proximity to an infected user and no corrupted
party has been infected, the attacker can only insert edges into Ê using “Re-
play/Relay” where the target will never be infected. So a false warning cannot
be triggered from an honest party. Regarding warnings triggered from a corrupt
party, lastInfected lt will always be −∞ in step 6 of “Handling Match Requests”
and parties can be added to WP . This concludes our argument that producing a
false positive for an honest user requires proximity of the attacker to both, the
honest user and to an infected user (or the a corrupted user is infected).
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7 Related Work

Canetti et al. [CTV20] mention an extension of their protocol using private set
intersection protocols in order to protect the health status of infected individuals.
However, it is unclear how feasible such a solution is with regard to the compu-
tational load incurred on both, the smartphone and the server, cf. [D20d, P3].
Whereas DP3T [T+20] claims that protecting the infection status of individuals
in decentralized protocols is impossible by [D20a, IR 1] and therefore does not
address further countermeasures.

Chan et al. [C+20, Sect. 4.1] include a short discussion of protocols in the
upload-what-you-observed paradigm, and propose a form of rerandomization of
identifiers at the side of the smartphone. In this protocol, a user downloads all
published identifiers and checks whether they are a rerandomization of their own
identifier (requiring one exponentiation). Hence, this approach puts a regular
heavy computation cost on the user’s device, and is likely not practical. Bell et al.
[BBH+20] propose a solution for digital contact tracing based on homomorphic
equality tests, aimed at protecting the infection status. However, there the central
server learns the full contact graph for infected and non-infected users alike, as
all users periodically upload their observations.

Besides BLE-based approaches, there are also proposals that use GPS traces of
infected individuals to discover hot spots as well as colocation, such as [BBV+20;
FMP+20]. However, there is a consensus that GPS-based approaches do not offer
a sufficient spatial resolution to estimate the distance between two participants
with sufficient precision.

The protocols of Garofalo et al. [GhP+21], and DESIRE [CBB+20] (another
hybrid approach, constituting concurrent work), broadcast public keys and
compute Diffie-Hellman shared secret upon receiving a broadcast. Both are very
similar to a proposal from Cho, Ippolito, and Yu [CIY20]. Both constructions
compute two separate hashes of a shared secret, which constitutes an encounter,
and use one for reporting contacts at risk and another one for querying their
status. An advantage of registering an encounter by computing a shared secret
from a Non-Interactive Key Exchange is the protection against certain kinds
of replay attacks as observing a public key is not enough for impersonation.
The main disadvantage, is that a public key does usually not fit into a single
advertisement packet and therefore additional workarounds are necessary. Also,
the security model of DESIRE is different from ours, e.g. if two corrupted users
would like to know whether and when they met the same honest non-infected
user, they could cooperate with the DESIRE server (which can link all encounter
tokens of a user together, because a user has to upload all of them at once when
querying for a warning) to link both encounters. Garofalo at al. introduce a
Central Health Authority server, and a matching server that has some similarities
to our server pipeline.

Instead of broadcasting large public keys, the protocol Pronto-C2 by [ABI+20]
broadcasts addresses, where the public keys can be retrieved from. This requires
the public keys to be anonymously uploaded in advance, which is similar to the
submission routine in our protocol. Pronto-C2 separates the task for authenticat-
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ing app requests from the central server and leaves the task for matching and
risk-computation to the smartphone, which might incur a significant workload on
the smartphone. On the other hand, our protocol utilizes a dedicated party for
every privacy-sensitive task, i.e. submission, matching, warning and registering,
and leaves only the task of risk-computation to the smartphone. The interested
reader is referred to [V20b] for a general discussion on hybrid approaches.

The protocol Epione by [TSS+20], as well as the protocol Catalic by [DPT20]
make use of private set intersection to improve on the privacy side.

Canetti et al. [CKL+20] introduce two protocols and also feature a universal
composability (UC) modeling of contact tracing functionalities, which constitutes
concurrent and independent work. While their modelling takes broad strokes by
employing a global functionality for interacting with the physical world, via a set
of allowable measurement functions and faking functions to the physical world,
we specifically model the aspect of people being in relevant closeness to each other
using a contact graph, and can hence model the leakage and e.g. relay attacks
by certain operations on the graph – yielding a more easy-to-handle criterion.
Moreover, only an extension of one of their protocols, called CertifiedCleverParrot,
incorporates anti-Sybil protections, but this is not modeled and proven secure in
their UC setting. For an alternative modelling and analysis of security notions
using game-based definitions, such as forward security, see the concurrent work
of Danz et al. [DDL+20].

8 Summary

Our protocol “ConTra Corona” provides a new and “hybrid” approach to digital
contact tracing that protects both, the contact graph/encounter history, and the
infection status. For this, it is important to fully understand, what security and
privacy of contact tracing protocols mean, and to formalize this in a rigorous
manner, with a simulation-based security notion in the real–ideal paradigm
constituting a gold standard for such an endeavour in the cryptography landscape.
Our notion makes the exact leakage and the attacker capabilities (in terms of
inducing false positives/negatives) explicit. In the full version we present a proof
that our protocol fulfills this security notion.

In order to reduce the required trust into the central server components,
we described how the server’s functions may be separated by distributing core
functions to different organizations. In conclusion, we argue that our protocol
represents an overall improvement regarding security and privacy and remains
practical.
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