
Algebraic Adversaries in the Universal
Composability Framework

Michel Abdalla1,2 , Manuel Barbosa3 , Jonathan Katz4, Julian Loss5 ,
and Jiayu Xu6

1 DIENS, École normale supérieure, CNRS, PSL University, Paris, France
michel.abdalla@gmail.com

2 DFINITY, Zürich, Switzerland
3 University of Porto (FCUP) and INESC TEC, Porto, Portugal

mbb@fc.up.pt
4 University of Maryland, College Park, USA

jkatz2@gmail.com
5 CISPA Helmholtz Center for Information Security, Germany?

lossjulian@gmail.com
6 Algorand, USA??

jiayux@uci.edu

Abstract. The algebraic-group model (AGM), which lies between the
generic group model and the standard model of computation, provides a
means by which to analyze the security of cryptosystems against so-called
algebraic adversaries. We formalize the AGM within the framework of
universal composability, providing formal definitions for this setting and
proving an appropriate composition theorem. This extends the applica-
bility of the AGM to more-complex protocols, and lays the foundations
for analyzing algebraic adversaries in a composable fashion. Our results
also clarify the meaning of composing proofs in the AGM with other
proofs and they highlight a natural form of independence between ide-
alized groups that seems inherent to the AGM and has not been made
formal before—these insights also apply to the composition of game-
based proofs in the AGM. We show the utility of our model by proving
several important protocols universally composable for algebraic adver-
saries, specifically: (1) the Chou-Orlandi protocol for oblivious transfer,
and (2) the SPAKE2 and CPace protocols for password-based authenti-
cated key exchange.

1 Introduction

Security proofs are often carried out in idealized models that seek to capture
certain classes of adversarial behavior. Examples include the random-oracle
model [9], in which the attacker is assumed to treat a hash function as an ideal
random function; the ideal-cipher model, in which the attacker is assumed to
treat a block cipher as an ideal keyed permutation; and the generic-group model
(GGM) [29,30], where the attacker is assumed to treat group elements as abstract
identifiers and group operations as black-box operations on those identifiers.

? Work done while at the University of Maryland.
?? Work done while at George Mason University

https://orcid.org/0000-0002-2447-4329
https://orcid.org/0000-0002-6848-5564
https://orcid.org/0000-0002-7979-3810
https://orcid.org/0000-0002-0881-9980
mailto:michel.abdalla@gmail.com
mailto:mbb@fc.up.pt
mailto:jkatz2@gmail.com
mailto:lossjulian@gmail.com
mailto:jiayux@uci.edu

Cryptographers continually seek to refine these models, making them more
expressive so they capture larger classes of algorithms and thus come closer to
modeling adversaries performing arbitrary computation. With this motivation
in mind, Fuchsbauer et al. [19] (based on ideas of Abdalla et al. [4]) proposed
the algebraic-group model (AGM) as a more expressive version of the GGM.
Roughly, the AGM considers algebraic adversaries that compute group elements
via a sequence of “generic” group operations, but which—in contrast to the
GGM—are allowed to utilize the actual bitstrings representing group elements
in the course of their computation. This model is strictly stronger than the GGM;
for example, index-calculus algorithms that apply to certain classes of groups are
algebraic and hence allowed in the AGM, even though they are ruled out in the
GGM by known lower bounds on the hardness of the discrete-logarithm problem
in that model. The AGM has been used to show equivalence of various number-
theoretic assumptions [6,7,19] and to prove security of SNARKs [17,19,27] and
blind signatures [20]. An extension called the strong AGM has recently been
used to prove hardness of the repeated squaring assumption underlying timed
commitments and related primitives [24].

Notably, none of the aforementioned results provide any guarantees of se-
curity under composition with other protocols (whether proven secure in the
AGM or not). Here, we lay the foundations for a composable treatment of al-
gebraic adversaries by formalizing the AGM within the framework of universal
composability (UC) [13] and proving a corresponding composition theorem. This
involves not only formalizing a number of subtle issues related to the AGM it-
self (which may be of independent interest for subsequent work in the AGM),
but also making a number of careful design decisions in defining what algebraic
adversaries mean in the UC framework, in part to ensure that a suitable com-
position theorem holds. We discuss this in more detail in the following section.

We demonstrate the utility of our model by proving several important pro-
tocols universally composable for algebraic adversaries. Specifically, we prove
security of (1) the Chou-Orlandi protocol for oblivious transfer [18], and (2) the
SPAKE2 and CPace protocols for password-based authenticated key exchange [5,
22] in our model. We describe these results further in Section 1.2.

1.1 Defining the AGM Within the UC Framework

We first define some notation and terminology related to the AGM that suf-
fices to understand the discussion that follows. (Our treatment here is deliber-
ately informal, and we refer the reader to Section 2 for technical details.) Fix a
group G. An algebraic representation of h ∈ G with respect to a list of elements
g1, . . . , gn ∈ G is a tuple (x1, . . . , xn) ∈ Zn with h =

∏
i g
xi
i . Roughly speaking,

the AGM considers adversaries that are algebraic (with respect to G), meaning
that if an adversary A outputs a group element h ∈ G, then A must also output
an algebraic representation of h with respect to the set of group elements (which
we call a base) that A has been given as input thus far.

We generalize the AGM to the standard UC framework by restricting our
attention to algebraic attackers.1 While this is a natural idea, it involves deal-
ing with a number of subtle technical issues. First of all, to make this notion
meaningful it is not sufficient to restrict the adversary to be algebraic; rather,
we require the environment to be algebraic as well. Moreover, in order for com-
position to possibly hold, we must also require the simulator used in proving
security to be algebraic. That is, in the UC-AGM a protocol π securely realizes
a functionality F if, for any efficient algebraic adversary A, there is an efficient
algebraic simulator S such that no efficient algebraic environment can distin-
guish the execution of A with π from the execution of S with F . Under this
definition, we can indeed prove that a UC-style composition theorem holds in
the UC-AGM.

Our definition of an algebraic algorithm makes a distinction between ad-
versarial entities (real and ideal world adversaries and environments) and non-
adversarial entities (uncorrupted protocol participants and ideal functionalities).
In the real world, we require the adversary to behave algebraically when it de-
livers group elements to uncorrupted participants and to ideal functionalities
(when the proof is carried out in a hybrid real-world); moreover, we also require
the environment to behave algebraically when it delivers group elements to the
adversary, but not the converse. Algebraic behavior is defined within the context
of a UC AGM proof by specifying what set of group elements occurring during
the protocol execution in the real-world must be used by the environment and by
the adversary as a base for the provided group element representations. When
this is the empty set, we recover the standard UC framework. The natural defi-
nition for this set is to include in it all the group elements that are produced by
non-adversarial entities.

Formally, the quantification of the UC-emulation notion is subtle. As in UC,
we require for all adversaries A, the existence of a simulator S, such that for
all enviroments Z the real and ideal worlds are indistinguishable. However, the
simulator is only required to work if the pair (A,Z) satisfies the algebraic re-
strictions specified in the real world. Intuitively, the extra power of the simulator
comes from the fact that Z is bound to behave algebraically when interacting
with A and, furthermore, that A will also behave algebraically if the simulator
runs it internally. A caveat is that the simulator must also ensure that (S,Z)
satisfy the algebraic restrictions in the ideal world. However, in the most com-
mon case when the simulator is interacting with an ideal functionality, if this
interaction does not involve group elements, then the algebraic requirement is
not a restriction on the simulation strategy (this is the case in all our proofs for
concrete protocols).

1 One can consider formalizing the AGM within the UC framework by introducing
a functionality FAGM that “forces” arbitrary algorithms to behave algebraically by
registering group elements and their representations in a central repository. This has
a number of disadvantages that we discuss in the full version [3]. Our approach is
closer to the spirit of the AGM, which idealizes groups by quantifying over restricted
classes of adversaries.

The UC AGM composition theorem then states, as expected, that ρπ ∼ ρF if
π ∼ F . Again the quantification is subtle. The composition theorem guarantees
only hold if we restrict our quantification to match the emulation guarantee
provided by π: i.e, we have that ρπ ∼ ρF with respect to pairs (A,Z) that
adhere to the base Bπ when interacting with machines in π. Note that this
means, in particular, that the attacker cannot use group elements produced in ρ
when attacking π, unless it is able to provide a representation according to Bπ.

The companion UC AGM transitivity theory further highlights a natural
notion of independence between UC AGM proofs. Suppose that ρF is known
to UC AGM emulate some functionality G. Transitivity intuitively implies that
ρπ ∼ G if ρπ ∼ ρF . We show that this is the case also in the UC AGM setting, if
we restrict the quantification over (A,Z) to those attackers that independently
meet the AGM restrictions imposed by the proofs of both π and ρ. This means
providing algebraic decompositions to parties executing π with respect to a base
Bπ defined in the proof of π and, similarly, respecting the algebraic base Bρ
when interacting with parties executing ρ. This restriction means that AGM
UC composition works as expected for protocols that operate on groups that
can be assumed to be independent.

In Section 2.3 we give full technical details and also show that proofs in the
UC AGM naturally compose with proofs in the plain UC model; as expected,
the composed protocols can only be shown to be secure in the UC AGM setting.
We also show that the standard approach of writing UC proofs wrt to a dummy
adversary still applies in the UC AGM setting.

Discussion. Our theorems show that one should be very careful when com-
posing proofs in the AGM, and not only in the UC setting. For example, when
composing game-based reductions carried out in the AGM, the same issues arise.
Intuitively, composition can only be guaranteed when the AGM assumptions do
not interact badly with each-other, i.e., interacting with one protocol does not
allow an attacker to override the extractability assumption that is being cap-
tured by the AGM in the proof of another protocol. In practice this seems to
imply excluding attackers that take group elements from one protocol and use
them to attack another protocol (unless of course the algebraic construction of
those elements can be explained with respect to the set of bases defined by the
target protocol alone).

Interestingly, in recent independent work Kerber, Kiayias and Kohlweiss [25]
encouter a manifestation of the same problem in the constructive cryptogra-
phy framework. In this work, the authors propose a general notion of proofs
wrt to knowledge assumptions, which generalizes the AGM: adversaries provide
the relevant extractable information when interacting with the protocol. Their
goal is to study the composition of protocols that rely on different knowledge
assumptions. It is beyond the scope of this paper to make a detailed compari-
son, since the approaches rely on different compositional frameworks and have
different goals, but it is clear that the same restrictions must be imposed in the
composition theorem to enable a proof; quoting from the paper: “Care must be
taken that knowledge stemming from one knowledge assumption does not give

an advantage in another. . . we conjecture that multiple instances with the AGM
with independently sampled groups are sufficiently independent.”

To conclude, we do not see the restrictions in the UC AGM composition the-
orems as a limitation of our work, but rather as a limitation inherent to proofs in
idealized models—for example, it is easy to establish a parallel with the random
oracle model in the UC setting, where the need for independent RO instances is
well known [16]. On the contrary, we believe that an important contribution of
our work is to clarify what this limitation means for proofs in the AGM. To over-
come these limitations, and similarly to proofs in the random-oracle model, one
can prove multiple protocol executions secure simultaneously. At the very least,
it is important to ensure that AGM UC proofs are carried out with respect to
multi-session ideal functionalities, so that multiple executions of the same pro-
tocol can be guaranteed to compose securely. We adopt this approach in our
proofs. Another option is to strengthen the proofs of each protocol to consider a
global/shared source of bases along with a more powerful composition theorem,
similarly to UC with global functionalities. We leave exploring this option as an
interesting and important direction for future work.

1.2 Proofs of Security in the UC-AGM

In addition to defining the UC-AGM framework, we also show that several im-
portant protocols from the literature—which were previously lacking full proofs
of security in the UC framework—can be proven secure in our model.

The Chou-Orlandi protocol. Chou and Orlandi [18] proposed a simple and
elegant protocol for oblivious transfer and claimed that it was universally com-
posable (with adaptive corruptions) under a suitable assumption in the random-
oracle model. Unfortunately, subsequent works [11,21,23] uncovered several prob-
lems with their proof. While these subsequent works also showed how to address
some of these issues, and/or presented modified protocols that could be proven
secure, there seems to be no way of proving the original Chou-Orlandi protocol
universally composable, even in the random-oracle model.

We show that the original Chou-Orlandi protocol can be proven secure in
the UC-AGM, based on the discrete-logarithm assumption in the random-oracle
model. We refer to Section 3 for a high-level view of the proof and further details.

The SPAKE2 and CPace protocols. SPAKE2 [5] and CPace [22] have at-
tracted a lot of interest recently due to their consideration for standardization
by the IETF. The selection process explicitly considered whether these proto-
cols were universally composable, which turned out to be a surprisingly difficult
question to answer.2

Abdalla et al. [2] recently proved that these protocols are universally compos-
able with respect to a relaxed version of the standard functionality for password-
based authenticated key exchange (PAKE) that, roughly speaking, allows the
adversary to delay its password guess for a session until an arbitrary time after

2 For a review of the security proofs available for both protocols at the time, see
https://mailarchive.ietf.org/arch/msg/cfrg/47pnOSsrVS8uozXbAuM-alEk0-s.

https://mailarchive.ietf.org/arch/msg/cfrg/47pnOSsrVS8uozXbAuM-alEk0-s

that session ends. The full implications of relying on that relaxed functionality
are unclear; in particular, although Abdalla et al. [2] showed that adding a key-
confirmation step lifts a UC PAKE protocol to one that provides explicit entity
authentication, we do not know if this is the case when we start from a PAKE
protocol that only realizes the relaxed PAKE functionality.

In this work, we improve upon these results by showing that both SPAKE2
and CPace are universally composable with respect to the original PAKE func-
tionality [15] when we restrict our attention to algebraic adversaries. Interest-
ingly, our proofs are significantly simpler than those of Abdalla et al. [2], since
the simulator in our case can leverage the fact that the adversary is algebraic to
directly extract password guesses, rather than performing an indirect extraction
using the random oracle.

In addition, we also demonstrate that an important variant of SPAKE2,
known as SPAKE1, is secure in the UC-AGM. SPAKE1, in contrast to SPAKE2,
does not include the password as input to the final key-derivation function,
and thus may be advantageous relative to SPAKE2 with regard to side-channel
attacks targeting the key-derivation step. Prior to this work, SPAKE1 was not
known to satisfy the standard notions of security for game-based and UC PAKE.
In particular, it was not known to guarantee even the weaker notion of forward
secrecy, in which the attacker can only learn passwords for sessions in which it
played the role of a passive eavesdropper.

1.3 Related Work

We are not aware of any prior work modeling algebraic adversaries in the UC
framework, however a few works have considered generic groups and other ide-
alized models in that setting. Larangeira and Tanaka [26] analyze universally
composable non-committing encryption schemes in the GGM and the generic-
ring model (GRM). However, they leave the modeling of the GGM/GRM in the
UC framework informal, and in particular do not prove that composition holds
in their setting. Bradley et al. [10] prove security of a strong asymmetric PAKE
protocol against a generic-group adversary in the UC framework, but their treat-
ment is also informal; in particular, their protocol is split into an “offline part”
and an “online part,” with the GGM used only in the former, and it is unclear
how these two parts are defined for general protocols or what the implications
are for composition. Naor et al. [28] model generic-group adversaries in the UC
framework by introducing a generic-group functionality FGGM in a way similar
in spirit to the approach involving the FAGM functionality described earlier that
we ultimately rejected. A similar approach was followed in [8] for the analysis of
time-lock puzzles in the UC setting.

1.4 Overview of the Paper

Section 2 introduces the UC-AGM model. Section 3 then presents a proof of
the Chou-Orlandi protocol in the UC-AGM. Next, Section 4 proves security of
SPAKE1, SPAKE2, and CPace in the new model. The full version [3] includes
detailed proofs for theorems in Sections 2 to 4.

2 Defining Algebraic Adversaries in the UC Framework

In this section, we introduce the UC-AGM framework that incorporates alge-
braic adversaries into the UC framework. We provide a brief overview of the
UC framework [13] in Section 2.1; for a more detailed description, see the full
version of this paper [3]. In Section 2.2 we formally define algebraic adversaries
and introduce the notation of AGM-emulation that underlies the UC-AGM. We
also show there that, analogous to the UC framework, it suffices to consider
“algebraically dummy” adversaries when proving AGM-emulation. We prove a
composition theorem for the UC-AGM in Section 2.3.

For simplicity, our treatment of the UC-AGM is based on the so-called simpli-
fied UC framework [13, Section 2] where the number of parties, their identities,
program code, and connectivity are all fixed in advance. In the full version [3]
we explain how the UC-AGM can be extended to the full UC framework.

2.1 Overview of the UC Framework
A protocol consists of a number of machines (or parties) with unique identities,
each of which represents some computational entity. Protocol machines commu-
nicate with each other via messages labeled input or subroutine-output. In an
execution of the protocol, two additional machines (whose identities are distinct
from any protocol machines) are added: the environment E and the adversary A.
(Below we assume that E has identity 0 and A has identity 1.) The environment
E can send input messages to A and a subset of the protocol machines (called
main machines), and protocol machines can send subroutine-output messages to
E ; the adversary A can send backdoor messages to E and all protocol machines,
and receive backdoor messages from all protocol machines.

The notion of UC emulation involves two protocols, π and φ. We say that
π emulates φ if for any efficient adversary A in an execution of π, there is an
efficient adversary (called the simulator) S in an execution of φ that “simulates”
the environment’s view, in the sense that no efficient environment can distin-
guish an execution of π with A from an execution of φ with S. A particularly
important example of UC emulation is realizing an ideal functionality, in which
the emulated protocol idealF consists of an incorruptible ideal functionality F ,
and the main machines are dummy parties that simply pass messages between
the ideal functionality and the environment.

2.2 UC Emulation in the Algebraic Group Model

In this work we put forth a notion of UC emulation (called AGM-emulation) in
which the adversary is restricted to be algebraic. To this end, we first introduce
the concept of algebraic adversaries [19]. At a high level, an algebraic adversary
has an additional auxiliary tape on which it writes the representation of any
group element it outputs on (some of) its other tapes.3 We assume for simplicity

3 Formally, we assume an encoding of group elements that distinguishes them from
arbitrary strings. This can be done by simply prefixing any group element with a 0
and any other string (not necessarily representing a group element) with a 1. Fol-
lowing prior work [19], we use bold capital letters to denote group elements (except
for the generator g).

that the group G = (G, g, p) under consideration is cyclic with known order p,
though neither of these assumptions is essential.

Definition 1. Suppose an execution of protocol π involves protocol machines
sending elements in group G = (G, g, p) (henceforce “protocol π involves group
G”).4 A pair of environment E and adversary A (in π’s execution) is (G, π)-
algebraic if it satisfies the following:

(1) A has a special output tape called the algebraic tape;
(2) Whenever A sends (backdoor,m) to some protocol machine, where m con-

tains some X ∈ G, then either (1) A also writes an algebraic representation of X
on its algebraic tape, or (2) A has previously received such representation from
E; where the algebraic representation of X is a list Λ = [(X1, λ1), . . . , (Xk, λk)]
(where X1, . . . ,Xk ∈ G and λ1, . . . , λk ∈ Zp) such that X = Xλ1

1 · · ·X
λk
k , and

X1, . . . ,Xk is the ordered list of group elements in messages E and/or A has
received up to that point in the execution of π.

We stress that it is necessary to separate the algebraic tape from the other
tapes ofA so that, for example, the messagem itself does not contain an algebraic
representation of X. When clear from the context, we will drop G and π, and
simply say that the environment/adversary is “algebraic.”

We note that when considering static corruptions, the adversary runs the
corrupt parties internally and hence messages produced by corrupt parties are
subject to the restrictions above. The model for adaptive corruptions is the
obvious one. Non-corrupt parties compute group elements honestly. So, if no
secure erasure is assumed, the representations of any group elements computed
by non-corrupt parties are part of their state when they are corrupted (and
are given to the adversary). If we assume secure erasure, then any such state
will not be available, and so any group elements that are part of a non-corrupt
party’s state will not have their representations available; in this case they must
be added to the adversary’s basis.

AGM emulation. We could now consider standard UC emulation restricted
to algebraic adversaries and environments. However, looking ahead, in order for
composition to hold we will want the simulator to be algebraic as well.

Definition 2. Suppose protocols π and φ involve the same group G. We say that
π G-AGM emulates φ if the following holds: for any efficient adversary A, there is
an efficient adversary S (called the simulator) such that: for any efficient E such
that (E ,A) are (G, π)-algebraic, we have that (E ,S) are (G, φ)-algebraic, and

execφ,S,E ≈ execπ,A,E ,

where execπ,A,E denotes environment E’s view in π’s execution with adversary
A.
4 Formally, we consider protocols having access to a FCRS functionality, where FCRS

runs a group-generation algorithm to obtain G (and possibly additional group ele-
ments), and then sends G (and any other elements) to parties that request it. Note
that the protocol may use other groups, but we only require the adversary to be
algebraic with respect to G.

Above, we write ≈ to denote generic computational indistinguishability. This
may refer to either asymptotic indistinguishability, in which case a security pa-
rameter is introduced as well, or concrete indistinguishability, in which case we
write ≈ε to denote that the distinguishing advantage is bounded by ε.

Definition 3. Protocol π G-AGM realizes ideal functionality F if π G-AGM em-
ulates idealF , the ideal protocol for F .

AGM emulation with respect to a sub-protocol. Our definitions of alge-
braic adversary and environment can be easily extended to the setting where the
adversary/environment is restricted within a sub-protocol, namely it can only
use group elements in received from parties in this sub-protocol as its basis for
algebraic representation.

Definition 4. Suppose protocol ρπ involves group G, and π is a sub-protocol
of ρπ. A pair of environment E and adversary A (in ρπ’s execution) is (G, π)-
algebraic if it satisfies the following:

(1) A has a special output tape called the algebraic tape;
(2) Whenever A sends (backdoor,m) to some protocol machine, where m

contains some X ∈ G, then either (1) A also writes an algebraic representation
(with respect to π) of X on its algebraic tape, or (2) A has previously received
such representation from E; where the algebraic representation of X is a list
Λ = [(X1, λ1), . . . , (Xk, λk)] (where X1, . . . ,Xk ∈ G and λ1, . . . , λk ∈ Zp) such

that X = Xλ1
1 · · ·X

λk
k , and X1, . . . ,Xk is the ordered list of group elements in

messages E and/or A have received up to that point from either the environment
or protocol machines in π, that is, excluding protocol machines in ρπ \ π. (For
the formal definition of a “sub-protocol,” see the full version [3].)

Clearly, Definition 1 can be viewed as Definition 4 in the special case that
ρπ = π. Note that now we can talk about AGM emulation with respect to a
sub-protocol, i.e., protocol ρπ (G, π, φ)-AGM emulates ρφ, where the environ-
ment/adversary pair is restricted by the sub-protocol π, and the environment/
simulator pair is restricted by the sub-protocol φ. The formal definition exactly
follows Definition 2.

The algebraically dummy adversary. Similar to the standard UC frame-
work, we can also define a notion of dummy adversary here; this will be usful in
our protocol analyses in the later sections. Recall that in the standard UC frame-
work, the dummy adversary is one that merely passes messages to and from the
environment. However, in our setting, the environment might send some alge-
braic representations to the adversary, which we do not want the protocol parties
to receive. Hence, we define the algebraically dummy adversary as dropping these
algebraic representations.

Definition 5. Suppose protocol π involves group G. An adversary D (in π’s
execution) is (G, π)-algebraically dummy if it satisfies the following: for any mes-
sage (backdoor,m) sent from some identity ID 6= 0 (i.e., from some proto-
col machine), it sends (backdoor, (ID,m)) to the environment E; for any mes-
sage (input, (ID,m)) sent from E, it sends (backdoor,m) to identity ID, except

that if m contains X ∈ G and its algebraic representation Λ, then A sends
(backdoor,m′) to identity ID instead, where m′ is m with Λ deleted.

Since D does not write anything on its algebraic tape, for (E ,D) to be al-
gebraic, E must send all necessary algebraic representations to D. To simplify
notations, we may say “E is algebraic” in this case.

Now we can define AGM emulation with respect to the dummy adversary:

Definition 6. Suppose protocols π and φ involve the same group G. π G-AGM
emulates φ with respect to the dummy adversary if the following holds: there is an
efficient simulator S such that: for any efficient and (G, π)-algebraic environment
E, we have that (E ,S) are (G, φ)-algebraic, and

execφ,S,E ≈ execπ,D,E ,

where D is the (G, π)-algebraically dummy adversary.

Similar to the standard UC framework, we can show that emulation is equiv-
alent to emulation with respect to the dummy adversary. This simplifies protocol
analysis, since from now on we can simply assume that the adversary is alge-
braically dummy.

Theorem 1. Suppose protocols π and φ involve the same group G. Then π G-
AGM emulates φ (as in Definition 2) iff π G-AGM emulates φ with respect to
the dummy adversary (as in Definition 6).

The proof is tedious and is therefore deferred to the full version [3].

2.3 Composition in the UC-AGM

The composition theorem. We are now ready to prove the composition the-
orem in our UC-AGM framework:

Theorem 2. Suppose protocols π and φ involve the same group G, such that φ
is a sub-protocol of ρφ, π G-AGM emulates φ, and π is identity-compatible with
ρφ and φ. Then ρπ (ρφ with its sub-protocol φ replaced with π) (G, π, φ)-AGM
emulates ρφ. (For formal definitions of “identity-compatibility” and “sub-protocol
replacement”, see the full version [3])

Proof. Let Dπ be the algebraically dummy adversary in an execution of π. Since
π G-AGM emulates φ, we know that there is an efficient simulator Sπ such that:
for any efficient and (G, π)-algebraic environment Eπ, we have that (Eπ,Sπ) are
(G, φ)-algebraic, and

execφ,Sπ,Eπ ≈ execπ,Dπ,Eπ .

Let ρ = ρφ \ φ, i.e., ρ is the “caller” part of ρπ.

Construction of simulator S. By Theorem 1, it suffices to consider the (G, π)-
algebraically dummy adversaryD in an execution of ρπ. We construct a simulator
S (in an execution of ρφ) which simulates E ’s view for any efficient and (G, π)-
algebraic environment E . S essentially “combines”D and Sπ. Concretely, S works
as follows:

1. On message (input, (ID,m0)) from identity 0 (recall that this means that E
instructs S to send message m0 to the protocol party with identity ID), S
checks if there is a machine in φ with identity ID.

(a) If so, then S activates Sπ with input (input, (ID,m0)) (as from the en-
vironment), and follows Sπ’s instruction until the activation of Sπ com-
pletes.

(b) Otherwise, i.e., ID is the identity of a machine in ρ, S parses m0 =
(m′0, Λ) (where Λ is the algebraic representations of the group elements
in m′0) and sends (backdoor,m′0) to ID, and writes Λ on its algebraic
tape.

2. On message (backdoor,m1) from some identity ID 6= 0 (i.e., from a protocol
party), S checks if there is a machine in φ with identity ID.

(a) If so, then S activates Sπ with input (backdoor,m1) (as from ID), and
follows Sπ’s instruction until the activation of Sπ completes.

(b) Otherwise, i.e., ID is the identity of a machine in ρ, S sends (backdoor,m1)
to identity 0 (i.e., to E).

Analysis of simulator S. It is straightforward to see that if Sπ is efficient,
then S is also efficient. We now show that (E ,S) are (G, φ)-algebraic. Recall that
(E ,S) are (G, φ)-algebraic iff whenever S sends (backdoor,m) to identity ID 6= 1,
it also writes on its algebraic tape the algebraic representations (w.r.t. φ) of all
group elements in m. According to the description of S above, S sends backdoor
messages to identity ID 6= 1 in step 1(b) only; in this case S writes the algebraic
representation Λ on its algebraic tape, so E is (G, π)-algebraic implies that (E ,S)
are (G, φ)-algebraic.

Moreover, S plays the role of an (G, π)-algebraic environment when activating
Sπ with message (input, (ID,m0)). This is because S copies E ’s message payload
m0, so E is (G, π)-algebraic implies thatm0 contains the algebraic representations
(w.r.t. π) of its all group elements.

Next we show the validity of S. We construct another environment Eπ, which
aims to distinguish between π’s execution with D and φ’s execution with Sπ. Eπ
simulates instances of E and runs the codes of ρ and S locally, and essentially
“combines” E , ρ, and S. Concretely, Eπ, on initial input z, activates E with initial
input z. Then Eπ works as follows:

1. When E completes this activation,

(a) If E halts with some output, then Eπ also halts with the same output.
(b) If E generates an outgoing message (input,m0) to some identity ID such

that there is a machine µ ∈ ρ with identity ID, then Eπ runs the code
of µ on message (input,m0). When µ halts, (∗)

i. If µ generates an outgoing message (subroutine-output,m1) to iden-
tity 0, then Eπ activates E with message (subroutine-output,m1) (as
from ID) and jumps to the beginning of this step.

ii. If µ generates an outgoing message (backdoor,m1) to identity 1, then
Eπ runs the code of S on message (backdoor,m1).

iii. If µ generates an outgoing message (input,m1) to identity ID′, which
is the identity of a machine µ′ ∈ ρ, then Eπ runs the code of µ′ on
input (input,m1) and jumps to (∗) (with µ replaced by µ′).

iv. If µ generates an outgoing message (input,m1) to identity ID′, which
is the identity of a machine in φ/π, then Eπ sends (input,m1) to
identity ID′.

(c) If E generates an outgoing message (input, (ID,m0)) to identity 1, then
Eπ runs the code of S on message (input, (ID,m0)).

2. When S halts (as in case (b)ii or (c) in step 1; recall that S is a piece of code
run by E itself),
(a) If S generates an outgoing message (backdoor,m2) to identity 0, then Eπ

activates E with message (backdoor,m2) and jumps to step 1.
(b) If S generates an outgoing message (backdoor,m2) to identity ID, which

is the identity of a machine µ ∈ ρ, then Eπ runs the code of µ on message
(input,m2) and jumps to (∗).

(c) If S activates Sπ5 with message (input, (ID,m2)), then Eπ sends (input,
(ID,m2)) to identity 1 (i.e., to Dπ or Sπ).

3. On message (backdoor, (ID,m3)) from identity 1, Eπ runs the code of S on
message (backdoor, (ID,m3)) (as from Sπ) and jumps to step 2.

4. On message (backdoor,m3) from some identity ID 6= 1 (i.e., from a machine
in φ or π) aimed at some identity ID′,
(a) If there is a machine µ′ ∈ ρ with identity ID′, then Eπ runs the code of

µ′ on message (input,m3) and jumps to (∗) (with µ replaced by µ′).
(b) Otherwise, i.e., if ID′ is an external identity, then Eπ activates E with

message (backdoor,m3) (as from ID) and jumps to step 1.

It is straightforward to see that if E is efficient, then Eπ is also efficient. Also,
Eπ perfectly simulates an instance of D in π’s execution, and an instance of Sπ
in φ’s execution, i.e.,

execπ,Dπ,Eπ = execρπ,D,E , and execφ,Sπ,Eπ = execρφ,S,E .

Next we claim that if E is (G, π)-algebraic, then Eπ, as the environment in an
execution of π, is also (G, π)-algebraic. Recall that Eπ is (G, π)-algebraic iff when-
ever it sends (input,m) to identity 1, m contains the algebraic representations
(w.r.t. π) of its all group elements. According to the description of Eπ above,
Eπ sends input messages to identity 1 in step 2(c) only. The message payload
m2 is copied from S’s message aimed at Sπ; we have argued above that S plays
the role of a (G, π)-algebraic environment while communicating with Sπ, which
implies that m2 contains the algebraic representations (w.r.t. π) of its all group
elements.

Since Eπ is both efficient and (G, π)-algebraic, by the definition of Sπ, we
have that

execφ,Sπ,Eπ ≈ execπ,Dπ,Eπ .

5 Note that this Sπ is an imaginary machine supposed to run inside S, whereas the
“actual” Sπ is the simulator in the execution of φ. Same with step 3 below.

Combining the three results above, we conclude that

execρφ,S,E ≈ execρπ,D,E ,

completing the proof. ut

Transitivity of AGM-emulation. The following theorem is straightforward
to prove, similarly to the standard UC framework.

Theorem 3. Suppose protocols π, π′, φ involve the same group G, such that π
G-AGM emulates π′ and π′ G-AGM emulates φ. Then π G-AGM emulates φ.

Proof. Our goal is to give a simulator S such that execφ,S,E ≈ execπ,A,E when
(A, E) are (G, π)-algebraic. Furthermore, (S, E) must be (G, φ)-algebraic.

By assumption, since π AGM-emulates π′, there is an efficient algebraic ad-
versary A′ such that execπ′,A′,E ≈ execπ,A,E when (A, E) are (G, π) algebraic.
Furthermore, (A′, E) are (G, π′)-algebraic.

Moreover, since π′ AGM-emulates φ, there is an efficient algebraic adversary
S such that execφ,S,E ≈ execπ′,A′,E when (A′, E) are (G, π′)-algebraic. Further-
more, (S, E) are (G, φ)-algebraic. This implies that S is the required simulator,
which concludes the proof. ut

In the standard UC framework, the guarantees given by the UC composition
theorem can be plugged in as hypothesis of the transitivity theorem, which allows
deriving a natural corollary when φ is an ideal functionality. Intuitively, in the
standard UC setting, composition allows us to derive that ρπ emulates ρF , when
π emulates F . If, in turn ρF has been shown to emulate F ′, then transitivity
yields that ρπ emulates F ′.

However, this is not the case in the UC AGM setting. The composition the-
orem guarantees that ρπ emulates ρF with respect to (G, π)-algebraic attackers,
rather than (G, ρπ)-algebraic attackers. This means that, in order to plug-in
composition results with transitivity to obtain a result for ideal functionality
emulation, we require a refined theorem that considers the specific case of com-
posed protocols.

Theorem 4. Suppose protocols ρF , π and ideal functionalities F , F ′ involve
the same group G, such that:

1. idealF is a sub-protocol of ρF ,

2. the π protocol (G, π)-AGM realizes F ,

3. the ρF protocol (G, ρ)-AGM realizes F ′, and

4. π is identity-compatible with ρF and idealF .

Then the instantiated protocol ρπ AGM realizes F ′ with respect to attackers that
are both (G, ρ)- and (G, π)-algebraic.

Proof (Sketch). To prove this statement we need to recall the structure of the
simulator for ρπ that is implied by the composition theorem; here we will call it
A′ consistently with the transitivity theorem proof.

This simulator runs A internally and, when A communicates with machines
executing π, it uses the simulator Sπ as a translator that communicates to F
instead. On the other hand, communications between A and parties executing
ρ are just passed along.

Note that, to use this simulator we need to apply the composition theorem,
which means that (A, E) must be (G, π) algebraic; this is guaranteed by the
stronger restriction that attackers are both (G, ρ) and (G, π) algebraic.

At this point we can now follow the same strategy adopted in the proof of
the transitivity theorem: simulator A′ is used as an attacker against ρF . The
crucial observation now is that, this simulator guarantees that, if (A, E) are
(G, π) algebraic and (G, ρ) algebraic, then (A′, E) is also (G, ρ) algebraic. This is
because communications with ρ are just passed along between A and ρ.

We can now apply the hypothesis that the ρF protocol (G, ρ)-AGM realizes
F ′ and take simulator S implied by this hypothesis to conclude the proof. ut

Extension to the full UC framework and relation to UC proofs. In the
full version [3] we explain how our treatment here can be extended to the full
UC framework, which models fully dynamic and evolving distributed computing
systems.

UC emulation implies AGM emulation. For completeness, we note that
UC emulation implies AGM emulation whenever the algebraic restriction on the
simulator is moot. To see this, fix protocols π, φ where π UC emulates φ and φ
does not impose any algebraic restriction on S. Any efficient algebraic environ-
ment E is in particular an efficient environment, so there is an efficient simulator
S for which execφ,S,E ≈ execπ,D,E holds for any efficient algebraic environ-
ment E . Furthermore, S is trivially algebraic since there is no such requirement
when interacting with φ.

In the full version [3] we discuss in detail how UC AGM proofs compose with
stronger standard UC emulation results, and further clarify the implications of
the UC AGM composition theorems. The discussion also clarifies what happens
in the setting where different groups are used by different protocols.

We finally note that the fact that we refer to protocols that use the same
group in our theorems because this is the more problematic case, and it serves
to highlight the limitations to composition in the AGM. All our results carry
without change to the case where different groups are used; in this case excluding
attacks that prevent using group elements occurring in one protocol in an attack
against another protocol, unless a representation can be provided, seems less of
a limitation.

3 Analysis of the Chou-Orlandi Protocol

In this section, we analyze the security of the Chou-Orlandi protocol for obliv-
ious transfer in the UC-AGM. For convenience, we present the standard OT

functionality FOT in Figure 1. We describe the Chou-Orlandi protocol ΠCO in
Figure 2. All messages sent in the protocol are via a message authentication
functionality FAUTH, as presented in [13].

Functionality FOT

– On input (receive, sid , b) where b ∈ {0, 1} from R do: if no message of the
form (receive, sid , b), b ∈ {0, 1} has been stored, store (receive, sid , b).
Output (receive, sid) to S.

– On input (send, sid ,m0,m1) where m0,m1 ∈ {0, 1}` from S do: if
no message of the form (send, sid ,m0,m1) has been stored, store
(send, sid ,m0,m1). Output (send, sid) to S.

Adversary S:

– On input (receive, sid , b) where b ∈ {0, 1} from S do: if no message of the
form (receive, sid , b), b ∈ {0, 1} has been stored, store (receive, sid , b).

– On input (send, sid ,m0,m1) where m0,m1 ∈ {0, 1}` from S do: if
no message of the form (send, sid ,m0,m1) has been stored, store
(send, sid ,m0,m1).

– On input (deliver, sid , R) from S: if both (receive, sid , b) and
(send, sid ,m0,m1) have previously been stored, do:
• If R is honest: output (output, sid ,mb) to R.
• If R is corrupted: output (output, sid ,mb) to S.

Otherwise, output ⊥ to S.
– On input (deliver, sid , S) from S, if (output, sid ,mb) was previously out-

put (to R or to S) and S is honest, output (output, sid) to S. Otherwise,
output ⊥ to S.

Fig. 1. Functionality for 1-out-of-2 OT

We now turn toward proving security of the protocol. In the following, we
denote S and R as the sender and the receiver in protocol ΠCO, respectively.
We describe a simulator SimCO for ΠCO by considering the different options for
the order of corruptions. We assume that the simulator immediately aborts if it
obtains syntactically ill-formed messages from a corrupted party as part of ΠCO.
We first give an outline of the proof.

Proof intuition. Roughly speaking, our proof must overcome two main chal-
lenges from the original work of Chou and Orlandi. The first is how to simulate
the internal state of parties upon adaptive corruption. Namely, in Chou and
Orlandi’s proof, there seems to be no way of of explaining the secret exponent x
chosen by R if S is statically corrupted and can send an arbitrary group element
A in Step 1 for which R does not know the discrete logarithm y. This issue is
easily resolved using the AGM, as the simulator always learns the exponent y
from the algebraic coefficients provided for A.

The second issue in their proof comes from an improperly defined FOT func-
tionality. Roughly speaking, their version of this functionality does not notify S
upon R obtaining the message mb. If the corrupted R never makes the query for

Protocol ΠCO

– Step 1: Upon receiving input (send, sid ,m0,m1), S samples y ← Zp
and computes A := gy,B := gy

2

. It sends A to R via FAUTH.
– Step 2: Upon receiving input (receive, sid , b) and A ∈ G from S, R

samples x← Zp and computes U := Abgx. It sends U to S via FAUTH.
– Step 3: Upon receiving U from R, S computes kb :=
H(A,UyB−b−1), eb := mb ⊕ kb for b ∈ {0, 1}. It sends e0, e1 to R
via FAUTH and outputs (output, sid).

– Step 4: Upon receiving e0, e1 from S, R computes kb∗ :=
H(A,Ax),mb∗ := eb∗⊕kb∗ for b∗ ∈ {0, 1}. It outputs (output, sid ,mb∗).

Fig. 2. The Chou-Orlandi OT protocol.

one of the keys kb to H then the simulator cannot extract the correct bit and
complete the simulation of the protocol. Note that this issue cannot be overcome
by the simulator naively completing the simulation before R makes this query
by prompting the message (output, sid) from FOT to S prematurely via a query
on some arbitrary b. The reason is that E can always make the opposite query to
H, i.e., for k1−b, with probability 1 after the simulation is complete. In this case,
there is no way to obtain m1−b from FOT again, since S already had to make the
query in order to force (output, sid) being output to E . Both of these issues can
be overcome when requiring that the environment E be algebraic. In this case, y
is revealed when the corrupted S sends it in Step 1. For the issue of extraction,
S observes that R either sends U := Abgx as specified by the protocol, or sends
U := gx that does not satisfy this format. In the either case, S can safely carry
out the extraction according to either b or an arbitrary bit (in case U is not of
the specified format). The only way for E to distinguish the simulation from the
real world is by making a query from which a discrete logarithm instance can be
solved (using algebraic coefficients provided by E as part of that query to H).

Let g denote a generator for a cyclic group G of prime order q and let DL
denote the problem of computing a when given a random element A = ga in G.
Moreover, denote AdvDL

B := Pr[a′ = a | a′ ← B(ga)] the advantage of adversary
B in solving DL. Then Theorem 5 shows that the ΠCO protocol for oblivious
transfer AGM realizes FOT.

Theorem 5. ΠCO UC-realizes FOT in the FRO-hybrid model under adaptive
corruptions. More precisely, there exists an algebraic simulator SimCO for the
algebraically dummy adversary D such that, for every algebraic environment E
that makes at most qH queries to FRO, there exist attackers B1 and B2 running
in roughly the same time as E, such that execFOT,S,E ≈ε execΠCO,D,E , with

ε ≤ qH · (AdvDL
B1

+ AdvDL
B2

).

Proof. The simulator SimCO is as follows:

S is corrupted before Step 1.

– R is corrupted before Step 2. In this case, there is nothing for SimCO to
simulate.

– R is corrupted between Step 2 and 4. In this case, R has received
A ∈ G from S (but has not yet received e0, e1). In addition, SimCO learns
y ∈ Zp s.t. A = gy. SimCO samples u ← Zp and computes U := gu, which
it sends to S. When R becomes corrupted, SimCO learns b and sets sets
x := u − yb. It outputs (b, x) to E . In addition, it simulates the random
oracle H as described in the next subcase.

– R is corrupted after Step 4. In this case, R receives A ∈ G at Step 2 and
e0, e1 at Step 4. In addition, SimCO learns y ∈ Zp s.t. A = gy. SimCO samples
u ← Zp and computes U := gu, which it sends to S. To program H, when
E queries H on input (I,J) (together with the algebraic representations of
I,J), SimCO does as follows.

• It first checks whether H[I,J] 6= ⊥. In this case, it returns H[I,J]. Thus,
assume in the following that E queries H on some input for the first time.
In addition, for any fresh query I,J, assume that SimCO sets H[I,J] to
the value it returns.

• If the query is of the form H(gy,Uygy
2(b−1)) for b ∈ {0, 1}, SimCO sets

kb ← {0, 1}κ. It returns kb.

• Otherwise SimCO samples k ← {0, 1}κ and returns k.

• After observing both A and U in the protocol, SimCO also retroactively
checks whether it has previously set H[gy,Uygy

2(b−1)]. If so, it sets kb :=

H[gy,Uygy
2(b−1)].

Upon having received e0, e1 from S, SimCO samples m0,m1 ← {0, 1}κ. For
all b ∈ {0, 1} for which kb = ⊥ at this point, it sets kb ← {0, 1}κ and

programs H[gy,Uygy
2(b−1)] = kb (it does not resample kb in case it has

already been defined). It then sets m0 := e0 ⊕ k0,m1 := e1 ⊕ k1 and inputs
(send, sid ,m0,m1) and (deliver, sid , R) to FOT. This prompts the output
(output, sid ,mb) to the honest R, since R has previously input (receive, sid , b)
to FOT. When R is corrupted, SimCO learns b and sets x := u− yb (mod q).
It outputs (b, x,mb) to E .

S is corrupted between Step 1 and Step 3. To simulate the behaviour of
S, SimCO samples y ← Zp and computes A := gy,B := gy

2

. It sends A to R.
When S is corrupted, SimCO learns m0,m1. It outputs (y,m0,m1) to E .

– R is corrupted before Step 2. In this case, SimCO only needs to simulate
H before S becomes corrupted (afterwards, both parties are corrupt and
there is nothing to simulate). When R sends U in Step 2, SimCO learns u, v
s.t. U = guAv. SimCO now proceeds to simulate H exactly as in the case
where S is corrupted before Step 1, except that it aborts if it ever sets both
k0, k1 6= ⊥. As in the case where the Sender is corrupted before Step 1,
SimCO’s simulation is indeed efficient, since it knows y and can hence check
the necessary relations in the exponent of U.

Claim. SimCO does not abort except with probability 1
qH

AdvDL
B1
, where B1 is

an adversary that runs in roughly the same time as E .

Proof. SimCO aborts in this case only if the adversary queries gy,Uygy
2), as

it queries both gy,Uygy
2(b−1) for both b = 0, b = 1 to H by assumption.

In this case, we can construct B1 as follows. On input a discrete logarithm
challenge A = gy in game DL, B1 samples i ∈ [qH] uniformly at random and
runs E . It simulates the behavior of SimCO by sending the element A in Step
1. If E corrupts R, B1 aborts. When E (controlling R) queries H on input
A,J, SimCO learns coefficients a, b s.t. J = gaAb. If J = A, and v = 0, then
B1 sets kb ← {0, 1}κ and programs H[I,J] = kb. For the i-th such query
for which v 6= 0, B solves the equation (1 + v) · y2 + (u − b) · y − a = 0
(mod q) for y, and outputs y. (Note that this yields the correct solution in

case the i-th query is of the form gy,Uygy
2)). Since B1 guesses q correctly

with probability at least 1
qH

and perfectly simulates the behavior of SimCO

up that point perfectly, the claim follows. ut

– R is corrupted between Steps 2 and 4. In this case, the simulation for
R can be carried out as in the case where S is corrupted before Step 1.

– R is corrupted after Step 4. In this case, R receives e0, e1 from the
corrupted sender S at Step 4. The only difference to the case where S is
corrupted before Step 1 is that that SimCO knows y ∈ Zp s.t. A = gy from
sampling it in the first part of the simulation (rather than learning it from
the algebraic coefficients output by the corrupted S).

S is corrupted after Step 3. To simulate the behaviour of S, in Step 1, SimCO

samples y ← Zp and computes A := gy,B := gy
2

. It sends A to R.

– R is corrupted before Step 2. When R sends U ∈ G to S, SimCO checks
whether the algebraic coefficients provided by R are such that U = Abgx

for some b ∈ {0, 1}, x ∈ Zp.
• If so, SimCO inputs (receive, sid , b) and then (deliver, sid , R) to FOT.
• Otherwise, SimCO samples b← {0, 1}, x← Zp and inputs (receive, sid , b)

and then (deliver, sid , R) to FOT.
Either case prompts the output (output, sid ,mb) to SimCO, since S is honest
at this point and has previously input (send, sid ,m0,m1) to FOT. To simulate
H on input (I,J), SimCO does as follows.
• It first checks whether H[I,J] 6= ⊥. In this case, it returns H[I,J]. Thus,

assume in the following that H is queried on some input for the first time.
In addition, for any fresh query I,J, assume that SimCO sets H[I,J] to
the value it returns.

• For any query to H, SimCO checks whether it is of the form H(gy, gy
2

,

Uygy
2(b−1)) for b ∈ {0, 1}, (i.e., it checks with respect to both b = 0 and

b = 1). If any queries have been made before U was set by the corrupted
R, SimCO also checks whether they have this format.

∗ If not, it samples k ← {0, 1}κ and returns k.
∗ Otherwise, if SimCO has previously set eb 6= ⊥ (see below) it sets
kb := eb ⊕mb. Else, it sets kb ← {0, 1}κ. It returns kb.

• If during this process, SimCO ever sets both k0, k1 6= ⊥, it aborts.

In Step 3, SimCO samples e0, e1 ← {0, 1}κ and sends them to R. After SimCO

performs Step 3 of the protocol, SimCO inputs (deliver, sid , S) to FOT which
prompts the output (output, sid) to S. Once S is corrupted (after Step 3),
SimCO learns m0,m1. It outputs (y,m0,m1) to E .

– R is corrupted between Step 2 and Step 4. In this case, the simu-
lation for R can be carried out as in the case where S is corrupted be-
fore Step 1. In addition, after S performs Step 3 of the protocol, SimCO

inputs (receive, sid , b), (deliver, sid , S) to FOT (in this order). This prompts
the output (output, sid) to S, since S is honest at this point and thus has
input (send, sid ,m0,m1) to FOT. Moreover, SimCO aborts upon setting both
k0, k1 6= ⊥.

– R is corrupted after Step 4. Same as previous case, except that SimCO

does not have to abort if R is corrupted after S.

The proof of the following claim is almost identical to the one given for the
case where S is corrupted between Step 1 and Step 3.

Claim. SimCO does not abort in case the sender is corrupted after Step 3 except
with probability 1

qH
AdvDL

B2
, and B2 runs in roughly the same time as E .

As long as SimCO does not abort, it perfectly simulates the behavior of a
party in ΠCO, as all outputs of the random oracle H are uniformly distributed in
this case from the view of E . Moreover, SimCO can consistently simulate the view
of E . Finally, it is easy to see that all SimCO can output algebraic representations
of all elements that it outputs relative to group elements it receives as input,
and hence SimCO is algebraic. This concludes the proof. ut

4 Analysis of PAKE protocols: SPAKE2 and CPace

In this section we analyze the UC security of PAKE protocols SPAKE2 and
CPace in the algebraic group model. We show that, modeling the hash functions
used by these protocols as random oracles, they both achieve full UC security.
The proofs are simpler than the ones we encountered in the literature for the UC
and game-based security of the same protocols and they are based on standard
(non-interactive) assumptions (we do not need gap assumptions). We use the
standard definition of FpwKE from [2,15] supporting multiple sessions Fig. 3.

Remark. Throughout the paper we present the simulators as running their own
instances of the random oracle functionality used by the protocols, which means
that we assume that the random oracle is local to the protocol [14]. However, in
this section, we make it clear that none of the given simulators needs to program
the random oracle functionality and, in the case of the SPAKE2 protocol, it
does not even need to know which adversarial queries were made to the random
oracle. These observations indicate that our proofs of security may carry over to
a setting with global random oracle as in [12,16]. Providing a full formalization
of the referred works in the AGM is beyond the scope of this paper; however, we
believe that our formal approach will carry naturally to extensions of UC with
global functionalities.

Functionality FpwKE

Upon receiving a query (NewSession, sid , P, P ′, pw, role) from party P :
Ignore this query if record (sid , P, ·, ·, ·) already exists. Otherwise, record
(sid , P, P ′, pw, role) marked fresh and send (NewSession, sid , P, P ′, role) to S.

Upon receiving a query (TestPwd, sid , P, pw∗) from S:
If ∃ a fresh record (sid , P, P ′, pw, ·) then:
– If pw∗ = pw then mark it compromised and return “correct guess”;
– If pw∗ 6= pw then mark it interrupted and return “wrong guess”.

Upon receiving a query (NewKey, sid , P,K∗) from S:
If ∃ a record (sid , P, P ′, pw, role) not marked completed then do:
– If the record is compromised, or either P or P ′ is corrupted, then set
K := K∗.

– If the record is fresh and ∃ a completed record (sid , P ′, P, pw, role′,K′) with
role′ 6= role that was fresh when P ′ output (sid ,K′), then set K := K′.

– In all other cases pick K uniformly at random.
Finally, append K to record (sid , P, P ′, pw, role), mark it completed, and out-
put (sid ,K) to P .

Fig. 3. The password-based key-exchange functionality FpwKE.

User Server

x←← Zq y ←← Zq
X ← gx Y ← gy

X? ← X ·Mpw X ← X? /Mpw

Y ← Y ? /Npw Y ? ← Y ·Npw

K ← H(sid , U, S,X?, Y ?, pw, Y x) K ← H(sid , U, S,X?, Y ?, pw, Xy)

sid , U, S, pw ∈ P, crs = (G,M,N)

X?

Y ?

Fig. 4. The SPAKE2 protocol [5]. The CRS includes the group description G, where
|G| = q and two group elements M,N ∈ G sampled uniformly at random.

Remark. The SPAKE2 simulator does not need to program the common refer-
ence string and the CPace protocol does not use one (in addition to the group
description). We also show for both protocols that the simulators are algebraic.
This means that the UC-AGM composition applies to both protocols.

4.1 SPAKE2

Fig. 4 shows a SPAKE2 protocol execution between an user U and a server S.
SPAKE2 is a two-pass protocol, where we assume the user plays the role of the
initiator and the server that of the responder.

Let SqDH denote the problem of computing ga
2

, when given a random el-
ement A = ga in G, and AdvSqDH

B the probability that attacker B succeeds in

solving this problem. Theorem 6 shows that SPAKE2 AGM realizes FpwKE as-
suming that SqDH and the discrete-logarithm problems are hard in G.

Theorem 6. SPAKE2 AGM-emulates FpwKE in the (FRO,FCRS)-hybrid model
under static corruptions. More precisely, there exists an algebraic simulator S
for the (algebraic) dummy adversary D such that, for every efficient algebraic
environment E creating at most qS sessions and placing at most qH queries to
the random oracle, there exist attackers B11, B21, and B2 running in roughly the
same time as E such that execpwKE,S,E ≈ε execspake2,D,E , where

ε ≤ AdvDL
B1

1
+ AdvDL

B2
1

+ qH · AdvSqDH
B2

+
qS + 1

q
.

Note, that the DL problem and the SqDH problems are equivalent when we
consider algebraic attackers, so the theorem follows with a reduction to the DL
problem even if the proof relies on an apparently stronger assumption.

We also remark that the structure of this proof is much simpler than the
proof that SPAKE2 satisfies relaxed UC PAKE security [2]. This is because, in
the AGM, the password guessing event can be detected directly by the simulator
(and hence by the reductions) and one does not need to rely on the random oracle
to extract passwords in active attacks.

We give a sketch of the proof and provide the full proof in the full version [3].

Proof (Sketch). Simulator S is shown in Fig. 5. Recall that, whenever the dummy
adversary is instructed to deliver a group element to an uncorrupted party, it
will output on its auxiliary tape the algebraic representation of that element
with respect to group elements that appear in the view of the environment. In
this case, the bases for such representations include M, N and any messages X?

or Y? produced by an uncorrupted party.

Simulation strategy. The simulator generates all messages of uncorrupted
parties by raising either M or N to a random exponent. It does so because it
does not know the corresponding password. The distribution of such messages is
identical to those produced by honest parties in the real world, which are of the
form gxMpw or gyNpw. The simulator then keeps track of whether the adver-
sary is launching a passive attack or an active attack: where the former means
that there exists another simulated session with a consistent view. All passively
attacked sessions are not interrupted by the simulator, which means that FpwKE

will choose independent keys at the associated dummy parties’ outputs.
For actively attacked sessions, the simulator checks if the delivered message

was constructed as per the protocol and, if so, it extracts the password. All mal-
formed messages cause the simulator to interrupt the session in the functionality
by calling TestPw with pw =⊥. For well formed messages, the simulator queries
TestPw on the extracted password and, if the password is correct, computes the
correct key: this is possible because, even though the simulator does not know
the correct exponent implicit in the simulated honest party’s state, it knows
the algebraic decomposition of the delivered message and this is well formed

Simulator S for SPAKE2

proc Initialize()

Get CRS=(M,N)

On input (NewSession, sid, P, P ′, role) from FpwKE

If ¬(πsid
P =⊥) discard input.

If role = init

x←← Zq; X? ←Mx; πsid
P ← (x, (P, P ′, sid ,X?,⊥),⊥, init)

Send SendInit(P, P ′, sid ,X?) to E
Else

y ←← Zq; Y? ← Ny; πsid
P ← (y, (P ′, P, sid ,⊥,Y?),⊥, resp)

On message SendInit(P, P ′, sid , (X?, alg)) from E
Ignore if πsid

P ′ 6= (y, (P, P ′, sid ,⊥,Y?),⊥, resp)

(A unique πsid
P ′ satisfies the above check for some y and Y?)

K ←← K
(Can’t interrupt passive sessions so F sets =K at output)

If πsid
P = (· , (P, P ′, sid ,X?,⊥),⊥, init) Jump to Complete

(First check whether X? was constructed as per protocol)
If alg = [(g, x); (M, pw)]

Query (TestPwd, sid, P ′, pw) to FpwKE

If FpwKE responds with “correct guess”
Y ← Y? /Npw; K ← H(P, P ′, sid ,X?,Y?, pw, Y x)

(Interrupt all other sessions so independent key is set)
Else Query (TestPwd, sid , P ′,⊥) to FpwKE

Complete: Send SendResp(P ′, P, sid ,Y?) to E
πsid
P ′ ← (y, (P, P ′, sid ,X?,Y?),K, resp)

Query (NewKey, sid, P ′,K) to FpwKE

On message SendResp(P ′, P, sid , (Y?, alg)) from E
Ignore if πsid

P 6= (x, (P, P ′, sid ,X?,⊥),⊥, init)

(A unique πsid
P satisfies the above check for some x and X?)

K ←← K
(Can’t interrupt passive sessions so F sets =K at output)

If πsid
P ′ = (· , (P, P ′, sid ,X?,Y?), · , resp) Jump to Complete

(First check whether Y? was constructed as per protocol)
If alg = [(g, y); (N, pw)]

Query (TestPwd, sid , P, pw) to FpwKE

If FpwKE responds with “correct guess”
X ← X? /Mpw; K ← H(P, P ′, sid ,X?,Y?, pw, Xy)

(Interrupt all other sessions so independent key is set)
Else Query (TestPwd, sid , P,⊥) to FpwKE

Complete: πsid
P ← (x, (P, P ′, sid ,X?,Y?),K, init)

Query (NewKey, sid, P,K) to FpwKE

Fig. 5. The operation of the SPAKE2 simulator. The simulator does not need to observe
adversarial random oracle queries nor program either of the random oracle or the CRS.

(this means it can compute the key as the adversary would). If the password
is incorrect, the simulator generates a totally random key (this is ignored by
the functionality if there are no corrupt parties involved in the session, but it is
relevant otherwise as we discuss below).

The simulation is perfect for all sessions with well-formed messages and cor-
rect password guesses. It looks perfect for all other sessions, unless the attacker
can query the random oracle on the group element that such a session would
compute in the real world. Our proof shows that any such query can, with
overwhelming probability, be used to solve the SqDH problem. Two important
observations for the proof: i. the simulator never uses the random exponents it
generates for the honest party messages to perform any computation; and ii. the
simulator never constructs any group element for which it cannot provide an
algebraic decomposition to bases g, M and N. The second observation guaran-
tees that our simulator is an algebraic adversary as required by the composition
theorem in Section 2.

Corrupt parties. Fig. 5 does not show explicitly the simulator’s handling of
sessions involving corrupt parties. In this case, the environment tells the simu-
lator what the corrupt party should be doing, and the simulator does not keep
the state of the corrupt party. Moreover, any group elements transmitted by the
corrupt party come with their algebraic decomposition as above. Our simulator
is structured to handle this case identically to the setting where the uncorrupted
party is actively attacked while interacting with another uncorrupted party; we
explain why this is the case in the detailed version of the proof provided in the
full version [3]. The proof below covers this scenario as a particular case.

Proof of simulator correctness. From this point on we consider only inter-
actions involving uncorrupted parties. The first observation we make is that the
distribution of the protocol messages produced by the simulator is identical to
that occurring in the real world, even though they are constructed differently.
It therefore remains to prove that the outputs of the ideal functionality match
the distribution of the parties’ outputs in the real world. We observe that the
real and ideal worlds are identical until bad, where bad is defined as the event
that a secret key that is selected uniformly at random by the functionality at
the output of an uncorrupted party is inconsistent with the answer given by H
to the adversary. This is because in all other cases the simulator programs the
output of the ideal functionality consistently with the real world. This means
formally that, for ε = Pr[execpwKE,S,E ⇒ bad], we have

execpwKE,S,E ≈ε execspake2,D,E
More precisely, we define event bad as the existence within the set of queries

placed by E to the random oracle of a query (sid , P, P ′,X?,Y?, pw,Z) that is
consistent with the trace of a session at an uncorrupted party, which accepted
after a passive attack or after an active attack where the simulator did not place
a correct TestPw query. We define now these conditions formally.

We say a random oracle query (sid , P, P ′,X?,Y?, pw,Z) is consistent with
an initiator session πsid

P if this instance was created following a NewSession query

by E using pw and πsid
P = (· , (P, P ′,X?,Y?), · , init). Similarly, the condition for

responder session πsid
P ′ is πsid

P ′ = (· , (P, P ′,X?,Y?), · , resp). Note that the order
of party identities in the trace determines the role of the party.

We say an initiator session πsid
P accepted after a passive attack if it com-

pleted following a SendResp(P ′, P, sid , (Y?, alg)) message from E , when πsid
P ′ =

(· , (P, P ′, sid ,X?,Y?), · , resp). We say a responder session πsid
P ′ accepted after

a passive attack if it completed following a SendInit(P, P ′, sid , (X?, alg)) mes-
sage from E , when πsid

P = (· , (P, P ′, sid ,X?,Y?), · , init). All other sessions are
considered to be under active attack.

We reduce the probability of bad to SqDH. Intuitively, our reduction embeds
the SqDH challenge A in the global parameters (M = A,N = Aδ) for δ sampled
uniformly at random from Z?q (this accounts for the 1/q term in the theorem
statement). Suppose bad is first set for a random oracle entry that is consistent
with a session accepted by an initiator session. The attacker delivered a message
Y? and an algebraic representation that we can see as [(a, g), (b,M), (c,N)]. The
reduction can transform this algebraic representation into [(a, g), (b+δc,A)]. Let
CDH(A,B) = gab for A = ga and B = gb. This means that any problematic
random oracle query will include a group element of the form

Z = CDH(Ax−pw, gaAb+δ(c−pw)) = CDH(Ax−pw, ga) · CDH(Ax−pw,Ab+δ(c−pw))

where x was chosen by the reduction following the simulator code. Since the
reduction can compute the first factor, we can recover

CDH(A,A)(x−pw)(b+δ(c−pw))

which means that the required SqDH solution can be recovered when (x−pw)(b+
δ(c − pw)) 6= 0. The case of responders is similar, but we can only recover the
SqDH result provided δ(y − pw)(b+ δc− pw) 6= 0.

The detailed proof given the full version [3] bounds the probability that
our reduction strategy fails using a statistical term and reductions B11 and B21
to the discrete logarithm problem. Once this possibility is excluded, we can
reduce the probability of bad to SqDH. The detailed proof also includes the code
for the algorithm B2 that breaks SqDH if the bad event occurs. In this case,
we know that the random oracle table will contain a solution to SqDH if the
event bad has occurred. When the experiment terminates, B2 therefore samples
a random oracle query uniformly at random6 and looks for a consistent session.
It could find one or two consistent sessions, where the latter case corresponds to a
passive attack with matching passwords on both sides. In any case, it computes a
candidate SqDH value using the appropriate initiator or responder-side formula
we described above. If the randomly selected random oracle entry was the first
to cause the bad event, the algorithm solves SqDH. This accounts for the qH
multiplicative loss in the theorem statement. ut
6 This step could be replaced with a search for a consistent entry using a DDH oracle

to the fixed basis A, resulting in a tighter reduction to Strong SqDH where the qH
factor disappears.

Remark. The above proof strategy can be used almost without change for an
alternative version of the protocol that does not include the password pw in the
input to the key derivation hash. This has practical advantages, as the password
need not be kept in memory after computing the outgoing message. This version
of the protocol was introduced as SPAKE1 in [5], and it was previously not known
that this protocol could achieve forward secrecy or UC security. The only point
where the current proof would need to be modified is in the final computation
of the SqDH solution: in the particular case of a passive attack there now could
be two protocol instances at P and P ′ with different passwords, but matching
the same random oracle entry. In this case, the reduction would toss a coin and
choose one of them at random to fix the password used to compute the SqDH
solution. This adds only a factor of 2 to the final reduction step.

Furthermore, the same proof applies to both protocols when we can rely on
a DDH oracle to the fixed basis A to look for the offending random oracle entry.
In this case, we get a tight reduction to Strong SqDH for both protocols, i.e.,
the strong DH assumption adapted to the computation of ga

2

. Finally, the proof
also applies to variants of the protocol discussed in [1], whereby the CRS is
defined as (M,N = M), or when the CRS is simply the group description and
(M,N) = H(sid , U, S) and H is modeled as a random oracle.

4.2 CPace

Fig. 6 shows a CPace protocol execution between an user U and a server S.
CPace is a two-pass protocol, where we assume the user plays the role of the
initiator and the server that of the responder. We give a sketch of the proof here
and provide the complete proof in the full version [3].

User Server

G← H1(sid , U, S, pw) G← H1(sid , U, S, pw)

x←← Zq y ←← Zq
X ← Gx Abort if X = 1

Abort if Y = 1 Y ← Gy

K ← H2(sid , X, Y, Y x) K ← H2(sid , X, Y,Xy)

sid , U, S, pw ∈ P, crs = (G)

X

Y

Fig. 6. The CPace protocol [22]. CRS includes the group description G s.t. |G| = q.

Let InvCDH denote the problem of computing g1/a when given a random
element A = ga in G and let AdvInvCDH

B denote the probability that attacker
B solves this problem. Theorem 7 shows that CPace AGM realizes FpwKE if
InvCDH is hard in G.

Theorem 7. CPace AGM-emulates FpwKE under static corruptions, in a hybrid
model with the random oracle functionality. More precisely, there exists an al-
gebraic simulator S for the (algebraic) dummy adversary D such that, for every

efficient algebraic environment E creating at most qS sessions, querying H1 at
most qH1

times and querying H2 at most qH2
times, there exists B`1,`2 running

in roughly the same time as E such that execpwKE,S,E ≈ε execcpace,D,E , where

ε ≤ qH1
· qH2

· AdvInvCDH
B`1,`2

() +
q2H1

+ qS

q
.

Note that the InvCDH problem is equivalent to the DL problem when we
consider algebraic attackers, so the theorem follows with a reduction to the DL
problem even if the proof relies on this apparently stronger assumption.

Proof. (Sketch) Simulator S is shown in Fig. 7. The simulation strategy here
is identical to that we adopt for the SPAKE2 proof, with the caveat that the
simulator must learn the environment’s queries to H1 in order to extract the
password in an active attack. (In this case, the bases for the algebraic represen-
tations of adversarially constructed messages include the outputs of the random
oracle H1 and any messages X or Y produced by an uncorrupted party.) Also
here the simulator never generates any group element for which it cannot give
an algebraic decomposition with respect to base g, and hence it is an algebraic
adversary. The handling of corrupt parties is also the same.

Proof of simulator correctness. This part of the proof is also similar in struc-
ture to that of SPAKE2. We first eliminate some corner cases, where the distribu-
tion of real world and the ideal world views do not match, but are straightforward
to bound using a statistical term; this includes collisions at the random oracle
output. We then conclude that the real and ideal worlds are identical until bad,
where bad is defined as the existence within the set of queries placed by E to H2

of a query (sid ,X,Y,Z) that is consistent with the trace of a session at an un-
corrupted party, which accepted after a passive attack or after an active attack
where the simulator did not place a correct TestPw query. We define now these
conditions formally.

We say an H2 query (sid ,X,Y,Z) is consistent with an initiator session πsid
P if

πsid
P = (· , (· , · ,X,Y), · , init). Similarly, the condition for responder session πsid

P ′

is πsid
P ′ = (· , (· , · ,X,Y), · , resp). We say an initiator session πsid

P accepted after a
passive attack if it completed following a SendResp(P ′, P, sid , (Y, alg)) message
from E , when πsid

P ′ = (· , (P, P ′, sid ,X,Y), · , resp). Responder session πsid
P ′ ac-

cepted after a passive attack if it completed after a SendInit(P, P ′, sid , (X, alg))
message from E , when πsid

P = (· , (P, P ′, sid ,X,Y), · , init). All other sessions
are considered to be under active attack. Finally, we say a T1 entry of the
form (sid , P, P ′, pw) is consistent with an initiator (resp. responder) instance,
if that instance was initialized by the environment in a NewSession query with
(sid , P, P ′, pw, init) (resp. (sid , P ′, P, pw, resp)).

We bound the probability of bad in the ideal world using a sequence of games.

Guessing the RO entries that cause bad. We modify ideal world as follows:
sample (`1, `2) uniformly at random in [qH1

] × [qH2
]. Then, if bad first occurs

due to the i-th H2 query such that i 6= `2, abort. Furthermore, if the offending

Simulator S for CPace

proc H1(sid , P, P ′, pw) (non-repeat queries)

r ←← Zq; G← gr; T1[sid , P, P ′, pw]← G; return G
Simulator aborts if at any point T1 is non-injective.

On input (NewSession, sid, P, P ′, role) from FpwKE

If ¬(πsid
P =⊥) discard input.

If role = init

x̂←← Z∗q ; X← gx̂

πsid
P ← (x̂, (P, P ′, sid ,X,⊥),⊥, init)

Send SendInit(P, P ′, sid ,X) to D
Else ŷ ←← Z∗q ; Y ← gŷ

πsid
P ← (ŷ, (P ′, P, sid ,⊥,Y),⊥, resp)

On message SendInit(P, P ′, sid , (X, alg) 6= 1) from E via D
Ignore if πsid

P ′ 6= (ŷ, (P, P ′, sid ,⊥,Y),⊥, resp)

(A unique πsid
P ′ satisfies the above check for some ŷ and Y)

K ←← K
(Can’t interrupt passive sessions so F sets =K at output)

If πsid
P = (· , (P, P ′, sid ,X,⊥),⊥, init) Jump to Complete

(First check whether X was constructed as per protocol)
If alg = [(G, x))] ∧ (sid , P, P ′, pw,G) ∈ T1

Query (TestPwd, sid, P ′, pw) to FpwKE

If FpwKE responds with “correct guess” Then K ← H2(sid ,X,Y,Yx)
(Interrupt all other non-passive sessions.)
Else Query (TestPwd, sid , P ′,⊥) to FpwKE

Complete: Send SendResp(P ′, P, sid ,Y) to D
πsid
P ′ ← (⊥, (P, P ′, sid ,X,Y),K, resp)

Query (NewKey, sid, P ′,K) to FpwKE

On message SendResp(P ′, P, sid , (Y, alg) 6= 1) from E via D
Ignore if πsid

P 6= (x̂, (P, P ′, sid ,X,⊥),⊥, init)

(A unique πsid
P satisfies the above check for some x̂ and X)

K ←← K
(Can’t interrupt passive sessions so F sets =K at output)

If πsid
P ′ = (· , (P, P ′, sid ,X,Y), · , resp) Jump to Complete

(First check whether Y was constructed as per protocol)
If alg = [(G, y)] ∧ (sid , P, P ′, pw,G) ∈ T1

Query (TestPwd, sid , P, pw) to FpwKE

If FpwKE responds with “correct guess” Then K ← H2(sid,X,Y,Xy)
(Interrupt all other non-passive sessions.)
Else Query (TestPwd, sid , P,⊥) to FpwKE

Complete: πsid
P ← (⊥, (P, P ′, sid ,X,Y),K, init)

Query (NewKey, sid, P,K) to FpwKE

Fig. 7. The operation of the CPace simulator. The simulator needs to observe adver-
sarial random oracle queries on H1 but not on H2, and it does not need to program
either of the random oracles. T1 is initially empty.

T1 entry (i.e., the T1 unique entry consistent with the session where the bad
event was detected) is not the `1-th one, abort. Clearly, we can still bound the
probability of bad in the previous game with the pessimistic bound qH1 · qH2 ·
Pr[bad], where we only check for bad if the experiment has not aborted. We
give in the full version [3] a reduction B`1,`2 that solves the InvCDH problem
whenever bad occurs in this modified game.

Final reduction. The reduction strategy is as follows. The generator returned
by H1 for the problematic session associated with the `2-th password query is
programmed to be A, the InvCDH problem instance. All messages generated
by uncorrupted parties are generated as gx̂ or gŷ. All random oracle queries
consistent with a session with trace (X,Y) and generator A include the key
element Z satisfying the following equation:

Z = XdlogA(Y) = YdlogA(X) = A(dlogA(X)·dlogA(Y))

Observing that dlogA(X) = dlogg(X)/dlogg(A) the equation can be re-written
as:

Z = g
dlogg(X)·dlogg(Y)

dloggA

In the simplest case of a passive attack, it is immediate that we recover the
solution to the InvCDH problem if x̂ · ŷ 6= 0, which we know to be the case.

Now let us suppose the problematic case occurs with an actively attacked
initiator session. Then we know that Y = gαAβ and α 6= 0; otherwise this
would be a correct password guess and the bad event could never have occurred
for this session—recall the experiment would have aborted if H1 did not program
A as the output for the password associated with this session. We can therefore
refine the equation above to:

Z = g
x̂·(α+β·dlogg(A))

dloggA = g
x̂·α

dloggA
+x̂·β

Again, the InvCDH solution can be recovered, as long as x̂ 6= 0. The responder
session case is identical. ut

Remark. As in the proof of SPAKE2, we could eliminate the qH2
factor in

the reduction by using a DDH oracle to the fixed basis A to detect which of the
entries in H2 is consistent with the bad event; however, we would still be guessing
the problematic H1 query in order to program the hard problem instance, and
the qH1

factor would remain.

Remark. In the proofs for SPAKE2 and CPace, we have seen that it is possible
to have tighter reductions to a stronger gap assumption that excludes the need
to guess an entry in the key derivation random oracle. However, we should also
mention that in the algebraic group model, the gap versions of the SqDH and
InvCDH assumptions are actually equivalent to the standard versions, provided
that the reduction is able to give algebraic decompositions of all the elements
queried to the DDH oracle. This is the case in our proofs, provided that the

attacker is also required to give algebraic decompositions of the group elements
it queries to the random oracle. Note that this is a requirement for algebraic
environments in the UC AGM model, as explained in Section 2. The take away
from this discussion is that our proof of SPAKE2 implies a tight reduction to
SqDH in the algebraic group model for both SPAKE1 and SPAKE2 (SPAKE1
is the variant that does not include pw in the key derivation hash). The CPace
proof implies a reduction to InvCDH in the AGM with a loss of qH1

.

References

1. M. Abdalla and M. Barbosa. Perfect forward security of SPAKE2. Cryptology
ePrint Archive, Report 2019/1194, 2019. https://eprint.iacr.org/2019/1194.

2. M. Abdalla, M. Barbosa, T. Bradley, S. Jarecki, J. Katz, and J. Xu. Univer-
sally composable relaxed password authenticated key exchange. In Advances in
Cryptology—Crypto 2020, Part I, volume 12170 of LNCS, pages 278–307. Springer,
2020.

3. M. Abdalla, M. Barbosa, J. Katz, J. Loss, and J. Xu. Algebraic adversaries in the
universal composability framework. Cryptology ePrint Archive, Report 2021/3878,
2021. https://ia.cr/2021/3878.

4. M. Abdalla, F. Benhamouda, and P. MacKenzie. Security of the J-PAKE password-
authenticated key exchange protocol. In 2015 IEEE Symposium on Security and
Privacy, pages 571–587. IEEE, 2015.

5. M. Abdalla and D. Pointcheval. Simple password-based encrypted key exchange
protocols. In Cryptographers’ Track—RSA 2005, volume 3376 of LNCS, pages
191–208. Springer, 2005.

6. B. Auerbach, F. Giacon, and E. Kiltz. Everybody’s a target: Scalability in public-
key encryption. In Advances in Cryptology—Eurocrypt 2020, Part III, volume
12107 of LNCS, pages 475–506. Springer, 2020.

7. B. Bauer, G. Fuchsbauer, and J. Loss. A classification of computational assump-
tions in the algebraic group model. In Advances in Cryptology—Crypto 2020,
Part II, volume 12171 of LNCS, pages 121–151. Springer, 2020.

8. C. Baum, B. David, R. Dowsley, J. B. Nielsen, and S. Oechsner. Tardis: A foun-
dation of time-lock puzzles in uc. Cryptology ePrint Archive, Report 2020/537,
2020. https://ia.cr/2020/537.

9. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In 1st ACM Conf. on Computer and Communications Security,
pages 62–73. ACM Press, 1993.

10. T. Bradley, S. Jarecki, and J. Xu. Strong asymmetric PAKE based on trapdoor
CKEM. In Advances in Cryptology—Crypto 2019, Part III, volume 11694 of LNCS,
pages 798–825. Springer, 2019.

11. M. Byali, A. Patra, D. Ravi, and P. Sarkar. Fast and universally-composable
oblivious transfer and commitment scheme with adaptive security. Cryptology
ePrint Archive, Report 2017/1165, 2017. https://eprint.iacr.org/2017/1165.

12. J. Camenisch, M. Drijvers, T. Gagliardoni, A. Lehmann, and G. Neven. The won-
derful world of global random oracles. In Advances in Cryptology—Eurocrypt 2018,
Part I, volume 10820 of LNCS, pages 280–312. Springer, 2018.

13. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science
(FOCS), pages 136–145. IEEE, 2001.

https://eprint.iacr.org/2019/1194
https://ia.cr/2021/3878
https://ia.cr/2020/537
https://eprint.iacr.org/2017/1165

14. R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security
with global setup. In 4th Theory of Cryptography Conference—TCC 2007, volume
4392 of LNCS, pages 61–85. Springer, 2007.

15. R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Universally com-
posable password-based key exchange. In Advances in Cryptology—Eurocrypt 2005,
volume 3494 of LNCS, pages 404–421. Springer, 2005.

16. R. Canetti, A. Jain, and A. Scafuro. Practical UC security with a global random
oracle. In 21st ACM Conf. on Computer and Communications Security (CCS),
pages 597–608. ACM Press, 2014.

17. A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. P. Ward. Marlin: Prepro-
cessing zkSNARKs with universal and updatable SRS. In Advances in Cryptology—
Eurocrypt 2020, Part I, volume 12105 of LNCS, pages 738–768. Springer, 2020.

18. T. Chou and C. Orlandi. The simplest protocol for oblivious transfer. In Progress in
Cryptology—Latincrypt 2015, volume 9230 of LNCS, pages 40–58. Springer, 2015.

19. G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applica-
tions. In Advances in Cryptology—Crypto 2018, Part II, volume 10992 of LNCS,
pages 33–62. Springer, 2018.

20. G. Fuchsbauer, A. Plouviez, and Y. Seurin. Blind Schnorr signatures and signed
ElGamal encryption in the algebraic group model. In Advances in Cryptology—
Eurocrypt 2020, Part II, volume 12106 of LNCS, pages 63–95. Springer, 2020.

21. Z. A. Genç, V. Iovino, and A. Rial. “The simplest protocol for oblivious transfer”
revisited. Cryptology ePrint Archive, Report 2017/370, 2017. http://eprint.

iacr.org/2017/370.
22. B. Haase and B. Labrique. AuCPace: Efficient verifier-based PAKE protocol tai-

lored for the IIoT. IACR Transactions on Cryptographic Hardware and Embed-
ded Systems, 2019(2):1–48, 2019. https://tches.iacr.org/index.php/TCHES/

article/view/7384.
23. E. Hauck and J. Loss. Efficient and universally composable protocols for oblivious

transfer from the CDH assumption. Cryptology ePrint Archive, Report 2017/1011,
2017. http://eprint.iacr.org/2017/1011.

24. J. Katz, J. Loss, and J. Xu. On the security of time-locked puzzles and timed com-
mitments. Cryptology ePrint Archive, Report 2020/730, 2020. https://eprint.

iacr.org/2020/730.
25. T. Kerber, A. Kiayias, and M. Kohlweiss. Composition with knowledge assump-

tions. Cryptology ePrint Archive, Report 2021/165, 2021. https://eprint.iacr.
org/2021/165.

26. M. Larangeira and K. Tanaka. Programmability in the generic ring and group
models. J. Internet Serv. Inf. Secur., 1(2/3):57–73, 2011.

27. M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In
26th ACM Conf. on Computer and Communications Security (CCS), pages 2111–
2128. ACM Press, 2019.

28. M. Naor, S. Paz, and E. Ronen. CRISP: Compromise resilient identity-based
symmetric PAKE. Cryptology ePrint Archive, Report 2020/529, 2020. https:

//eprint.iacr.org/2020/529.
29. V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm.

Mathematical Notes, 55(2):165–172, 1994.
30. V. Shoup. Lower bounds for discrete logarithms and related problems. In Advances

in Cryptology—Eurocrypt ’97, volume 1233 of LNCS, pages 256–266. Springer,
1997.

http://eprint.iacr.org/2017/370
http://eprint.iacr.org/2017/370
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://tches.iacr.org/index.php/TCHES/article/view/7384
http://eprint.iacr.org/2017/1011
https://eprint.iacr.org/2020/730
https://eprint.iacr.org/2020/730
https://eprint.iacr.org/2021/165
https://eprint.iacr.org/2021/165
https://eprint.iacr.org/2020/529
https://eprint.iacr.org/2020/529

	Algebraic Adversaries in the Universal Composability Framework
	Introduction
	Defining the AGM Within the UC Framework
	Proofs of Security in the UC-AGM
	Related Work
	Overview of the Paper

	Defining Algebraic Adversaries in the UC Framework
	Overview of the UC Framework
	UC Emulation in the Algebraic Group Model
	Composition in the UC-AGM

	Analysis of the Chou-Orlandi Protocol
	Analysis of PAKE protocols: SPAKE2 and CPace
	SPAKE2
	CPace

