
New Attacks on LowMC instances with a Single
Plaintext/Ciphertext pair

Subhadeep Banik, Khashayar Barooti, Serge Vaudenay and Hailun Yan

LASEC, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
{subhadeep.banik,khashayar.barooti,serge.vaudenay,hailun.yan}@epfl.ch

Abstract. Cryptanalysis of the LowMC block cipher when the attacker
has access to a single known plaintext/ciphertext pair is a mathemati-
cally challenging problem. This is because the attacker is unable to em-
ploy most of the standard techniques in symmetric cryptography like
linear and differential cryptanalysis. This scenario is particularly rele-
vant while arguing the security of the PICNIC digital signature scheme in
which the plaintext/ciphertext pair generated by the LowMC block ci-
pher serves as the public (verification) key and the corresponding LowMC
encryption key also serves as the secret (signing) key of the signature
scheme. In the paper by Banik et al. (IACR ToSC 2020:4), the authors
used a linearization technique of the LowMC S-box to mount attacks on
some instances of the block cipher. In this paper, we first make a more
precise complexity analysis of the linearization attack. Then, we show
how to perform a 2-stage MITM attack on LowMC. The first stage re-
duces the key candidates corresponding to a fraction of key bits of the
master key. The second MITM stage between this reduced candidate set
and the remaining fraction of key bits successfully recovers the master
key. We show that the combined computational complexity of both these
stages is significantly lower than those reported in the ToSC paper by
Banik et al.

1 Introduction

The LowMC family of block ciphers was first proposed by Albrecht et al. in
[ARS+15] and was designed specifically for use in FHE and MPC applications
due to its low multiplicative complexity. The block cipher uses a 3-bit S-box
which is the only non-linear transformation in the construction. Both the linear
layers and round key generation are done by multiplying with full rank matrices
over GF (2) of appropriate dimensions. The designers propose several instances
of the block cipher, some of which have partial non-linear layers i.e. in which the
S-boxes are not applied over the entire internal state of the cipher.

Recently, LowMC has been used in the PICNIC digital signature scheme in
the following way. Let E(K, pt) be the LowMC encryption of the plaintext pt
using the key K. The plaintext/ciphertext pair (pt, ct = E(K, pt)) is used as the
public key of the signature scheme (verification key) and encryption key K is
used as the secret key (signing key). If an adversary can recover the encryption

key given only a single plaintext/ciphertext pair (pt, ct) i.e. the public key of the
signature scheme, then in effect he computes the secret signing key. This allows
him to forge a signature by following exactly the honest prover protocol with
the recovered signing key. This demonstrates that a data complexity one key
recovery attack on LowMC block cipher leads to a signature forgery on PICNIC.

1.1 Previous Work

In ICISC 2015 Dobraunig et al. [DEM15] proposed an attack on LowMC family
of block ciphers, based on cube attack strategies. The authors proposed an al-
gorithm which successfully recovers the key of the round reduced version of the
cipher, aiming for 80-bit security. Dinur et al. [DLMW15] showed that around
2−38 fraction of its 80-bit key instances could be broken 223 times faster than
exhaustive search. Moreover, all instances that claimed to provide 128-bit secu-
rity could be broken about 1000 times faster. In [DKP+19], the authors showed
that for the LowMC instances that employs partial linear layers, each instance
belonged to a large class of equivalent instances that differ in their linear layers.
This led to a more efficient implementation of the cipher that required reduces
the evaluation time and storage of computing the linear layers. In FSE 2018,
Rechberger et al. [RST18] proposed a meet-in-the-middle style attack, based on
possible output differentials, given an input differential, which affects the secu-
rity of the variants of LowMCv2 with partial S-box layers drastically. In [LIM20]
some results on LowMC were reported building on the techniques of [RST18], al-
beit with higher data complexities, which naturally do not apply to the PICNIC
scenario. In [DN19] the authors proposed multi-target attacks on the PICNIC
signature scheme. For a survey of key recovery attacks on LowMC, readers may
check the survey done by Rechberger et al. [GKRS]. As mentioned, one of the
main use cases of LowMC, is the PICNIC post quantum signature scheme. Due
to PICNIC’s algebraic composition, the scheme would be trivially forged by a key
recovery attack on LowMC that uses only a single pair of plaintext/ciphertext.
In other words only attacks with data complexity one directly affect the security
of the signature scheme.

The LowMC cryptanalysis challenge asked for cryptanalysis of several in-
stances of LowMC (in which the blocksize and keysize are equal), with both
partial and complete non-linear layers given only one plaintext and ciphertext
pair. In [BBDV20], some instances of the challenge were successfully solved. The
authors used the fact that after guessing the value of any balanced quadratic
Boolean function on the inputs of the LowMC S-box, the transformation be-
comes completely linear. The authors chose the 3-variable majority function for
this purpose, but they show that any balanced quadratic function can be used.
Using this fact, they showed various attacks on

A 2-round LowMC with complete non-linear layers.
B 0.8 · bns c-round LowMC with partial non-linear layers. Here n denotes the

blocksize of the LowMC instance, and s denotes the number of S-boxes in
each round.

2

The authors in [BBDV20] report attack complexities in number of linear/quadratic
expression evaluations. However it is always preferable to have computational
complexity reported in terms of number of encryptions. We actually show in
this paper that the best complexity of these attacks are equivalent to n

2r × 2rs

encryptions (r denotes the number of rounds used in the encryption), as will be
discussed later in this paper. In [BBDV20], the authors then presented a speedup
of a factor of 8 over the MITM attack by using the 3-xor problem.

In [Din], the authors showed an ingenious method of finding roots of multiple
polynomial systems over GF (2). The n variables of the equation system are
partitioned into two disjoint sets y = y0, y1, . . . , ym−1 and z = z0, z1, . . . , zp−1
(with n = m + p). It is argued that any random linear combination of the
polynomials in the original equation system, has an isolated solution with high
probability, i.e. if (ŷ, ẑ) is an isolated solution then (ŷ, z′) is not a solution for
all z′ 6= ẑ. The authors then observed that all such isolated solutions could be
recovered bit-by-bit by computing p+1 partial sums for each candidate solution
ŷ ∈ {0, 1}m. The first step is to randomly combine the original equation system
into a system with smaller number of equations whose solutions can be found by
brute force. These solutions are then used to compute partial sums and construct
a candidate solution of the original equation system. This generic method of
solving equations works quite well if the algebraic degree of the system is small
and so it was applied to attack 3, 4 and 5 round LowMC with complete non-
linear layers for some specific block-lengths. However, the method can not be
applied to LowMC instances with partial non-linear layers, since the number of
rounds in such instances are generally much higher, and the degree of the internal
state variables (as a function of the key) doubles every round. [LIM21] reports an
algebraic attack on LowMC. However the authors use the n2.8 estimate (ignoring
constant factors) to solve Gaussian elimination, to report the complexity of their
attack. As such it is unclear if the complexity bounds they report are tight.

1.2 Contribution and Organization of the Paper

In this paper we present new improved attacks on LowMC instances that use the
linearization technique of the LowMC S-box as a starting point. We first provide
a more precise complexity analysis of the linearization attack and of its proof.
Then, we present improved attacks on both a) the 2 and 3-round complete non-
linear layer instance, and b) the 0.8 · bns c and bns c-round LowMC instance with
partial non-linear layers. We show that the attack complexity can be reduced if
we perform the MITM in two separate stages: the first stage reduces the set of
possible key candidates of a fraction of key bits to smaller set. A second MITM
stage is then performed on this reduced candidate set and the candidates in
the remaining fraction of the key bits. The paper shows how to efficiently for-
mulate equations to perform the 2 MITM stages, and proves conclusively that
the correct key can be found with certainty. It also shows that the combined
computational complexity of the 2 attack stages is significantly lower than the
complexities reported in [BBDV20]. Table 1 tabulates in detail the complexities

3

b b b b b b

⊕ ⊕ ⊕ ⊕ ⊕b b b⊕ ⊕

S S S S

Affine Layer

Roundkey

Blocksize=n

#S-boxes=s

Fig. 1: LowMC Round Function

of the attacks reported in this paper and compares with the corresponding com-
plexities reported in [BBDV20]. Note that in this table, we have recalculated all
computational complexities in terms of number of encryptions.

The rest of the paper is organized in the following manner. In Section 2, we
begin by presenting a mathematical description of LowMC and some information
about the LowMC cryptanalysis challenge. In Section 3, we list out some of the
issues with the computational complexity reported in [BBDV20] and explain how
we have tried to compute all complexities in terms of number of encryptions. In
Section 4, we present our attack on the 2-round and 3-round LowMC instances
with complete non-linear layers. In Section 5, we present our attack on the
0.8 · bns c and bns c-LowMC instance with partial non-linear layers. In Section 6,
we present some experimental results on reduced LowMC instances with smaller
blocksizes. This is done to prove that the attacks presented in Section 4, 5 can
indeed be applied to full-size LowMC instances. Section 7 concludes the paper.

2 Preliminaries

The LowMC round function is a typical SPN construction given in Fig. 1. It
consists of an n-bit block undergoing either a partial or a complete substitution
layer consisting of s 3-bit S-boxes where 3s ≤ n. It is followed by an affine layer
which consists of multiplication of the block with an invertible n × n matrix
over F2 and addition with an n-bit round constant. Finally the block is xored
with an n-bit round key. If the master secret key K is of size n-bits (which
is true for all the instances in the LowMC challenge), then each round key is
obtained by multiplication of K with an n×n invertible matrix. As in most SPN
constructions, a plaintext is first xored with a whitening key which for LowMC
is simply the secret key K, and the round functions are executed r times to
give the ciphertext. From the point of view of cryptanalysis, we note that the
design is completely known to the attacker, i.e. all the matrices and constants

4

used in the round function and key update are known. Note that in general
instantiations of LowMC, the key size and block size are not the same. The
whitening key and all the round keys are extracted by multiplying the master
key with full rank matrices over GF (2). However for all the instances of LowMC
used in the LowMC challenge the block size and key size are the same. This being
so, the lengths of the master key, whitening key and all the subsequent round

Table 1: Summary of results. Note for the complexity is given in #Encryptions
Instance n s r Type of Attack Recalculated Reference

Complexity

Full S-box layer 129 43 2 Linearization 291 [BBDV20]∗

192 64 2134

255 85 2176

Partial S-box layer 128 1 0.8× bn
s
c Linearization 2102 [BBDV20]∗

192 1 2153

256 1 2204

Partial S-box layer 128 10 0.8× bn
s
c Linearization 2103 [BBDV20]∗

192 10 2163

256 10 2203

Full S-box layer 129 43 2 Equation solving 2102 [Din]∗∗

3 2108

4 2113

Full S-box layer 192 64 2 Equation solving 2153 [Din]∗∗

3 2162

4 2170

5 2175

Full S-box layer 255 85 2 Equation solving 2204 [Din]∗∗

3 2216

4 2226

5 2232

Full S-box layer 129 43 2 2-Stage MITM 281 Sec 4
192 64 2122

255 85 2164

Full S-box layer 129 43 3 2-Stage MITM 2123 Sec 4
192 64 2186

255 85 2248

Partial S-box layer 128 1 0.8× bn
s
c 2-Stage MITM 2101 Sec 5

192 1 2151

256 1 2202

Partial S-box layer 128 1 bn
s
c 2-Stage MITM 2125 Sec 5

192 1 2189

256 1 2253

Partial S-box layer 128 10 0.8× bn
s
c 2-Stage MITM 291 Sec 5

192 10 2149

256 10 2188

Partial S-box layer 128 10 bn
s
c 2-Stage MITM 2111 Sec 5

192 10 2179

256 10 2238

*Complexities recalculated and do not always match those reported in [BBDV20]
**[Din] reports complexities in bit operations. We recalculate them in number of encryptions.

5

keys are the same. Effectively, this makes all these keys related to each other by
multiplication with an invertible matrix over GF (2). Thus all round keys can be
extracted by multiplying the whitening key with an invertible matrix. So for all
practical purposes used in this paper, the whitening key can also be seen as the
master secret key. This is true since given any candidate whitening key, all round
keys can be generated from it, and thus given any known plaintext-ciphertext
pair, it is possible to verify if that particular candidate key has been used to
generate the corresponding plaintext/ciphertext pair. As such we use the terms
master key/whitening key interchangeably.

The LowMC challenge specifies 9 challenge scenarios for key recovery given
only 1 plaintext-ciphertext pair, i.e. the data complexity d = 1.

• 1. [n = 128, s = 1] 2. [n = 128, s = 10] 3. [n = 129, s = 43]
• 4. [n = 192, s = 1] 5. [n = 192, s = 10] 6. [n = 192, s = 64]
• 7. [n = 256, s = 1] 8. [n = 256, s = 10] 9. [n = 255, s = 85]

The number of rounds r for instances with the full S-box layer is either 2, 3,
or 4 and for instances with a partial S-box layer can vary between 0.8×bns c, bns c
and 1.2 × bns c. When these are not integers, the number of rounds is taken as
the next higher integer. The key length k for all instances is n bits. PICNIC v3.0
[Zav] incidentally uses LowMC instances with the parameter sets [n, s, r] given
by [128, 10, 20], [192, 10, 30], [256, 10, 38] (partial S-box layer) and [129, 43, 4],
[192, 64, 4], [255, 85, 4] (complete S-box layer) for use under different security
levels.

3 Linearization Attack

The starting point of the attack in [BBDV20] was the following lemma that helps
linearize the LowMC S-box by guessing only one balanced quadratic expression
on its input bits.

Lemma 1. [BBDV20] Consider the LowMC S-box S defined over the input bits
x0, x1, x2. If we guess the value of any 3-variable quadratic Boolean function f
which is balanced over the input bits of the S-box, then it is possible to re-write
the S-box as affine function of its input bits.

The authors used the majority function f = x0x1 +x1x2 +x0x2 for this purpose
which is both quadratic and balanced. This is true since the the LowMC S-box
output bits can be written as:

s0 = x0 + x1 · x2 = f · (x1 + x2 + 1) + x0,

s1 = x0 + x1 + x0 · x2 = f · (x0 + x2 + 1) + x0 + x1,

s2 = x0 + x1 + x2 + x0 · x1 = f · (x0 + x1 + 1) + x0 + x1 + x2.

6

The same is true for the inverse LowMC S-box (which is incidentally affine
equivalent to the forward S-box):

t0 = x0 + x1 + x1 · x2 = f · (x1 + x2 + 1) + x0 + x1,

t1 = x1 + x0 · x2 = f · (x0 + x2 + 1) + x1,

t2 = x0 + x1 + x2 + x0 · x1 = f · (x0 + x1 + 1) + x0 + x1 + x2.

Using the above fact, the first attack proposed in [BBDV20] used only the lin-
earization technique to obtain affine equations relating plaintext and ciphertext.
The idea is as follows. The values of the majority function at the input of all the
S-boxes in the encryption circuit were guessed: this made expression relating the
plaintext and ciphertext completely linear in the key variables, i.e. of the form:

A · [k0, k1, . . . , kn−1]T = const, (1)

where A is an n × n matrix over GF (2). Thereafter the key could be found
by using Gaussian elimination. A wrong key found by this method could be
discarded by recalculating the encryption and checking if the given plaintext
mapped to the given ciphertext.

The above method would work if the total number of S-boxes in the encryp-
tion circuit is strictly less than the size of the key in bits. This happens for a)
2-round LowMC with complete non-linear layers and b) 0.8×bns c-round LowMC
with partial non-linear layers. However the authors pointed out 2 issues in this
approach:

1. If the total number of S-boxes in the encryption circuit is t, then the al-
gorithm requires in the worst case requires at least 2t computations of the
encryption function (for the verification of each computed candidate key). It
additionally requires 2t Gaussian elimination calculations. For large block-
sizes, the authors claimed this could prove to be a significant bottleneck.

2. For any guess of the majority values, the matrix A computed above may not
necessarily be invertible. If the dimension of the kernel of the matrix A is
dA, then we can see that O(2dA) keys would satisfy any equation of the form
A ·K = const. Thus the verification would require running the verification
for 2dA candidate keys.

The authors could not find a closed form for the value of dA and so could not
assign a tight bound on the computational complexity incurred in this approach.
However we find that some of these issues can be resolved to get a closed form
expression of the complexity of the linearization algorithm. First of all, the ex-
pected number of solutions for the system A · [k0, k1, . . . , kn−1]T = const is 1
if the system is random. If const lies in the image of the linear transformation
defined by A then the system has 2dA solutions, and it has 0 solutions otherwise.
Now the probability that const lies in the image of A is exactly 2−dA and so the
average number of solutions by Bayes theorem is 2dA · 2−dA + (1− 2−dA) · 0 = 1,
and testing this solution costs us one encryption.

7

Note that multiplying an n×n matrix with an n-bit column vector requires n2

bit operations. Every LowMC round therefore requires at least 2n2 bit operations
(n2 for computing the affine layer and another n2 for generating the round key).
Assuming calculation of the S-box layer can be done in linear time using a lookup
table and also since key xor with state also takes linear time, the sum total of
all the other bit operations in the round are linear in n. Suppressing these, the
total bit operations required in performing a LowMC encryption is around 2rn2.
Solving a system of linear equations by Gaussian elimination (GE) costs around

n3 bit operations which is equivalent to n3

2rn2 = n
2r encryptions.

Also note the computational complexity required to formulate the linear sys-
tem A · [k0, k1, . . . , kn−1]T = const. We argue that this is equivalent to n encryp-
tions. After guessing the majority bits, the system becomes completely linear.
Therefore finding the i-th column of A and the i-th bit of const is equivalent
to performing one encryption with the basis key vector [0, 0, . . . , ki, . . . , 0, 0].
Hence the result follows. Therefore the total computational complexity required
to perform the attack using only linearization in terms of number of encryptions
is

2rs (Guessing majority bits)× [n (Formulating the linear system)+
n

2r
(Solving the linear system)+

1 (Testing one solution on average)].

We can simplify this to n · 2rs encryptions. Also note that 2rs is the worst case
complexity for guessing rs bits. The average case complexity is 2rs−1. How-
ever since we want to compare this complexity to the complexity of exhaustive
search 2n which is also a worst case complexity we use 2rs for all our complexity
estimations.

3.1 Improving complexity using Gray-Code based approach

The above complexity can be significantly improved if one were to make the
majority guesses in a Gray-code like manner. Recall that the encoding is defined
as follows: Graycode(i) = i ⊕ (i � 1). Note that hamming difference between
Graycode(i) and Graycode(i + 1) is always 1 for all values of i. The idea is
instead of ordering the majority guesses in lexicographic order, we use the order
defined by the Gray-code, i.e. in the i-th step the majority guess sequence is the
binary string defined by the bits of Graycode(i). When this is done the matrix A
defined above, changes very little from iteration i to i+ 1. Thus having already
constructed A in the i-th iteration, the corresponding construction in the i+ 1-
th iteration can be done much faster and so the cost of formulating the linear
system of equations defined by Eqn (1) can be amortized over all the majority
guesses.

Let us state the algorithm formally. Let M = m0,m1, . . . ,ms−1, ms,ms+1,
. . . , m2s−1, . . . ,m(r−1)s,m(r−1)s+1, . . . ,mrs−1 be the rs majority guesses for the
s number of S-boxes in each of the r rounds. Let Mi denote the value of the

8

string M at the i-th iteration which we want to be equal to Graycode(i). Let the
linearized system of equations at the i-th iteration be denoted as Ai · k = ci. We
want to determine how Ai+1, ci+1 relate with respect to Ai, ci. Let x→ Tx⊕v be
the linear map from {0, 1}n → {0, 1}n that is obtained as a result of linearizing
the S-boxes in any single round with the majority value string Str (note that
T is an n × n matrix and v is a n-element vector). Let x → T ′x + v′ be the
corresponding map when the majority string is Str ⊕ et (here et denotes the
t-th unit vector of length s and 0 ≤ t < s). Then we define ∆t = T ⊕ T ′ and
λt = v⊕v′, so that ∆tx+λt denotes the change of linear map when the majority
guess changes at the t-th S-box.

Let La denote the n × n matrix used in the linear layer in the a-th round
(with 1 ≤ a ≤ r). Also, let Graycode(i)⊕ Graycode(i + 1) = ej for some j (by
slight abuse of notation ej here denotes the j-th unit vector of length rs). If
j < s, then it can be deduced that Ai ⊕Ai+1 = (

∏r
a=1 La) ·∆j := Bj (say) and

ci ⊕ ci+1 = (
∏r
a=1 La) · λj := bj . If j ∈ [(u− 1)s, us− 1], which means that the

change of majority guess occurs in the u-th round, then denote j′ = j− (u−1)s.
Bj is now defined as Ai⊕Ai+1 = (

∏r
a=u La) ·∆j′ and bj = (

∏r
a=u La) ·λj′ . Note

that it is thus possible to precompute for all j ∈ [0, rs − 1] the matrix-vector
pair (Bj , bj) before the linearization step begins. Thus the linearization attack
can be restated as follows:

1. For all j ∈ [0, rs− 1] precompute the matrix-vector pair (Bj , bj).
2. Compute A0, c0 and try to solve the system A0 · k = c0 using GE.
3. For i = 1→ 2n − 1 do

– The majority guess is Mi = Graycode(i).
– Let Graycode(i)⊕ Graycode(i− 1) = ej .
– Calculate Ai = Ai−1 ⊕Bj and ci = ci−1 ⊕ bj .
– Try to solve the system Ai · k = ci using GE.

Note that since none of the Bj ’s are sparse matrices, we can not devise a quicker
method of doing GE on Ai from the knowledge of steps involved in the GE
of Ai−1. The additional complexity of constructing Ai, ci at each step is given
by a matrix and vector addition and so equal to n2 + n bit operations which

roughly corresponds to n2+n
2rn2 ≈ 1

2r encryption operations. Thus if P denotes the
cost involved in pre-computation (which is at most a polynomial in rs) then
the total complexity of the method can be written as P + 2rs · (n2r + 1 + 1

2r) ≈
n
2r · 2rs encryptions which gives us an improvement of a factor of 2r over the
naive linearization method of the previous subsection. We have recalculated the
complexities in Table 1 using this expression.

4 Attacking instances with complete S-box Layers

4.1 MITM attack on 2-round LowMC in [BBDV20]

Before we present our attack, let us summarize the attack in [BBDV20] for
better understanding of the process. The attack is summarized in Fig. 2. The

9

b b bb b b

⊕ ⊕ ⊕ ⊕ ⊕b b b⊕ ⊕

S S S S

Affine Layer

RK2

⊕ ⊕ ⊕ ⊕ ⊕b b bb b bb b b

PT1 PT2

K1 K2

fi(K1) + gi(K2) + ci

b b bb b bS S S SGuess Majority

Affine Layer

⊕ ⊕ ⊕ ⊕ ⊕b b b⊕ ⊕
RK1

Ciphertext

Ai(K1) + Bi(K2) + di

LIST1

LIST2

fi(K1) + Ai(K1) + ci

gi(K2) + Bi(K2) + di

b

b

b

b

b

b

b

b

η1, η2, . . . , ηs

x

Fig. 2: Meet in the Middle attack in [BBDV20]

idea is as follows: let us denote K = [k0, k1, . . . , kn−1] to be the whitening key
or the master key. Let us split the key into two parts K1 = [k0, . . . , kt−1]T and
K2 = [kt, . . . , kn−1]T , each of around t ≈ n

2 bits. We denote by R1, R2 the first
and second round functions i.e. R1(pt + K,RK1) = x and R2(x,RK2) = ct,
where x denotes the n-bit input to the second round and RK1, RK2 denotes the
first, second round keys, respectively, which are of course linear functions of the
whitening key K.

The idea is to formulate equations for the bits of x from both the plaintext
and ciphertext side. Let us begin from the plaintext in the forward direction.
Note that K1 and K2 have to be chosen so that the bits of K1 and K2 are never
multiplied in the first round function. For example if the number of S-boxes in
each round s = n/3 is odd, then t can be chosen to be 3(s−1)/2 (else t = 3s/2).
This way, K1 and K2 both contain close to n/2 key bits: the bits of K1 after
whitening are input to the first (s − 1)/2 S-boxes and K2 to the remaining
(s + 1)/2 S-boxes if s is odd (else both are input to s/2 S-boxes each). The
only source of non-linearity in the first round are the S-boxes, and each S-box
either gets the bits of K1 or K2 as inputs and so K1 and K2 are not mixed in a
multiplicative sense in this round. This being the case, after the affine layer and
addition of RK1, each bit xi can be written as fi(K1) + gi(K2) + ci where each
fi, gi are at most quadratic functions over K1,K2 and ci is a single bit constant.

10

Now let us consider the expression for x from the ciphertext side in the back-
ward direction. To do this we first perform the inverse affine function operation
on the vector ct⊕RK2 (where RK2 is expressed in terms of K1 and K2). There-
after we guess the s majority bits η1, . . . , ηs at the input of the second round
inverse S-boxes to linearize R2. After this, each bit of x can be written as an
affine function of the key and the ciphertext. In fact each xi can be further
written as xi = Ai(K1) + Bi(K2) + di, ∀ i ∈ [0, n − 1], where each Ai, Bi are
linear functions over K1,K2 and di is a single bit constant. Given the equality
xi = fi(K1) + gi(K2) + ci = Ai(K1) +Bi(K2) + di, we can rearrange the terms
to get:

fi(K1) +Ai(K1) + ci = gi(K2) +Bi(K2) + di, ∀ i ∈ [0, n− 1].

Thereafter the attack is straightforward: first the algebraic expressions of
fi, gi and ci for all i ∈ [0, n− 1] are calculated. Then for each of the 2s guesses
of the second round majority values:

1. A hash table LIST1 indexed by the n-bit vector [fi(K1)⊕Ai(K1)⊕ci], ∀ i ∈
[0, n−1] is created (2t evaluations). Note that each evaluation is done for only
t of the n key variables and costs roughly t

n of a round computation. Hence
the computational complexity incurred in this step is t

4n · 2t encryptions.
Let us argue this point more closely. Note that in the above expression the
fi(K1) terms are always constant and does not change with every new guess
of majority values. Thus we do not have to re-calculate it every new majority
guess, and so this expression (∀ i ∈ [0, n − 1]) can be calculated once and
stored in a table. The part that varies with every new majority guess is
Ai(K1)⊕ ci: note that calculating the n bit-values Ai(K1) is equivalent to a
matrix-vector multiplication between a n×t matrix and the t-element vector
K1 and thus takes around nt bit operations. Adding ci and the precomputed
fi(K1) requires 2n more bit operations and so a total of nt+2n bit operations
are required at every step. Since 2rn2 = 4n2 bit operations are required
in a single 2-round LowMC encryption, this corresponds to nt+2n

4n2 ≈ t
4n

encryptions, and so the result follows.

2. A hash table LIST2 indexed by the n-bit vector [gi(K2)⊕Bi(K2)⊕di], ∀ i ∈
[0, n − 1] is created (2n−t evaluations). By following the previous logic this
is computationally equivalent to n−t

4n · 2n−t encryptions.

As a final remark, note that the complexity required to formulate the expressions
xi = Ai(K1)+Bi(K2)+di and hence fi(K1)+Ai(K1)+ci and gi(K2)+Bi(K2)+di
is around O(n) encryptions as explained in the previous section. However, this
only appears as an additive term along with t

4n · 2t and n−t
4n · 2n−t and since it

is much less as compared to both these terms, it can be ignored for simplicity.
Although, it was not mentioned in [BBDV20], a Gray-code like approach as
outlined in Sec 3.1 may be adopted here too, but since the cost of formulating
the linear system is not the dominant term in the final complexity estimate, it
does not reduce the computational cost significantly.

11

A collision in the 2 lists gives us a candidate key and there are on average
2t · 2n−t · 2−n = 1 collisions in every MITM stage. Then a check is performed to
see if the majority bits calculated for this candidate key are consistent with the
initial guess η1, . . . , ηs. If yes, the attack terminates. The total complexity for
the steps inside the iterations is given as T = 2s ·(t

4n ·2t+ n−t
4n ·2n−t) encryptions.

The cost for precomputing the values fi(K1) and gi(K2) over all the points
in their input spaces can be done by using Möbius transforms over the respective
algebraic forms. Since any t variable Boolean function can be evaluated in t ·2t−1
bit operations using this method, the total complexity of evaluating them is

around n · (t2 · 2t + (n−t)
2 · 2n−t) bit-operations. This is considerably lower than

the complexity T of the MITM part. Specifically, for n = 129, we can take t = 63
and n− t = 66. The total complexity of the attack is around 243 · (260 + 263) ≈
243+63 = 2106 encryptions.

4.2 2-stage MITM attack on 2-rounds with full S-box layer

After guessing the majority bits of the second round and linearizing it, we have
already seen that the algebraic relation between the plaintext and ciphertext can
be written as

fi(K1) +Ai(K1) + ci = gi(K2) +Bi(K2) + di, ∀ i ∈ [0, n− 1]. (2)

Note that the functions Ai, Bi are linear and fi, gi are quadratic. It can be seen
that for Equation (2) to hold we need not split K in such a way that K1 and
K2 have approximately n/2 bits. We can, for example, also split K so that K1

has around n/3 and K2 has around 2n/3 bits. The only condition that must be
satisfied is that the sizes of K1 and K2 are chosen so that they are never mixed
multiplicatively in the first round. It is easy to see that if we choose t = |K1| and
n− t = |K2| to be multiples of 3 then this condition is automatically satisfied.

Note that, fi, gi can be expressed as affine functions in an extension of the
input of double size. This comes from the structure of the Sbox: S(x0, x1, x2) is an
affine function on (x0, x1, x2, x0x1, x1x2, x2x0). Let f i, gi be the affine functions
associated with fi, gi. Therefore the above set of equations can be written as

f i(K1) +Ai(K1) + ci + di = gi(K2) +Bi(K2), ∀ i ∈ [0, n− 1], (3)

where if K1 = [k0, k1, k2, . . . , k3w−3, k3w−2, k3w−1], we define

K1 = [k0, k1, k2, k0k1, k1k2, k2k0, , k3w−3, k3w−2, k3w−1,

k3w−3k3w−2, k3w−2k3w−1, k3w−1k3w−3].

Since K1 only has the first t = 3w bits of the master key and so K1 is of
size 6w. Since Fi = f i + Ai is an affine function over K1, the map φ : K1 →
[F0, F1, . . . , Fn−1] can be seen as a linear code of length n and dimension 6w.
Let w be such that K1 contains around n/3 key bits i.e. w ≈ n/9 and hence
K2 contains the remaining 2n/3 key bits. Since φ is seen as a linear code, let

12

G be the corresponding generator matrix (of size n × 6w ≈ n × 2n/3), which
can be efficiently constructed from the algebraic forms of the functions Fi. Let
H be the parity check matrix of the code (of size (n − 6w) × n ≈ n/3 × n).
The parity check matrix is essentially obtained from the generator matrix by
employing one Gaussian elimination. Define Con to be the vector [c0 + d0, c1 +
d1, . . . cn−1 + dn−1]T . Note that the left side of Equation (3), when written in
matrix notation for all i = 0, 1, . . . , n− 1 is essentially φ(K1) + Con. Therefore
we have H · [φ(K1) +Con] = H · [GK1 +Con] = H ·Con = e (say). This follows
from the fact that since G and H are the generator and parity check matrices
of a linear code, we must have H ·G = 0.

We can split K2 into two halves K21 and K22 such that both halves contain
approximately n/3 key bits each. Let’s say |K21|= 3u and |K22|= n−3w−3u (our
strategy would be to have 3u ≈ n−3w−3u so that the halves are of equal size).
We can rewrite gi(K2) +Bi(K2) as g1i (K21) +B1

i (K21) + g2i (K22) +B2
i (K22) for

all i ∈ [0, n−1], where gji are quadratic and Bji are linear for j = 1, 2. Again this
is possible if we take |K21| and |K22| to be multiples of 3, so that the bits of K21

and K22 after xor with the plaintext are input to different S-boxes. Due to the
structure of LowMC, the quadratic terms from adjacent S-boxes do not combine
multiplicatively after one round and so the separation into the 2 expressions is
possible. Define the n-bit vectors:

M1 = [g10(K21) +B1
0(K21), . . . , g1n−1(K21) +B1

n−1(K21)]T , and

M2 = [g20(K22) +B2
0(K22), . . . , g2n−1(K22) +B2

n−1(K22)]T .

Note that if Eqn (3) for i = 0, 1, . . . , n − 1, can be written together as a vector
equation. The right hand side of the vector equation is essentially M1 +M2. We
have already seen that the left hand side of the vector equation when multiplied
by H results in the vector H · Con = e. Multiplying the right side of the vector
equation by H, we get the matrix equation:

H · (M1 +M2) = e, ⇒ H ·M1 = H ·M2 + e.

Pre-computation: In this phase we try and compute some expressions that
remain constant over different majority guesses. We compute the following vec-
torial functions over all points over its input space: (a) fi(K1), ∀i ∈ [0, n − 1]
over input space of K1 i.e {0, 1}3w, (b) g1i (K21), ∀i ∈ [0, n− 1] over input space
of K21 i.e {0, 1}3u and (c) g2i (K22), ∀i ∈ [0, n − 1] over input space of K22 i.e
{0, 1}n−3u−3w. Using Möbius transform the number of bit-operations required
are

n ·
(

3w

2
· 23w +

3u

2
· 23u +

n− 3u− 3w

2
· 2n−3u−3w

)
.

This follows since any t-variable Boolean polynomial can be evaluated over all
its input space using Möbius transform using t · 2t−1 bit operations.

1st MITM stage: Note that M1 and M2 only contain expressions on the key
bits in the sets K21 and K22 respectively. Thus we can conduct a first MITM

13

stage in which we create 2 lists L1, L2. L1 contains the (n − 6w), n-bit vector
pairs H ·M1, M1 for all 23u values of K21. And similarly the list L2 contains the
(n − 6w), n-bit vector pairs H ·M2 + e,M2 for all 2n−3w−3u values of K22. We
look for a collision in the n− 6w co-ordinates of these lists. We are expected to
get around 23u+(n−3w−3u)−(n−6w) ≈ 23w collisions. Thus in the process we get
23w key values for the key bit set K2 = (K21,K22). For computing each entry in
the list L1 we do the following:

1. Compute the vectorial linear functions B1
0 , B

1
1 , . . . , B

1
n−1 over a given point

k in K21. Each such computation takes |K21|·n = 3un bit operations.
2. Add to the corresponding precomputed vector g1i (k), ∀i ∈ [0, n − 1]. This

requires n bit operations.
3. Multiply by H. Each such computation takes (n− 6w) · n bit operations.

This is computationally equivalent to 3un+n+(n−6w)n
2rn2 ≈ 3u+n−6w

4n of an encryp-
tion for r = 2. A similar argument holds for L2. Hence the total computational
cost incurred in this step is 3u+n−6w

4n · 23u + 2n−9w−3u
4n · 2n−3w−3u encryptions.

2nd MITM: Let us now turn to Eqn (2). The left side of this equation is defined
over approximately the 3w-bit set K1 which can have 23w values in total. And we
have just reduced K2 to a set of 23w values. Thus the next MITM is making two
more lists L3, L4 of size 23w each in the following way. L3 contains all 23w n-bit
vectors [fi(K1)⊕Ai(K1)⊕ci⊕di], ∀ i ∈ [0, n−1] enumerated for all the 23w values
of K1. For all the 23w values of K2 that have passed the previous MITM step we
make the list L4 containing the n-bit vector [gi(K2)⊕Bi(K2)], ∀ i ∈ [0, n− 1].
We now look for a collision between L3 and L4. On average we have 23w+3w−n =
26w−n < 1 collisions. This means that the correct key K will necessarily by the
output of one of these MITM steps for the correct guess of majority bits in the
second round. For constructing L3 we need to compute the n linear functions
Ai(K1) over the 3w-bit variable K1 which by the previous logic, requires 3wn
bit operations each and then n bit operations for addition to the precomputed
vector fi(K1). Populating L4 requires computing [gi(K2) ⊕ Bi(K2)] for all the
K2 that have passed the previous MITM step. However we can compute this
vector by simply adding the M1, M2 vectors that have collided in the previous
MITM stage. This stage therefore requires 3wn+n

4n2 · 23w + n
4n2 · 23w ≈ 3w

4n · 23w
encryptions. We are now ready to state the attack formally:

1. Calculate the functional forms of fi, gi, f i, g
1
i , g

2
i and ci for all i ∈ [0, n− 1].

2. Pre-compute fi(K1), g1i (K21), g2i (K22), ∀i ∈ [0, n− 1] over their respective
input spaces.

3. Guess the majority values η1, . . . , ηs at the output of 2nd round S-box layer
as in the previous attack. This step is done 2s times in the worst case (note
s = n/3).
– Compute Ai, Bi, di for all i ∈ [0, n− 1] using the guessed values.
– Compute the functions Fi = f i +Ai for all i ∈ [0, n− 1].
– Using the Fi’s, construct the generator matrix G.
– Using Gaussian elimination, construct the parity check matrix H.

14

– Construct Con = [c0 + d0, c1 + d1, . . . cn−1 + dn−1]T , and e = H · Con.
– For all possible values of K21, create a hash table L1 indexed by the

(n− 6w)-bit vector H ·M1.
– For all possible values of K22, create a hash table L2 indexed by the

(n− 6w)-bit vector H ·M2 + e.
– Find all collisions between L1 and L2. Store all values of K21,K22 ex-

tracted from the collision in a list L.
– For all possible values of K1, create a hash table L3 indexed by the n-bit

vector [fi(K1)⊕Ai(K1)⊕ ci ⊕ di], ∀ i ∈ [0, n− 1].
– For all values of K2 ∈ L, create a hash table L4 indexed by the n-bit

vector [gi(K2)⊕Bi(K2)], ∀ i ∈ [0, n− 1].
– When a collision is found for K1 and K2 check if the majority bits

are consistent with the guess of the key. If yes, this key is in fact the
encryption key. Otherwise try another guess of η1, . . . , ηs.

Complexity Estimation: We first consider the time complexity. For each guess
of 2s = 2n/3 majority values, we have to perform a Gaussian elimination and
2 MITM steps. The cost of Gaussian elimination and the linear terms required
to formulate Ai, Bi, di and pre-computation may be ignored in comparison with
2n/3. Hence the total time complexity for this attack is around

2n/3 ·
(

3u+ n− 6w

4n
· 23u +

2n− 9w − 3u

4n
· 2n−3w−3u +

3w

4n
· 23w

)
. (4)

For w = u = n/9, the above evaluates to 2n/3 · ((1
6 + 1

6 + 1
12) ·2n/3) = 5

12 ·22n/3 ≈
22n/3−1.26 encryptions.
Memory Complexity: In the first MITM stage, we created 2 lists L1, L2 which
contain (n−6w), n-bit vector pairs for 23u possible values of K21 and (n−6w), n-
bit vector pairs for 2n−3w−3u possible values of K22, respectively. Note that in
practice, 2 different lists are not necessary. We can instead insert each new
vector of L1 and L2 into a single hash table. The memory complexity here is
(2n−6w)·(23u+2n−3w−3u) bits. In the second MITM stage, we create 2 more lists
L3, L4, both containing 23w n-bit vectors. By similar logic, memory complexity
here is thereby 2n · 23w bits. The pre-computation part generates n-bit vectors
over the input spaces of K1,K21,K22. Hence the memory complexity here is
n · (23w + 23u + 2n−3u−3w) bits. The total memory complexity for this attack is
around

(2n− 6w) · (23u + 2n−3w−3u) + 2n · 23w + n · (23w + 23u + 2n−3u−3w) bits. (5)

If we look at concrete parameters, for n = 129 and s = 43, we can choose the
parameters in the following manner: we can choose w = u = 14, which makes
|K1|= 42 and |K2|= 87 and hence |K21|= 42 and |K22|= 45. The parity check
matrix H is of size (n − 6w) × n = 45 × 129, which makes H · M1 and H ·
M2 +e both 45-bit vectors. After the first MITM stage the number of remaining
candidates for K2 is ≈ 2|K21|+|K22|−45 = 242. The complexity of the first MITM

15

stage is thus 1
6 · (245 + 242) ≈ 1

6 · 245 ≈ 242.4 encryptions. The second MITM
stage requires 1

12 · 242 = 238.4 encryptions. Hence the total attack complexity is
2s ·(242.4 +238.4) ≈ 285 encryptions and around 253 bits of memory. This is lower
than the linearization attack by a factor of 26 for this LowMC instance.

4.3 Extending attack to 3-rounds

The attack can be extended to 3-round LowMC in which we keep the basic
character of the algorithm and run it by guessing the majority values of the last
2 rounds and linearizing both of them simultaneously. Hence a total of 22s values
would need to be guessed in stead of 2s. All other steps remain the same. Thus
the computational complexity will be given by:

22n/3 ·
(

3u+ n− 6w

6n
· 23u +

2n− 9w − 3u

6n
· 2n−3w−3u +

3w

6n
· 23w

)
.

This is so since encryption is now given by 2rn2 = 6n2 bit operations. The
memory complexity is essentially the same as in the 2-round attack. For w =
u = n/9, the above evaluate of computational complexity is 22n/3 · ((1

9 + 1
9 + 1

18) ·
2n/3) ≈ 5

18 · 2n encryptions, which is better than exhaustive search by a factor
equal to approximately 2 bits. For n = 129 and s = 43, using the values w = 14,
|K1|= 42, |K21|= 42 and |K22|= 45, we get 1

9 · (245 + 242) ≈ 241.8 encryptions
for the first MITM. The second MITM requires 1

18 ·242 ≈ 237.8 encryptions. The
total complexity is therefore 22s · (241.8 + 237.8) ≈ 2128 encryptions.

4.4 Speedup using Gray-Codes

There are 3 places in the above process where a speed-up may be applied using
a Gray-code like approach.

1. By ordering the majority guesses in a Gray-code like manner as in Sec 3.1
so that the affine expressions formed after linearizing the S-boxes can be
generated more efficiently. But we have already seen that this does not result
in significant speed-up when employed along with MITM.

2. Using a Gray-code like approach to do the pre-computations.
3. Using a Gray-code like approach to generate the values of the expressions

that are inserted in the tables in each of the MITM stages. We will see how
optimizing this stage results in significant speed-up.

There are several methods of evaluating an n-variable Boolean function over
all the 2n points of its input space, given its algebraic expression. One such
method, as we have already seen is the Möbius transform which evaluates the
function in-place by performing around n · 2n−1 bit operations. However the
method we will use for this method is the Gray-code based approach suggested
by [BCC+10] which finds all roots of a polynomial over GF(2) by evaluating
it over all points of its input space by traversing the space in a Gray-code like
manner. We start with the following theorem from [BCC+10].

16

Theorem 1. [BCC+10] All the zeroes of a single multivariate polynomial f in
n variables of degree d can be found in essentially d · 2n bit operations (plus a
negligible overhead), using nd−1 bits of read-write memory, and accessing nd bits
of constants, after an initialization phase of negligible complexity O(n2d).

We present a top-level overview of the approach used in this paper. Consider
the derivative δf

δi : x → f(x + ei) ⊕ f(x). Then for any vector x, we have

f(x + ei) = f(x) ⊕ δf
δi (x). If the algebraic degree of f is d then δf

δi is of degree

d − 1. Thus the idea is to calculate δf
δi recursively for lower degrees till at the

lowest level of recursion δf
δi is a constant. Since we will only use this method

to evaluate linear or quadratic functions, we will use the method outlined in
[BCC+10, pg 209, Fig. (b)], that specifically caters to the case when f is of
degree less than or equal to 2. When we use this approach to optimize the pre-
computation part, we can evaluate each t-variable quadratic Boolean function
in 2t+1 bit-operations. As a result the pre-computation cost can be brought
down to 2n ·

(
23w + 23u + 2n−3u−3w

)
bit-operations. However, note that the pre-

computation is not the most dominant term in the total computational cost, and
so this gives only a slight improvement.

We now see how we can improve the complexity of the MITM stages by using
this approach. Note that we only evaluate linear functions inside the iterations
for each majority guess. Since only 2t bit-operations are required to evaluate
any linear function using the Gray-code approach we can accelerate this part
considerably. Note that in L1 we need to store both H · M1 and M1. To do
this, we begin by computing the quadratic expressions each one of the n bits
M1 and then each of the (n− 6w)-bits given by H ·M1. We use the Gray-code
approach of [BCC+10], to evaluate these functions over all the points of their
input domains. The number of bit operations required are therefore n · 23u+1 +
(n− 6w) · 23u+1 ≈ 2n−6w

2rn2 · 23u+1 encryptions. Similarly the list L2 would require
around 2n−6w

2rn2 · 2n−3u−3w+1 encryptions.
The lists L3, L4 are simpler to construct. For L3 we need to compute the

n linear functions Ai(K1) which requires n · 23w bit operations each and then
add to the precomputed vector fi(K1). Populating L4, as before can be done
by simply adding the M1, M2 vectors that have collided in the previous MITM
stage. This stage therefore requires 2n

2rn2 ·23w+ n
2rn2 ·23w ≈ 3n

2rn2 ·23w encryptions.
This reduces the main terms of the computational complexity to

T = 2
(r−1)n

3 ·
(
n− 3w

rn2
· 23u+1 +

n− 3w

rn2
· 2n−3u−3w+1 +

3n

2rn2
· 23w

)
encryptions

For n = 129, r = 2 and u = w = 14, we have T = 280.7 encryptions. For
n = 129, r = 3 and u = w = 14, we have T = 2123.2 encryptions. The memory
complexity of this attack is the same as the attack in the previous sub-section
plus the additional cost for storing tables required for fast Gray-code based
evaluations. Using Theorem 1, this additional memory is (3u)2 · (2n−6w)+(n−
3u − 3w)2 · (2n − 6w) + (3w) · n bits which is negligible when compared to the
space occupied by the lists.

17

5 2-Stage MITM attack on partial S-box layers

b

b
b

S-Box

Affine Layer

S-Box

S-Box

Affine Layer

Affine Layer

b

b
b

S-Box

Affine Layer

S-Box

S-Box

Affine Layer

Affine Layer

b

b
b

S-Box

Affine Layer

S-Box

S-Box

Affine Layer

Affine Layer

b

b
b

S-Box

Affine Layer

S-Box

S-Box

Affine Layer

Affine Layer

r1 rnds

A B C D

⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕

3s < n

Fig. 3: Transforming the round function in the first r1 rounds. From A→ B, the
key material not added to bits input to the S-box in round 1 (shown in orange
background) are carried to the next round, through the affine layer and merged
with the round key in round 2. B → C → D do the same from the second round
onwards. Figure taken from [BBDV20]

In order to perform a MITM on the partial S-box layer instances of LowMC,
we use a trick used in both [BBDV20,RST18] to transform some of the initial and
final rounds so that the total number of different key bits involved in these rounds
is 3s per round. The transformations are shown in Figs. 3, 4 and are similar to
the ones used in [RST18]. In fact the transform used in the backward direction
(see Fig. 4) is exactly same as the one used in [RST18, Fig. 1]. The idea is that
the affine layer and key addition are interchangeable. Since L is a linear function,
we have L(x) + K = L(x + L−1(K)) and similarly L(x + K) = L(x) + L(K).
Hence the key addition can be moved before or after the affine layer as required,
by multiplying the round key by the appropriate matrix. Fig. 3 further shows
how to transform the first r1 rounds. To mount this attack let us split the
LowMC into 4 parts as shown in Fig. 5:

1. First a+ b rounds which have been transformed as per Fig. 3.
2. Final c rounds which have been transformed as per Fig. 4.
3. The remaining d = r − a− b− c rounds which lie in between.

Let the set of round key bits in the first a, b and the last c rounds be denoted as

Ka = [κ0, κ1, . . . , κ3sa−1], Kb = [κ3sa, κ3sa+1, . . . , κ3sa+3sb−1], and

Kc = [κn−3sc, κn−3sc+1, . . . , κn−1].

18

S-Box

Affine Layer

S-Box

S-Box

Affine Layer

Affine Layer

S-Box

Affine Layer

S-Box

S-Box

Affine Layer

Affine Layer

b
b
b

S-Box

Affine Layer

S-Box

S-Box

Affine Layer

Affine Layer

b
b
b

S-Box

Affine Layer

S-Box

S-Box

Affine Layer

Affine Layer

r3 rnds

b
b
b

b
b
b

b
b
b

S-Box

Affine Layer

S-Box

S-Box

Affine Layer

Affine Layer

A B C D E

⊕⊕⊕⊕⊕⊕⊕ ⊕⊕⊕⊕⊕⊕⊕ ⊕⊕⊕⊕⊕⊕⊕ ⊕⊕⊕⊕⊕⊕⊕ ⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕

3s < n

Fig. 4: Transforming the round function in the final r3 rounds. A → B flips the
order of the last round Affine layer and round key xor. B → C takes the bits
of the last round key that are not added to S-box outputs (shown in orange
background), and brings them back by 1 round and merges it with the penulti-
mate round key. C → D flips the order of the Affine layer and round key of the
penultimate round, and D → E generalizes the process from this point onwards.
Figure taken from [BBDV20]

Denote by Krem the remaining n− 3s(a+ b+ c) key bits such that Ka,Kb,Kc,
and Krem are linearly independent expressions of the master key and so any key
bit can be expressed as a linear function of them. Note that we implicitly assume
here that n ≥ 3s(a+ b+ c).

Let X = [x0, x1, x2, . . . , xn−1] be the output of the first a rounds, W =
[ω0, ω1, . . . , ωn−1] be the output of the first a+b rounds and Y = [y0, y1, . . . , yn−1]
be the input to the last c rounds as shown in Fig. 5. Observe the middle b and
d = r − a − b − c rounds closely, as seen in Fig. 6. Let us introduce 6b · s new
variables U = [u0, u1, . . . , u3bs−1] and Z = [z0, z1, . . . , z3bs−1] such that they
represent the input and output bits of the b · s S-boxes in the middle b rounds.
Our first aim is to find a linear expression relating the xi’s, yi’s and zi’s and the
key bits. Let D = [D0, D1, . . . , Dn−1] be the output of the first of the b rounds
(see Fig. 6). Then we can write D = Lin1(z0, z1, . . . , z3s−1, x3s, x3s+1, . . . , xn−1),
where Lin1 denotes a set of n affine functions. Similarly, if E = [E0, E1, . . . , En−1]
is the output of the next round we can write E as a set of linear functions
on (z3s, z3s+1, . . . , z6s−1, D3s, D3s+1, . . . , Dn−1) which means that we can write
E = Lin2(z0, z1, . . . , z6s−1, x3s, x3s+1, . . . , xn−1) as a set of linear functions on X
and the first 6s zi’s. Iterating upto all the b rounds, it can be seen that W can be
written as a set of linear functions on the entire Z and x3s, x3s+1, . . . , xn−1. Now
if we guess the majority bits at the inputs of the following d rounds, they become
completely linear. In that case Y itself becomes linear inW andKa,Kb,Kc,Krem

(since the key bits used in these d rounds can be seen as linear expressions in
Ka,Kb,Kc,Krem). Hence we have

Y = Lin(Z, x3s, x3s+1, . . . , xn−1,Ka,Kb,Kc,Krem). (6)

19

PT

S

Guess Majority

Affine Layer

⊕⊕⊕ b b b

S S S

Affine Layer

⊕⊕⊕
S S S

Affine Layer

⊕⊕⊕
S S

a rounds

S

Affine Layer

⊕⊕⊕ b b b

S S S

Affine Layer

⊕⊕⊕
S S S

Affine Layer

⊕⊕⊕
S S

S

Affine Layer

⊕⊕⊕
b b bS S S

Affine Layer

⊕⊕⊕
S S S

Affine Layer

⊕⊕⊕
S S

Vector G

r-a-b-c rounds

⊕⊕ ⊕⊕ ⊕⊕

⊕⊕⊕⊕⊕

CT

Ka=κ0, κ1, . . . , κ3sa−1

Kc=κn−3sc, κn−3sc+1, . . . , κn−1

X

S

Affine Layer

⊕⊕⊕ b b b

S S S

Affine Layer

⊕⊕⊕
S S S

Affine Layer

⊕⊕⊕
S S

Kb=κ3sa, κ3sa+1, . . . , κ3sa+3sb−1

W

b rounds

c rounds

Y

Fig. 5: Splitting LowMC into 4 sections

20

The above equation denotes a system of n affine equations (one for each bit in Y)
in all the n bits of the key. Our aim is to get a reduced set of equations by some-
how eliminating Z,Kb,Krem from this set. Note that the set Λ = {Z,Kb,Krem}
comprises a total of θ = 3sb+3sb+(n−3s(a+b+c)) variables. Consider the sys-
tem of n equations given in Equation (6). Apart from the θ variables the system
has n (for Y) + (n− 3s) (for X) + (3as+ 3cs) (for Ka,Kc) = 2n+ 3(a+ c− 1)s
variables. So the above system can be written in matrix notation as M · v = a,
where v is the set of 2n + 3(a + c − 1)s + θ = (3n + 3sb − 3s) variables, M is
a matrix over GF(2) of size n × (3n + 3sb − 3s), and a is a constant vector.
Rearrange v so that the variables in Λ are the first θ elements of v. Then we use
Gaussian elimination to sweep out at least the first θ columns of M. Then the
last n− θ rows of the matrix would then have the entries in the first θ columns
all equal to 0 and thus these are the linear equations in Ka,Kc, X, Y that we
get from this process. Note we have a total of n− θ = 3sa+ 3sc− 3sb equations
of this form.

First MITM: The equations so obtained can be rearranged and written as
Aff1(Ka, X) = Aff2(Kc, Y), where Aff1,Aff2 are the set of 3sa+3sc−3sb affine
functions on Ka, X and Kc, Y respectively, obtained above. We now state the
first MITM step: note that if we guess the value of Ka, we can easily obtain
the value of X by computing the forward a rounds from the plaintext. If we

Guess Majority S

Affine Layer

⊕⊕⊕ b b b

S S S

Affine Layer

⊕⊕⊕
S S S

Affine Layer

⊕⊕⊕
S SVector G

r-a-b-c rounds

⊕⊕ ⊕⊕ ⊕⊕

⊕⊕⊕⊕⊕

S

Affine Layer

⊕⊕⊕ b b b

S S S

Affine Layer

⊕⊕⊕
S S S

Affine Layer

⊕⊕⊕
S S

Kb=κ3sa, . . . , κ3sa+3sb−1

W

b rounds

b b b

b b b b b b

b b b

b b b

bbb b

b b b b b b b b b

z0, . . . , z3s−1

u0, . . . , u3s−1

x3s, . . . , xn−1

z3s, . . . , z6s−1

u3s, . . . , u6s−1

z3(b−1)s, . . . , z3bs−1

u3(b−1)s, . . . , u3bs−1

D0, . . . ,Dn−1 E0, . . . ,En−1

D3s, . . . ,Dn−1

Y

x0, . . . , x3s−1

Fig. 6: The middle b+ d rounds

21

guess Kc we can similarly compute Y , by computing backward the last c rounds
from the ciphertext. Hence for all the 23sa values of Ka we make the first list L1

that contains all the (3sa− 3sb+ 3sc)-bit vectors calculated from Aff1(Ka, X).
Similarly for all the 23sc values of Kc we make the second list L2 that contains all
the 3sa−3sb+3sc-bit vectors calculated from Aff2(Kc, Y). We look for collisions
in the two lists. We can expect around 23sa+3sc−(3sa−3sb+3sc) = 23sb collisions.
We store all the 23sb tuples (Ka,Kc) so obtained in a list L.

Second MITM: The second part of the attack focuses on getting an affine
relation between U , Z and Kb. From Fig. 6, we can see that ui = xi + κ3sa+i,
∀i ∈ [0, 3s− 1]. For the second round we have

u3s+i = Di + κ3sa+3s+i, ∀ i ∈ [0, 3s− 1]

= Lin1,i(z0, . . . , z3s−1, x3s, . . . , xn−1) + κ3sa+3s+i, ∀ i ∈ [0, 3s− 1]

where Lin1,i is the i-th linear function of Lin1 described above. The above holds
since we have already seen that all Di’s are linear functions in (z0, . . . , z3s−1, x3s,
. . . , xn−1). Similarly for the third round we have

u6s+i = Ei + κ3sa+6s+i, ∀ i ∈ [0, 3s− 1]

= Lin2,i(z0, . . . , z6s−1, x3s, . . . , xn−1) + κ3sa+6s+i, ∀ i ∈ [0, 3s− 1]

where Lin2,i is similarly the i-th linear function of Lin2. Iterating over all the b
rounds we can write the vector equation, U = Kb+ P(Z, x3s, . . . , xn−1), where P
denotes the set of 3bs linear expressions obtained by putting together the linear
expressions Lin1,i,Lin2,i etc. We can now replace Kb in Equation (6) to get

Y = Lin(Z, x3s, x3s+1, . . . , xn−1,Ka, U + P(Z, x3s, . . . , xn−1),Kc,Krem)

= Lin′(Z, x3s, x3s+1, . . . , xn−1,Ka, U,Kc,Krem).

This time we eliminate Krem from the above set of linear equations using the
same Gaussian elimination method as in the previous stage. There are n−3s(a+
b + c) variables in Krem that we eliminate, which leaves us with 3s(a + b + c)
equations in Z, x3s, x3s+1, . . . , xn−1,Ka, U,Kc. We can rearrange the terms in
the equation to get Aff3(Z,U) = Aff4(X,Ka,Kc), where Aff3,Aff4 are a set of
3s(a+ b+ c) affine functions on Z,U and Ka,Kc, X respectively.

Note that if we guess Z, we can compute U since the S-box is bijective, and
we have already seen that guessing Ka lets us compute X by computing the a
forward rounds from the plaintext. Thus in the next MITM stage we make 2
lists L3, L4. In L3 we store the 3s(a+ b+ c)-bit vector given by the expressions
Aff3(Z,U) for each of 23bs values of Z. In L4 we store the 3s(a+b+c)-bit vector
given by the expressions Aff4(X,Ka,Kc) for each of 23bs values of (Ka,Kc) in
L. We again look for collisions in the 2 lists. The expected number of collisions is
23bs+3bs−3s(a+b+c) = 23sb−3sa−3sc. However the correct value of the key Ka,Kc

is guaranteed to be the outcome of the collision finding stage for the correct
guess of the majority values.

22

Once we get a candidate solution Ka,Kc, Z, U we can compute the vec-
tors X,Y by computing the a, c rounds forwards/backwards from the plain-
text/ciphertext. We can then compute Kb = U + P(Z, x3s, . . . , xn−1). As we
know the majority of the inputs of the S-boxes in r − a − b − c middle rounds,
we can solve an affine equation of form Affrem(W,Krem) = Y to recover the
value of Krem, which was the only part of the key which remained unknown.
After this one can check if the key so obtained produces the required majority
values guessed at the beginning. If not the attacker can restart the process with
another set of majority values. The expected number of such checks is around
2s(r−a−b−c)+3sb−3sa−3sc = 2rs−4sa−4sc+2sb. We formally state the attack:

1. Separate the first a+ b and last c rounds of the cipher
2. Denote the output of the first a rounds by X, the output of the b rounds by
W and the input of the last c rounds by Y .

3. Denote the inputs/outputs of the S-boxes in the b rounds by U/Z
4. Guess majority bits of the inputs of the S-boxes of r − a − b − c middle

rounds.
5. For every majority guess do:

First MITM:

– Compute the relation Y = Lin(Z, x3s, . . . , xn−1,Ka,Kb,Kc,Krem)
– Eliminate Kb,Krem, Z from the relation and form and equation of form

Aff1(Ka, X) = Aff2(Kc, Y).
– By exhausting all possible values of Ka keep a list of Aff1(Ka, X), where
X is computed knowing Ka and plaintext pt.

– Try all possible values of Kc and find collisions between Aff2(Kc, Y) and
the list computed in the previous step. Keep a list L of (Ka,Kc) values
satisfying the condition.

Second MITM:

– Compute the relation Y = Lin′(Z, x3s, x3s+1, . . . , xn−1,Ka, U,Kc,Krem)
by replacing Kb.

– EliminateKb,Krem to get a relation of form Aff3(Z,U) = Aff4(X,Ka,Kc).
– For every pair (Ka,Kc) in the list L, compute Aff4(X,Ka,Kc).
– For every possible value of Z, compute Aff3(Z,U), where U can be com-

puted efficiently from Z, and look for occurrence with Aff3(Z,U) in the
list from the previous step.

– For every (Ka,Kc, Z, U) satisfying the relation, compute Kb,W, Y as
shown before.

– Linearize the middle r − a− b− c rounds using the majority guess and
compute Krem from Affrem(Krem,Ka,Kb,Kc,W) = Y .

– After the entire key is found, check if they result in the same majority
values assumed at the beginning of the attack or else retry with another
set of majority values.

Complexity Estimation: Before we state our analysis to calculate the com-
putational complexity, let us state a few observations:

23

1. Note that the number of variables on the right side of Equation (6) is 2n+
3sb−3s. Hence using the basis vector logic, forming Equation (6) is equivalent
to 2n+ 3sb− 3s encryptions limited to r− a− c rounds, hence equivalent to

(2n+ 3sb− 3s) · (r−a−c)r encryptions.

2. For the first MITM, eliminating θ = n−3s(a−b+c) variables in an n×(3n+

3sb−3s) matrix using the sweeping out method costs around n·θ·(3n+3sb−3s)
2rn2

encryptions.

3. Computing U from X and K is equivalent to the encryption of 2n base
vectors (for the n bits of X and the n bits of K) in b rounds instead of r.
So, this costs 2n · br encryptions

4. For the 2nd MITM, eliminating 3sb (Kb) and n − 3s(a + b + c) (Krem)

variables in a n × (3n + 6sb − 3s) matrix requires (n−3s(a+c))·n·(3n+6sb−3s)
2rn2

encryptions.

5. Solve the system of linear equations to get Krem from Affrem(Krem,Ka,Kb,
Kc,W) = Y . This requires one Gaussian Elimination which is equivalent to
(n−3s(a+b+c))3

2rn2 encryptions.

Both MITM steps should be done for each majority guess for the middle rounds,
hence should be repeated 2s(r−a−b−c) times. Note that to evaluate Aff1(Ka, X)
we need to evaluate the first a encryption rounds to get X from the plaintext.
Thereafter we evaluate (3sa− 3sb + 3sc) linear expressions in (3sa + n) bits of
Ka, X, which requires around (3sa+ 3sb− 3sc) · (3sa+n) bit-operations. Simi-
larly to evaluate Aff2(Kc, Y) we need to evaluate the last c decryption rounds to
get Y from the ciphertext, followed by evaluation of linear expressions that take
(3sa+3sb−3sc)·(3sc+n) bit-operations. Hence the first MITM takes time equiva-

lent to T1 =
(
a
r + (3sa−3sb+3sc)·(3sa+n)

2rn2

)
·23sa+

(
c
r + (3sa−3sb+3sc)·(3sc+n)

2rn2

)
·23sc

encryptions. The number of pairs stored in the first MITM is around 23sb as
mentioned before.

Later on we replace Kb in the linear equation and eliminate Kb,Krem, this
can also be seen as a matrix multiplication followed by a Gaussian elimination.
Next we compute the values of Aff3(Z,U) and Aff4(X,Ka,Kc) having values of
Ka,Kc and Z. Computing the value of U from Z takes time less than required in
the b encryption rounds. Thereafter, evaluating 3s(a+b+c) linear expressions in
6bs bits requires 3s(a+b+c)·6bs bit-operations. Again for Aff4 computingX from
Ka requires evaluating the first a encryption rounds. Then evaluation of linear
expressions requires 3s(a+ b+ c) · (3sa+ 3sc+n) bit-operations. Hence the 2nd

MITM takes T2 =
(
b
r + (3sa+3sb+3sc)·(6bs)

2rn2 + a
r + (3sa+3sb+3sc)·(3sa+3sc+n)

2rn2

)
· 23sb

encryptions. The expected number of collisions in this procedure is 23sb−3sa−3sc

which the attacker needs to filter whenever it is greater than 1. Hence the total

24

complexity of the attack is estimated as:

2s(r−a−b−c) ×
[
T1 + T2 (The 2 MITMs) + (23s(b−a−c)) (Filter Solutions)+

(2n+ 3sb− 3s) · (r − a− c)
r

+
n · θ · (3n+ 3sb− 3s)

2rn2
+

2n · b
r

+
(n− 3s(a+ c)) · n · (3n+ 6sb− 3s)

2rn2
+

(n− 3s(a+ b+ c))3

2rn2

]
.

As n and s go to infinity, the optimal parameters become a = b = c = 1 and
the asymptotic complexity is equivalent to 4

r ∗ 2sr, which is an improvement by
a factor n/8 compared to the linearization attack. When s remains small (e.g.

s = 1), the optimal parameters can be larger. With a = b = c = log2(2n)
3s , the

complexity is asymptotically 4 log2(n)
3sr · 2sr. If we take sr = n, this is better than

exhaustive search by a factor Ω
(

n
log(n)

)
. The memory complexity is dominated

by the space required for the 2 MITM stages. It can be seen that the total
memory complexity in bits can be computed as

(3sa− 3sb+ 3sc) · (23as + 23cs) + (3sa+ 3sb+ 3sc) · 23bs+1.

For the bns c-round instances, we get the following results. For n = 128, s =
1, r = 128, if we take a = b = c = 5, we get the total complexity around 2125

encryptions with 222 bits of memory. For n = 128, s = 10, r = 12, if we take
a = b = c = 1, we get the total complexity around 2119 encryptions with 238 bits
of memory. For the 0.8× bns c-round instances, we get the following results. For
n = 128, s = 1, r = 103, if we take a = b = c = 5, we get the total complexity
around 2101 encryptions. For n = 128, s = 10, r = 10, if we take a = b = c = 1,
we get the total complexity around 299 encryptions. The memory complexity is
the same as the corresponding bns c-round attacks.

5.1 Speed-up using Gray-Codes

Note that the technique outlined in [BCC+10] to evaluate a function over all
points of its input domain, works best for linear or quadratic functions. As such,
it is best to employ the attack when the set of functions for which we want
to evaluate over the input space is quadratic/linear. This is only possible if we
restrict a = c = 1. Let us see why. The first MITM procedure finds collision
between two lists using the equation Aff1(Ka, X) = Aff2(Kc, Y). Note that,
thus far, X (rep. Y) has been computed from the plaintext (resp. ciphertext) by
guessing Ka (resp. Kc) and evaluating the first a rounds in the forward direction
(resp. last c rounds in the backward direction). In order to apply Gray-code based
speed-up we need to express X and Y as functions of Ka and Kc. These functions
happen to be quadratic only when a = c = 1. This condition automatically
ensures that in the second MITM equations are also quadratic. This is true since

25

the second MITM essentially equates Aff3(Z,U) = Aff4(X,Ka,Kc), and we
know that the relation between U, Z is quadratic since these are the input-output
bits of the LowMC S-box in the middle b rounds. However note that unlike, in
the MITM for the complete non-linear layers, there is no pre-computation in the
first MITM that helps us reduce the steps in the second MITM. Aff4(X,Ka,Kc)
needs to be only evaluated for the 23sb pairs of Ka,Kc that survive the 1st
MITM. However to employ Gray-code based speed up we need to evaluate Aff4

over all points of its input space. We could split Aff4 into Aff5(Ka, X)+Aff6(Kc)
and then evaluate each of the Aff5 and Aff6 separately. Thus the time required
for the first MITM would be TG1 = 3sa−3sb+3sc

2rn2 · (23as+1 + 23sc+1) encryptions.

The 2nd MITM requires TG2
= 3sa+3sb+3sc

2rn2 ·(23bs+1 +23as+1 +23sc) encryptions.

It only makes sense to employ Gray-codes if TG1
+TG2

< T1 +T2. For s = 1,
the optimal values of a, b, c are considerably higher and it does not make sense to
attempt the Gray-code speed-up using this algorithm. In fact even if we attempt
to use this method by forcing a = b = c = 1, the complexity is many times
higher. Intuitively this makes sense, if a, c and s are both 1 then the lists require
exhaustive search over only 3as = 3sc = 3 variables, for which employing even
a non-Gray-code approach would take only 23 function evaluations. However
when s = 10, using such Gray-codes to execute the MITM stages is beneficial.
For n = 128, s = 10, r = bns c = 12, if we take a = b = c = 1, we get the total
complexity around 2110.6 encryptions which is better than the previous estimate
by a factor of around 29. For r = 0.8× bns c = 10 using the same parameters we
get the total complexity around 290.8 encryptions which again outperforms the
previous estimate by a factor of around 28.

0 10 20 30 40
Value of a =b=c

100

105

110

115

120

125

130

135

Lo
ga

rit
hm

ic
co

m
pl

ex
ity

 o
f t

he
 2

-s
ta

ge
 M

IT
M

 a
tta

ck

n = 128 , s = 1, r = 102
n = 128 , s = 10, r = 10
n = 128 , s = 1 , r = 128
n = 128 , s = 10 , r = 12

Fig. 7: The base 2 logarithm of the complexity of the 2-stage MITM attack when
n = 128 and s = 1, 10, for n = 0.8× bns c, when a, b, c are kept equal and varied.

26

6 Experimental Results

In this section we present experimental data to showcase how our new attacks
stack up in comparison to the attacks proposed in [BBDV20] on instances of
LowMC with smaller blocksizes. Our results indicate that for all instances tar-
geted in our paper, there is a significant speedup compared to the previous
attacks. Moreover, we provide experimental evidence that our attacks success-
fully recover the key with a better complexity than exhaustive search for both
3-round with full S-box layer and n/s-round with partial S-box layer variants.

All the attacks and variants of the encryption function were implemented in
Sage and ran on an Intel Xeon E5-2680 processor with 256 GB of memory. Each
attack was run for several randomly generated instances. The complexity figures
are reported by computing the base 2 logarithm of the amount of time taken by
the attack, divided by the amount of time one encryption takes.1

Full S-box Layer: For the 2-round full S-box layer variant of the cipher, we
implemented all three Linearization, 2-step MITM and 2-step MITM with gray-
code enumeration attacks for n = 18. The results are presented in Fig. 8. On
average, the linearization attack required 216.38 encryptions to recover the key,
where as the 2-stage MITM, and the gray code enumeration attacks required
213.31 and 26.42 encryptions to yield a solution respectively.

We also implemented the attack using Gray-code enumeration for 3-round
variants of block size 12. Fig. 9 show cases the complexity of this attack for
several randomly generated samples. Our experimental results indicate that the
3-round variant of this attack yields a solution faster than exhaustive search
for all the samples we ran the attack for and the average complexity of our
experiments was 25.88 encryptions for n = 12, s = 4, r = 3.

Partial Non-Linear Layer: For the partial S-box layer variant of the cipher
with number of rounds equal to r = bns c×0.8, we implemented the 2-stage MITM
attack described in section 5, the linearization method described in [BBDV20]
and in addition the special case gray-code enumeration attack described at the
end of 5. For n = 16, s = 1 and r = 12 the linearization attack yielded a
complexity of 210.29 encryptions, and the two-step MITM and the gray-code
enumeration attacks yielded a solution in 28.46 and 28.50 encryptions respectively.

For the 2-step MITM attack, we ran the experiments for 3 instances of a =
b = c = 1, a = b = c = 2 and a = b = c = 3. According to our experimental
results the best performance was when a = b = c = 1. The results of the 3 attacks
are demonstrated in Fig. 10a, and it is evident that both our new attacks are
significantly faster than the linearization method.

We also experimented the attack for n = 12, s = 1 and r = n/s = 12 and
a = b = c = 1. According to our experimental results demonstrated in Fig. 10b,

1The source code of the attacks can be found at https://gitlab.epfl.ch/

barooti/lowmc-challenge-round-3

27

https://gitlab.epfl.ch/barooti/lowmc-challenge-round-3
https://gitlab.epfl.ch/barooti/lowmc-challenge-round-3

2 4 6 8 10 12 14 16
Logarithm of the time complexity of the attack in terms of one Encryption full S-box layer r = 2, n=18

0.00

0.02

0.04

0.06

0.08

Pr
ob

ab
ilit

y
2-step MITM with gray-code
2-step MITM Attack
Linearization Attack

Fig. 8: The histogram of base 2 logarithm of the time complexity of all lineariza-
tion, 2-stage MITM and 2-stage MITM with gray-code enumeration attacks for
n = 18, s = 6, r = 2, in terms of the time it takes to perform a single encryption
with the same key, the same affine layers, and the same key update functions.

0 1 2 3 4 5 6 7 8
Logarithm of the time complexity of the attack in terms of one Encryption full S-box r = 3

0.000

0.005

0.010

0.015

0.020

0.025

Pr
ob

ab
ilit

y

2-step MITM with gray-code

Fig. 9: The histogram of base 2 logarithm of the time complexity of the gray-code
enumerated 2-stage MITM attack for n = 12, s = 4, r = 3, in terms of the time
it takes to perform a single encryption

28

this attack had an average complexity of 27.402 encryptions, indicating a speed
up over exhaustive search.

2 4 6 8 10
Logarithm of the time complexity of the attacks in terms of encryptions s = 1, n=16, r = 12

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ilit

y

2-step MITM with gray-code
2-step MITM Attack
Linearization Attack

(a)

0 2 4 6 8 10
Logarithm of the time complexity of the attack in terms of one Encryption partial n/s

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Pr
ob

ab
ilit

y

2-step MITM Attack

(b)

Fig. 10: (a) The logarithm of the complexity of 2-step MITM, 2-step MITM
with gray-code enumeration and linearization attacks for the partial S-box layer
variant with parameters n = 16 , s = 1 and r = 12, (b) The logarithm of the
complexity of the two-step MITM attack for n = 12, s = 1, r = 12.

7 Conclusion

In this paper, we present a 2-stage MITM on several instances of LowMC using
only a single plaintext/ciphertext. The first MITM stage reduces the key candi-
dates corresponding to a fraction of key bits of the master key. The second MITM
stage between this reduced candidate set and the remaining fraction of key bits
successfully recovers the master key. We have shown with experimental evidence
on smaller versions of LowMC that the combined computational complexity of
both these stages is significantly lower than those reported in [BBDV20].

Acknowledgments: Subhadeep Banik was supported by the Swiss National
Science Foundation (SNSF) through the Ambizione Grant PZ00P2 179921.
Khashayar Barooti was supported by the SNSF through the project grant 192364
on Post Quantum Cryptography.

References

ARS+15. Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE. In Advances
in Cryptology - EUROCRYPT 2015 - 34th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 430–454, 2015.

BBDV20. Subhadeep Banik, Khashayar Barooti, F. Betül Durak, and Serge Vaude-
nay. Cryptanalysis of lowmc instances using single plaintext/ciphertext
pair. IACR Trans. Symmetric Cryptol., 2020(4):130–146, 2020.

29

BCC+10. Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou,
Ruben Niederhagen, Adi Shamir, and Bo-Yin Yang. Fast exhaustive search
for polynomial systems in F2. In Cryptographic Hardware and Embedded
Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA,
USA, August 17-20, 2010. Proceedings, pages 203–218, 2010.

DEM15. Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Higher-order
cryptanalysis of lowmc. In Information Security and Cryptology - ICISC
2015 - 18th International Conference, Seoul, South Korea, November 25-27,
2015, Revised Selected Papers, pages 87–101, 2015.

Din. Itai Dinur. Cryptanalytic applications of the polynomial method for solving
multivariate equation system over gf(2). IACR Cryptology ePrint Archive,
2021/578. Available at https://eprint.iacr.org/2021/578.pdf.

DKP+19. Itai Dinur, Daniel Kales, Angela Promitzer, Sebastian Ramacher, and
Christian Rechberger. Linear equivalence of block ciphers with partial
non-linear layers: Application to lowmc. In Yuval Ishai and Vincent Ri-
jmen, editors, Advances in Cryptology - EUROCRYPT 2019 - 38th An-
nual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings,
Part I, volume 11476 of Lecture Notes in Computer Science, pages 343–372.
Springer, 2019.

DLMW15. Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang. Optimized in-
terpolation attacks on lowmc. In Tetsu Iwata and Jung Hee Cheon, ed-
itors, Advances in Cryptology - ASIACRYPT 2015 - 21st International
Conference on the Theory and Application of Cryptology and Information
Security, Auckland, New Zealand, November 29 - December 3, 2015, Pro-
ceedings, Part II, volume 9453 of Lecture Notes in Computer Science, pages
535–560. Springer, 2015.

DN19. Itai Dinur and Niv Nadler. Multi-target attacks on the picnic signature
scheme and related protocols. In Yuval Ishai and Vincent Rijmen, edi-
tors, Advances in Cryptology - EUROCRYPT 2019 - 38th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Tech-
niques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III, vol-
ume 11478 of Lecture Notes in Computer Science, pages 699–727. Springer,
2019.

GKRS. Lorenzo Grassi, Daniel Kales, Chistian Rechberger, and Markus
Schofnegger. Survey of key-recovery attacks on lowmc in a single
plaintext/ciphertext scenario. https://raw.githubusercontent.com/

lowmcchallenge/lowmcchallenge-material/master/docs/survey.pdf.
LIM20. Fukang Liu, Takanori Isobe, and Willi Meier. Cryptanalysis of Full LowMC

and LowMC-M with Algebraic Techniques. IACR Cryptol. ePrint Arch.,
2020:1034, 2020.

LIM21. Fukang Liu, Takanori Isobe, and Willi Meier. A simple algebraic attack on
3-round lowmc. IACR Cryptol. ePrint Arch., 2021:255, 2021.

RST18. Christian Rechberger, Hadi Soleimany, and Tyge Tiessen. Cryptanalysis
of low-data instances of full lowmcv2. IACR Trans. Symmetric Cryptol.,
2018(3):163–181, 2018.

Zav. Greg Zaverucha. The picnic signaure algorithm specifications, version 3.0,
available at https://github.com/microsoft/Picnic/blob/master/spec/
spec-v3.0.pdf.

30

https://eprint.iacr.org/2021/578.pdf
https://raw.githubusercontent.com/lowmcchallenge/lowmcchallenge-material/master/docs/survey.pdf
https://raw.githubusercontent.com/lowmcchallenge/lowmcchallenge-material/master/docs/survey.pdf
https://github.com/microsoft/Picnic/blob/master/spec/spec-v3.0.pdf
https://github.com/microsoft/Picnic/blob/master/spec/spec-v3.0.pdf

	New Attacks on LowMC instances with a Single Plaintext/Ciphertext pair
	Subhadeep Banik, Khashayar Barooti, Serge Vaudenay and Hailun Yan

