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Abstract. In this work, we introduce the notion of hierarchical inte-
grated signature and encryption (HISE), wherein a single public key is
used for both signature and encryption, and one can derive a secret key
used only for decryption from the signing key, which enables secure del-
egation of decryption capability. HISE enjoys the benefit of key reuse,
and admits individual key escrow. We present two generic constructions
of HISE. One is from (constrained) identity-based encryption. The other
is from uniform one-way function, public-key encryption, and general-
purpose public-coin zero-knowledge proof of knowledge. To further attain
global key escrow, we take a little detour to revisit global escrow PKE,
an object both of independent interest and with many applications. We
formalize the syntax and security model of global escrow PKE, and pro-
vide two generic constructions. The first embodies a generic approach to
compile any PKE into one with global escrow property. The second es-
tablishes a connection between three-party non-interactive key exchange
and global escrow PKE. Combining the results developed above, we ob-
tain HISE schemes that support both individual and global key escrow.

We instantiate our generic constructions of (global escrow) HISE
and implement all the resulting concrete schemes for 128-bit security.
Our schemes have performance that is comparable to the best Cartesian
product combined public-key scheme, and exhibit advantages in terms
of richer functionality and public key reuse. As a byproduct, we obtain
a new global escrow PKE scheme that is 12 − 30× faster than the best
prior work, which might be of independent interest.

1 Introduction
Public-key encryption (PKE) and digital signature are widely used in combina-
tion in many real-world applications, where the former is used to protect data
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confidentiality, and the latter is used to provide authenticity. For example, in
secure communication applications such as PGP [PGP], supposing that Alice
wants to send an email to Bob in a secure and authenticated manner, she first
encrypts the email under Bob’s public-key, and then signs the ciphertext using
her signing key. In privacy-preserving cryptocurrencies such as Zether [BAZB20],
to generate a confidential transaction, a sender account encrypts the transfer
amount under the public keys of both the sender account and receiver account,
and then signs the transaction using his secret spending key.

When using PKE and signature schemes simultaneously, we require joint
security, i.e., their respective security properties are retained in the presence of
additional oracles (if there is any, e.g., signing oracle and decryption oracle). The
reason is that although PKE and signature schemes might have been proven to
be secure individually, they may undermine each other if their respective keys
are related. Typically, there are two principals for combining PKE and signature.

Key separation vs. key reuse. The key separation principal is an engineering
folklore that dictates using different keypairs for different cryptographic opera-
tions, which is best illustrated by the “Cartesian product” combined public-key
(CPK) scheme: each user independently generates a keypair (ek, dk) for PKE
and a keypair (vk, sk) for digital signature, concatenates the two keypairs into
one, and then uses appropriate component of the compound key for each opera-
tion. Key separation allows one to flexibly choose and combine the off-the-shelf
PKE and signature schemes, and the joint security follows readily from the in-
dependence of the two keypairs. However, it has an obvious shortcoming that
the key size and the complexity of key management are doubled.6

In contrast, the key reuse principal is using identical keypair, e.g., for both
PKE and signatures, and we refer to such cryptosystem as integrated signature
and encryption (ISE). To avoid triviality, the keypair should be non-splittable,
namely, it cannot be broken into two pieces for different operations respectively.

As advocated by Paterson et al. [PSST11], adopting key reuse principal is
beneficial, since it can reduce key storage requirements, reduce the number of cer-
tificates needed (which in turn reduces the certificate cost7), and reduce the foot-
print of cryptographic code and development effort. These savings could be vital
in constrained environments such as embedded systems and low-end smart card
applications. For instance, the globally-deployed EMV standard for authenticat-
ing credit and debit card transactions uses the same keypair for both encryption
and signature precisely for these reasons (see [EMV11, Sec. 7]). Other real world
6 One may attempt to include the encryption key ek and verification key vk into one

certificate in order to keep the certificate cost unchanged. Unfortunately this theo-
retically possible solution is not standard-compliant. X.509v3 as per RFC 5280 [X50]
only allows a single subjectPublicKeyInfo field. If one wants to add more than one
public key into this field, new syntax or parsing rule are needed, which would require
major changes to implementations and relevant libraries. In contrast, key reuse is
readily supported by X.509v3 via the keyUsage field.

7 Certificate costs include but not limit to registration, issuing, storage, transmission,
verification, and building/recurring fees.
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instances embracing key reuse include identity management solution provider
Ping Identity [Pin] and RFC 4055. We highlight that the key reuse principal also
helps to simplify the design of high-level protocols. Notably, most known privacy-
preserving cryptocurrencies in the account model [NVV18, BAZB20, CMTA20]
either explicitly or implicitly use ISE as a core building block, which enables a
clean security notion and simple constructions.

Nevertheless, key reuse is not without its issues. In an ISE scheme, the reuse of
a single keypair may hinder the individual security of the PKE or the signature
scheme, (consider the textbook RSA cryptosystem as a simple example and
see [DLP+12] for a more sophisticated example at the protocol level). Therefore,
joint security of ISE is not immediate and a rigorous proof is always needed.

Also, Haber and Pinkas [HP01] pointed out that secret keys may require dif-
ferent levels of protection, which becomes out of reach when sticking to key reuse
principal. A more puzzling issue, as we elaborate next, is that rigid adherence to
key reuse principal introduces hurdles on applications that require key escrow.

Delegation of decryption capability. In privacy-preserving applications en-
abled by PKE, a user may want to delegate his decryption capability to an agent
for key recovery or usability purpose, while an authority (law-enforcement agen-
cies as well as other organizations) may want to acquire decryption capability
of users for compliance purpose. This is where key escrow comes into play. In
general, there are two types of key escrow mechanisms.

The individual key escrow means that the user simply shares his decryption
key with the escrow agent. Such delegation of decryption capability is of “one-to-
one” flavor, and under the control of each individual user. The global key escrow
means that the escrow agent has a single “master” key to decrypt any ciphertext
of any user. Such delegation of decryption capability is of “all-to-one” flavor. We
note that individual key escrow implies a naive solution to global key escrow
by having the agent maintain a big database of all individual decryption keys.
However, this naive solution comes with two deficiencies: (i) the complexity of
key management grows linearly with the number of keys, which severely limits
scalability, and thus being inadequate for large-scale applications; (ii) collecting
a large number of valid decryption keys could be difficult to conduct in practice.

Conflict between key reuse and key escrow. In the context of combined
usage of PKE and signature, the original joint security is insufficient to enable
individual key escrow, and strong joint security is needed. This is because now the
adversary is directly given the decryption key, instead of just a decryption oracle
(as we still want to ensure integrity even if escrow agent is corrupted). Clearly,
the ISE schemes adhering to key reuse strategy fail to meet strong joint security
as the same secret key is used for both decryption and signing, and consequently
individual key escrow is insecure since a corrupted escrow agent is able sign on
behalf of the user, a basic violation of the concept of digital signing [Ros] (and
cannot be applied to many settings such as anonymous cryptocurrency).

3



From the above discussion, we are facing a dilemma between key reuse that
brings performance benefit and key separation that supports key escrow mech-
anism. We are thus motivated to ask the following intriguing questions:

Can we enable individual key escrow mechanism while retaining the merits of
key reuse? And, can we further support global key escrow mechanism?

1.1 Our Contributions

We answer the above questions affirmatively and have the following results.

Hierarchical integrated signature and encryption. In an ISE scheme, a
single keypair is used for both encryption and signature, thus the exposure of de-
cryption key will completely compromise the security of signature. A closer look
indicates that if there is a hierarchy between the signing key and decryption key,
then stronger joint security becomes possible. We put forth a new notion called
hierarchical integrated signature and encryption (HISE). In an HISE scheme,
a single public key is used for both encryption and signature verification; the
signing key plays the role of “master” secret key, namely, one can derive a de-
cryption key from the signing key but not vice versa. This two-level hierarchy
key derivation structure hits a sweet balance between key separation and key
reuse, and thus allows us to enjoy the best of both worlds. It not only admits
individual key escrow mechanism and classified protection of signing key and
decryption key, but also retains the benefit of key reuse strategy.8

We specify a strong joint security model for HISE schemes by capturing mul-
tifaceted attacks in the joint sense. For confidentiality, we stipulate that the
PKE component satisfies indistinguishability against chosen-ciphertext attacks
(IND-CCA) even the adversary is provided with unrestricted access to a signing
oracle. For authenticity, we stipulate that the signature component satisfies ex-
istentially unforgeability against chosen-message attacks (EUF-CMA) even the
adversary is directly given the associated decryption key. We then present two
generic constructions of HISE schemes.
HISE from (constrained) IBE. Our first construction is inspired by the elegant
ISE construction due to Paterson et al. [PSST11]. In their construction, they ap-
ply the Naor transform [BF03] and the tag-based version of the Canetti-Halevi-
Katz (CHK) transform [BCHK07] to an identity-based encryption (IBE) scheme
simultaneously, yielding a signature component and a PKE component in one
shot. The two components share the same keypair, i.e., the master keypair of the
underlying IBE. Note that signatures in the signature component derived from
the Naor transform are private keys for messages (playing the role of identities),
while these private keys can decrypt ciphertexts in the PKE component derived
from the CHK transform. To attain joint security, they use a bit prefix in the
identity space to provide a domain separation between the identities used for
encoding messages and the identities used as tags. However, ISE schemes from
8 As briefly elaborated before, the advantage of key reuse strategy mostly resides in

the fact that one public key is used for both encryption and verification.
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IBE do not directly lend themselves to HISE schemes, as the master secret key
of IBE plays the roles of both the signing key and decryption key.

We resolve this problem by introducing a new notion called constrained IBE
(see Section 2.2 for definition and construction) as our starting point. In a con-
strained IBE one can derive constrained keys skf for f ∈ F from the master
secret key, where F is a predicate family defined over identity space, e.g., a family
of prefix predicates. A constrained key skf enables the decryption of ciphertexts
encrypted under id if and only if f(id) = 1. We are now ready to sketch our
HISE construction from any constrained IBE that supports prefix predicates,
which is in turn implied by binary tree encryption (BTE) [CHK03]. Suppose the
identity space I of the underlying constrained IBE is {0, 1}ℓ+1, we use bit prefix
to partition I to two disjoint sets, say, I0 starting with bit 0 and I1 starting with
bit 1. The key generation algorithm first generates a master keypair (mpk,msk)
of the constrained IBE, sets mpk as the public key and msk as the secret key,
and derives a constrained key skf1 from msk, where f1(id) = 1 iff id ∈ I1.
Thanks to the properties of constrained IBE, skf1 can decrypt all ciphertexts
encrypted under identities in I1, and thus could serve as the decryption key.
We then build the signature component from the constrained IBE via the Naor
transform by encoding messages into I1, and build the encryption component
from the constrained IBE and one-time signature via the CHK transform by us-
ing identities from I1 as tags. The security of constrained IBE implies that the
signature component remains secure even in the presence of the decryption key.
In this way, we obtain HISE with strong joint security in the standard model.

We remark that if one does not insist on joint security in the standard model,
then it is not necessary to resort to the CHK transform to achieve CCA security.
As a result, a much simpler construction of HISE can be built from any IBE. The
construction is similar to the one from constrained IBE, except that I1 shrinks to
a single identity fixed in the public parameters, and the encryption component
is obtained by applying the IBE-to-PKE degradation and the Fujisaki-Okamoto
transformation [FO99] sequentially.

HISE from PKE and ZKPoK. Our second construction is from PKE and zero-
knowledge proof of knowledge (ZKPoK). At the heart of it is a novel hierarchical
key derivation mechanism. Roughly speaking, the key generation algorithm con-
sists of two steps: (1) choosing a random bit string as the signing key, and then
map it to random coins via a uniform one-way function (OWF) F (a OWF that
outputs uniform bits when input uniform bits); (2) feeding the resulting random
coins to the key generation algorithm of PKE, yielding a keypair. The public
key serves as both the encryption key and verification key. The encryption com-
ponent is exactly the underlying PKE. In this way, the decryption key can be
easily derived from the signing key, but not vice versa. The merit of the above
hierarchical key derivation mechanism is that it endows great flexibility of the
underlying PKE schemes, and thus is of particular interest for application sce-
narios where it is desirable to upgrade the PKE in use to HISE in a seamless way.
However, it also gives rise to a technical challenge: how to design a signature
scheme with an unstructured bit string as the signing key, which should remain
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secure even in the presence of partial leakage, say, the decryption key. We show
that if the function G from random coins to public key induced by the key gen-
eration algorithm is target-collision resistant, then the composed function G ◦ F
from signing key to public key is one-way even with respect to arbitrary leakage
of the intermediate random coins, let alone the decryption key. Therefore, we
can overcome the aforementioned difficulty by leveraging public-coin ZKPoK. A
signature is a non-interactive zero-knowledge proof of the signing key, incorpo-
rating a message to be signed. This construction essentially embodies a generic
approach of converting any PKE to HISE with the help of ZKPoK (we refer to
it as the HI conversion hereafter).

We note that the high-level idea of using OWF and ZKPoK to build signa-
tures had appeared in previous works [CDG+17, KKW18], but our usage of this
technique is qualitatively different. Prior works focus on building a standalone
signature scheme: the public key is simply an image y = F(x) of a OWF F and
secret key x. In our construction, we aim to add signature functionality to exist-
ing PKE schemes, yielding HISE schemes with strong joint security. To do so,
the public key is set as the output of secret key via a function composed of a
OWF and the PKE’s key generation algorithm. Careful analysis of the minimal
requirements on the OWF and key generation algorithm, as well as the HISE
construction we propose, are new to this work.

Supporting global key escrow. We then turn to the problem of equipping
HISE with global key escrow mechanism. To make our techniques more general,
we first take a little detour to revisit the topic in the setting of PKE.
Global escrow PKE. In global escrow PKE there is an escrow agent holding a
global escrow decryption key that can decrypt ciphertexts encrypted under any
public key. The state of the art of global escrow PKE is less satisfactory, which
is long overdue for formal definition and efficient construction. So far, the only
known practical scheme based on standard assumption is the escrow ElGamal
PKE proposed by Boneh and Franklin [BF03] from bilinear maps.

At first glance, it seems that global escrow PKE can be trivially built from
broadcast encryption by having the receiver set include the real intended re-
ceiver and the escrow agent. However, the idea does not work since the sender
in broadcast encryption is always assumed to be honest, while in the context
of global escrow PKE the sender could be malicious (e.g. generate ciphertexts
dishonestly) especially if he has the incentive to evade the oversight of escrow
agent. To capture such misbehaving, we introduce the “consistency” notion to
enforce the decryption results of any ill-formed ciphertexts yielded by the re-
ceiver’s decryption key and the global escrow decryption key to be identical. We
then propose two generic constructions of global escrow PKE.

Our first construction is based on PKE and non-interactive zero-knowledge
proof (NIZK) (see Section 6.1 for details). The escrow agent generates a keypair
(pkγ , skγ), then publishes pkγ as public parameters, and uses skγ as the global
escrow decryption key. To generate a ciphertext for the receiver holding pub-
lic key pkβ , the sender encrypts the plaintext under pkβ and pkγ respectively,
and then appends a NIZK proof for the validity of encryption. To decrypt a
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ciphertext, the receiver (resp. escrow agent) first checks if the proof is valid, and
then decrypts with secret key skβ (resp. skγ) if so or returns ⊥ otherwise. The
main purpose of using NIZK is to guarantee the consistency of decryption results
yielded by the receiver’s decryption key and global escrow decryption key, while
a bonus is that the resulting global escrow PKE automatically satisfies CCA
security. This construction can be interpreted as a novel usage of the celebrated
Naor-Yung paradigm [NY90], which indicates that any PKE can be upgraded to
support global escrow with the help of NIZK (we refer to it as the GE conversion
hereafter).

Our second construction is based on three-party non-interactive key exchange
(NIKE) (see Section 6.2 for details). Same as our first construction, the escrow
agent generates a keypair (pkγ , skγ), publishes pkγ as part of public parame-
ters, and uses skγ as the global escrow decryption key. To generate a ciphertext
for the receiver holding public key pkβ , the sender generates a random keypair
(pkα, skα), and then runs the three-party NIKE in his head to compute a shared
key among (pkα, pkβ , pkγ). The final ciphertext consists of pkα and a symmetric
encryption of plaintext under the shared key. To decrypt, the receiver (resp.
escrow agent) uses secret key skβ (resp. skγ) to compute the shared key among
(pkα, pkβ , pkγ), and then decrypts the symmetric part. This construction sug-
gests a generic approach of converting three-party NIKE to global escrow PKE,
uncovering a connection between two seemingly unrelated notions. More inter-
estingly, we show that the construction still works by relying on a relaxed version
of three-party NIKE, leading to the most efficient global escrow PKE to date
(outperforms prior scheme [BF03] in speed by a factor 12− 30×), which might
be of independent interest.
Global escrow HISE. Now, we are ready to construct HISE that supports global
key escrow mechanism that we dub “global escrow HISE”. In a global escrow
HISE, the escrow agent is capable of decrypting any ciphertext under any pub-
lic key with a succinct global escrow decryption key, while the security of the
signature component retains even in the presence of the associated individual
decryption key and the global escrow decryption key. Combining the results de-
veloped above, we obtain two paths of building global escrow HISE from different
starting points. One is to apply the Naor-Yung like transform (GE conversion)
to any HISE, and the other is to add hierarchy key derivation structure (HI
conversion) to any global escrow PKE meeting the mild requirement described
above. Figure 1 depicts the technology roadmap for the constructions of global
escrow HISE.

Applications of (global escrow) HISE. Besides the merit of compact public
key sizes, (global escrow) HISE also helps to reduce the key management com-
plexity and simplify the design and analysis of high-level protocols. In general,
they are suitable for scenarios that simultaneously require privacy, authenticity
and key escrow. Below, we give several illustrative usages.

Usage of HISE. In privacy-preserving cryptocurrencies such as Zether [BAZB20],
a user may need to share his decryption key with an authority for audit purpose
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HISE

(constrained) IBE PKE+ZKPoK

HI conversion

GE conversion

global escrow PKE

PKE+NIZK three-party NIKE

GE conversion

HI conversion

Fig. 1: Technology roadmap of global escrow HISE. The rectangles denote our
newly introduced cryptographic schemes.

or delegating costly decryption operations9 to a service. Currently, Zether is
equipped with ISE and thus does not support individual key escrow. In another
case, a PGP user may be required to handover his decryption key to an author-
ity on demand for compliance purpose.10 For the time being, PGP adopts key
separation and thus naturally supports individual key escrow, but each user has
to maintain at least two public key certificates. In either case, the user wants to
guarantee that his signing capability remains exclusive. By deploying HISE, not
only the systems can benefit from key reuse, but also the user can safely escrow
his decryption key to a third party without worrying the security of signature
being breached (e.g. in the cryptocurrency setting, even the auditing authority
with decryption key cannot spend user’s coin).

Usage of global escrow HISE. Enterprise applications such as Slack get increasing
adoption for large-scale collaborative working, and thus has raised the demand
for secure internal communication which may contain proprietary information.
The employer may have the right to get access to all private communications as
in traditional work emails [vox], or might be obliged to possess “super” decryp-
tion capability for various reasons such as archival purpose, litigation-related
eDiscovery, or detection of malware. On the other side, the employees need to
be assured that even a malicious administrator of the “super” key cannot slander
them by forging signatures for fabricated communications. Global escrow HISE
is perfectly suitable for these cases. By playing the role of escrow agent, the
authority is able to conduct large-scale supervision efficiently with the global
escrow decryption key, but unable to violate users’ exclusive signing capability.
9 A bunch of recent privacy-preserving cryptocurrencies [NVV18, BAZB20, CMTA20]

employ lifted ElGamal like PKE schemes, and thus decryption operations require
computing the discrete logarithm, which is time consuming.

10 The government of the United Kingdom requires any PGP user to give the police
both his private key and his passphrase on demand. Failure to comply is a criminal
offense, punishable by a jail term of two years.
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Instantiation, implementation and evaluation. We instantiate our generic
constructions of (global escrow) HISE and implement all the resulting concrete
schemes for 128-bit security. We choose the Cartesian product CPK built from
the best available encryption and signature schemes as benchmark. Our (global
escrow) HISE schemes have performance that is comparable to the Cartesian
product CPK scheme, while exhibiting advantages in terms of richer function-
ality for escrow and compact key sizes. Moreover, we report the most effi-
cient global escrow PKE known to date (12 − 30× faster than prior scheme),
which is interesting in its own right. Our implementation is released on Github:
https://github.com/yuchen1024/HISE. We summarize experimental results in
Section 8.

1.2 Related Works

Combined usage of PKE and signature. Key separation is a conventional
wisdom originated from real-world practice. Haber and Pinkas [HP01] investi-
gate this security engineering folklore and initiate a formal study of key reuse.
They introduce the notion of combined public key (CPK) scheme, which is a
combination of a signature and encryption scheme: the existing algorithms of
sign, verify, encrypt and decrypt are preserved, while the two key generation
algorithms are modified into a single algorithm. This algorithm outputs two
keypairs for signing and encryption operations respectively, with the keypairs
no longer necessarily being independent. They also formalize the joint security
of CPK scheme, i.e., the encryption component is IND-CCA secure even in the
presence of an additional signing oracle, while the signature component is EUF-
CMA secure even in the presence of an additional decryption oracle. Finally,
they show that various well-known concrete schemes are jointly secure when
their keys are partially shared. As an extreme case of CPK scheme, ISE scheme
uses a single non-splittable keypair for both signature and encryption. Degabriele
et al. [DLP+12] find a theoretical attack for the RSA-based ISE scheme in EMV
standard version 4.1. Coron et al. [CJNP02] and Komano and Ohta [KO03]
build ISE from trapdoor permutations in the random oracle model. Paterson et
al. [PSST11] give an elegant construction of ISE from identity-based encryption.

In contrast to ISE, HISE is equipped with a two-level hierarchy key structure,
i.e., the signing key plays the role of master secret key, and one can derive
a decryption key from the signing key. The joint security of HISE stipulates
that the signature component is EUF-CMA secure even in the presence of a
decryption key, which is strictly stronger than that of ISE.
Key escrow. We now briefly survey existing works on key escrow in the con-
text of public-key encryption. As aforementioned, there are two types of key
escrow: individual key escrow and global key escrow. While individual key es-
crow is straightforwards, global key escrow appears to be harder to attain. The
earlier solutions to global key escrow are not satisfactory. They either rely on
tamper-resistant devices, or require the escrow agent to get involved in interac-
tive computations at an undesirable level. Paillier and Yung [PY99] propose a
solution called self-escrowed public-key infrastructure, which requires that the
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relation between secret key and public key is trapdoorness. Such stringent re-
quirement greatly limits the choice of possible candidates, and so far the only
known realization of SE-PKI is based on a non-standard assumption. Until 2003,
Boneh and Franklin [BF03] give the first practical scheme called escrow ElGa-
mal based on standard assumption. Nevertheless, formal definition and generic
constructions of global escrow PKE are still missing.

To our knowledge, the only work in the literature that considers key reuse
and key escrow together is due to Verheul [Ver01]. Verheul considers the problem
of supporting non-repudiation and individual key escrow in the single public key
setting, and proposes a candidate scheme from the XTR subgroup. The author
gives an indication of security, but is not aware of more rigorous security proof.11

Therefore, this problem remains open. In this work, we resolve this open problem
by proposing a new cryptographic primitive called HISE and giving efficient and
provably secure constructions.

2 Preliminaries

We use the standard definitions of bilinear maps, SKE, PKE, signature, IBE,
zero-knowledge proof systems, as well as non-interactive key exchange protocols.
The definition of one-way functions has appeared previously, while the definition
and construction of constrained IBE schemes are new. Since they are central to
our work, we include their formal definitions as below.

2.1 One-Way Function

A function F : X → Y is one-way if it is efficiently computable and hard-to-invert
on average. Let H be a family of leakage functions defined over domain X. F is
leakage-resilient one-way [DHLW10] w.r.t. H if the one-wayness remains in the
presence of leakage h(x), where x is the preimage and h could be any function
from H. If F(x) is uniform over Y when x

R←− X, we say that F is uniform.

2.2 Constrained Identity-Based Encryption

We introduce a new notion called constrained IBE. In a nutshell, a constrained
IBE is an IBE in which master secret key allows efficient delegation with respect
to a family of predicates over identity space. Formally, a constrained IBE consists
of the following PPT algorithms:

– Setup(1λ): on input a security parameter λ, outputs public parameters pp.
Let F be a family of predicates over identity space I.

11 Our perspective is that a security reduction from Verheul’s scheme to standard
hardness problem is unlikely to be forthcoming, since it is difficult to emulate the
decryption key for the adversary against the signature component.
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– KeyGen(pp): on input public parameters pp, outputs a master public key
mpk and a master secret key msk.

– Extract(msk, id): on input a master secret key msk and an identity id ∈ I,
outputs a user secret key skid.

– Constrain(msk, f): on input a master secret key msk and a predicate f ∈ F ,
outputs a constrained secret key skf .

– Derive(skf , id): on input a constrained secret key skf and an identity id ∈ I,
outputs a user secret key skid if f(id) = 1 or ⊥ otherwise.

– Enc(mpk, id,m): on input mpk, an identity id ∈ I, and a message m, outputs
a ciphertext c.

– Dec(skid, c): on input a user secret key skid and a ciphertext c, outputs a
message m or a special reject symbol ⊥ denoting failure.

Correctness. For any (mpk,msk) ← KeyGen(pp), any identity id ∈ I, any
skid ← Extract(msk, id), any message m, and any c← Enc(mpk, id,m), it holds
that Dec(skid, c) = m. Besides, for any f ∈ F such that f(id) = 1, the outputs
of Extract(msk, id) and Derive(skf , id) have the same distribution.
Security. Roughly speaking, a secure constrained IBE should ensure the secrecy
of plaintexts encrypted by id as long as id has not been queried for user secret
key or related constrained secret key. We formally define IND-CPA security for
constrained IBE as below. Let A be an adversary against the IND-CPA security
of constrained IBE and define its advantage in the following experiment:

Pr

b = b′ :

pp← Setup(1λ);
(mpk,msk)← KeyGen(pp);
(id∗,m0,m1)← AOext(·),Oconstrain(·)(pp,mpk);

b
R←− {0, 1}, c∗ ← Enc(mpk, id∗,mb);

b′ ← AOext(·),Oconstrain(·)(c∗);

− 1

2
.

Oext(·) denotes the key extraction oracle, which on input id returns skid ←
Extract(msk, id). Oconstrain(·) denotes the key constrain oracle, which on input f
returns skf ← Constrain(msk, f). A is not allowed to query Oext(·) with id∗ or
query Oconstrain(·) with f such that f(id∗) = 1. A constrained IBE is IND-CPA
secure if no PPT adversary A has non-negligible advantage in the above security
experiment. Two weaker security notions can be defined similarly. One is OW-
CPA security, in which the adversary is required to recover the plaintext from a
random ciphertext. The other is selective-identity IND-CPA security, in which
the adversary is asked to specify the target identity id∗ before seeing mpk.

We present a generic construction of constrained IBE for prefix predicates
from BTE. Please see the full version for the details.

3 Definition of HISE

An HISE scheme consists of the following PPT algorithms.
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– Setup(1λ): on input a security parameter λ, outputs public parameters pp.
We assume that pp includes the description of plaintext space M and message
space M̃ .

– KeyGen(pp): on input pp, outputs a secret key sk and a public key pk. Here,
sk serves as a master secret key, which can be used to derive decryption key.

– Derive(sk): on input a secret key sk, outputs a decryption key dk.
– Enc(pk,m): on input a public key pk and a plaintext m ∈ M , outputs a

ciphertext c.
– Dec(dk, c): on input a decryption key dk and a ciphertext c, outputs a plain-

text m or a special reject symbol ⊥ denoting failure.
– Sign(sk, m̃): on input a secret key sk and a message m̃ ∈ M̃ , outputs a

signature σ.
– Vrfy(pk, m̃, σ): on input a public key pk, a message m̃, and a signature σ,

outputs a bit b, with b = 1 meaning valid and b = 0 meaning invalid.

Correctness. For the PKE component, we require that for any m ∈ M , it
holds that Pr[Dec(dk, c) = m] ≥ 1− negl(λ), where the probability is taken over
the choice of pp ← Setup(1λ), (pk, sk) ← KeyGen(pp), dk ← Derive(sk), and
c ← Enc(pk,m). For the signature component, we require that for any m̃ ∈ M̃ ,
it holds that Pr[Vrfy(pk, m̃, σ) = 1] ≥ 1− negl(λ), where the probability is taken
over the choice of pp← Setup(1λ), (pk, sk)← KeyGen(pp), σ ← Sign(sk, m̃), and
the random coins used by Vrfy.

The joint security of HISE stipulates that the PKE component is IND-CCA
secure even in the presence of a signing oracle, while the signature component
is EUF-CMA secure in the presence of the decryption key. The formal security
notion is defined as below.

Definition 1 (Joint Security for HISE). HISE is jointly secure if its encryp-
tion and signature components satisfy the following security notions. Hereafter,
let Osign(·) be the signing oracle that on input m̃ ∈ M̃ returns σ ← Sign(sk, m̃),
and Odec(·) be the decryption oracle that on input c returns m← Dec(dk, c).

IND-CCA security in the presence of a signing oracle. Let A be an
adversary against the PKE component and define its advantage as:

Pr

b = b′ :

pp← Setup(1λ);
(pk, sk)← KeyGen(pp);
(m0,m1)← AOdec(·),Osign(·)(pp, pk);

b
R←− {0, 1}, c∗ ← Enc(pk,mb);

b′ ← AOdec(·),Osign(·)(c∗);

− 1

2
.

A has unrestricted access to Osign(·), but is not allowed to query Odec(·) with c∗

in Phase 2. The PKE component is IND-CCA secure in the joint sense if no
PPT adversary A has non-negligible advantage in the above security experiment.
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EUF-CMA security in the presence of a decryption key. Let A be an
adversary against the signature component and define its advantage as:

Pr

Vrfy(pk,m∗, σ∗) = 1
∧ m∗ /∈ Q :

pp← Setup(1λ);
(pk, sk)← KeyGen(pp);
dk ← Derive(sk);
(m∗, σ∗)← AOsign(·)(pp, pk, dk);

 .

The set Q records queries to Osign(·). The signature component is EUF-CMA
secure in the joint sense if no PPT adversary A has non-negligible advantage in
the above security experiment.

Remark 1. The security notion of HISE is strictly stronger than that of ISE
in the sense that the signature component remains secure even when the ad-
versary learns the entire decryption key rather than only has access to Odec(·).
This strengthening is crucial for applications that require secure delegation of
decryption capability. We then discuss possible weakening of joint security. It is
well-known that homomorphism denies CCA security. Thus, when homomorphic
property is more desirable, we can instead only require the PKE component to
be CPA-secure. We refer to the corresponding security as weak joint security.

Towards a modular design, the PKE component can be defined as key encap-
sulation mechanism. We omit the formal definition here for straightforwardness.

Global escrow extension. If an HISE scheme further satisfies global escrow
property, we refer to it as global escrow HISE. In global escrow HISE, the setup
algorithm additionally outputs a escrow decryption key edk, and there is an
alternative decryption algorithm enabled by edk, whose decryption results of
any ciphertext are identical to those obtained by applying normal decryption
algorithm with the decryption key of intended receiver. The joint security stipu-
lates that the encryption component remains secure in the presence of a signing
oracle, and the signature component is secure even in the presence of the de-
cryption key and escrow decryption key. We omit the formal definition here for
its straightforwardness.

4 HISE from Constrained Identity-Based Encryption

In this section, we present a generic construction of HISE. Given a constrained
IBE for prefix predicates (cf. definition in Section 2.2) and a strong one-time
signature (OTS), we create an HISE scheme as below.

– Setup(1λ): runs ppcibe ← CIBE.Setup(1λ), ppots ← OTS.Setup(1λ), outputs
pp = (ppcibe, ppots). We assume the identity space of constrained IBE is
{0, 1}ℓ+1, and the verification space of OTS is {0, 1}ℓ.

– KeyGen(pp): on input pp = (ppcibe, ppots), runs CIBE.KeyGen(ppcibe) to gen-
erate (mpk,msk), outputs public key pk = mpk and secret key sk = msk.

– Derive(sk): parses sk as msk, runs skfv ← CIBE.Constrain(msk, fv) where
v = 1 and fv(id) = 1 iff id[1] = 1, outputs dk = skfv .
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– Enc(pk,m): parses pk = mpk. The encryption algorithm runs (ovk, osk) ←
OTS.KeyGen(ppots). sets id = 1||ovk, computes ccibe ← CIBE.Enc(mpk, id,m),
σ ← OTS.Sign(osk, ccibe), then outputs c = (ovk, ccibe, σ).

– Dec(dk, c): parses dk = skfv and c = (ovk, ccibe, σ). The decryption al-
gorithm first checks if OTS.Vrfy(ovk, ccibe, σ) = 1, if not outputs ⊥, else
sets id = 1||ovk and computes skid ← CIBE.Derive(skfv , id), outputs m ←
CIBE.Dec(skid, ccibe).

– Sign(sk, m̃): parses sk as msk, computes skid ← CIBE.Extract(msk, id)
where id = 0||m̃, outputs σ = skid.

– Vrfy(pk, σ, m̃): parses pk as mpk, σ as skid for id = 0||m̃, picks a random
plaintext m ∈ M , computes ccibe ← CIBE.Enc(mpk, id,m), outputs “1” if
CIBE.Dec(skid, ccibe) = m and “0” otherwise.

Correctness follows from that of constrained IBE and OTS. For security, we
have the following theorem.

Theorem 1. If the constrained IBE scheme is IND-CPA secure and the OTS
scheme is strong EUF-CMA secure, then the HISE construction is jointly secure.

Due to space limit, we defer the security proof to the full version.

Remark 2. The above generic construction from constrained IBE enjoys joint
security in the standard model. So far, we only know how to build constrained
IBE for prefix predicates from BTE [CHK03]. However, in existing constructions
of BTE the size of secret key and ciphertext and encryption/decryption efficiency
are all linear in ℓ, which are inefficient. We leave more efficient constructions of
BTE and constrained IBE as an interesting open problem.

In applications where the encryption component only has to be IND-CPA
secure, or one is willing to accept IND-CCA security in the random oracle model,
we have a simpler and more efficient construction of HISE from any IBE. We
defer the details to the full version.

5 HISE from PKE and ZKPoK

In this section, we present a generic construction of HISE from a PKE scheme and
a 3-round public-coin ZKPoK protocol. At the heart of our construction is a novel
mechanism what we called hierarchical key derivation. The high-level idea is to
pick a random bit string as secret key sk, then derive an encryption/decryption
keypair (ek, dk) of PKE in a deterministic manner. The encryption key ek is
used for both encrypting plaintexts and verifying signatures, and hence will be
denoted by pk. The decryption key is only used for decrypting. The secret key
sk is used for signing messages and deriving the decryption key dk. The key
derivation should be one-way, namely, one can derive the decryption key from
the signing key, but not vice versa. Thus, the signing key acts as master secret
key. Let the randomness space R of PKE’s key generation algorithm be {0, 1}ℓ,
we describe the generic construction as below.
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– Setup(1λ): runs pppke ← PKE.Setup(1λ), ppzkpok ← ZKPoK.Setup(1λ), picks
a uniform OWF F : {0, 1}n → {0, 1}ℓ, outputs pp = (pppke, ppzkpok,F).

– KeyGen(pp): parses pp = (pppke, ppzkpok,F), picks sk
R←− {0, 1}n, computes

r ← F(sk), runs (ek, dk)← PKE.KeyGen(pppke; r), outputs public key pk =
ek and secret key sk. Let PK be the public key space.

– Derive(sk): this algorithm is exactly a part of KeyGen, i.e., on input sk,
computes r ← F(sk), runs (ek, dk) ← PKE.KeyGen(pppke; r), outputs the
resulting decryption key dk.

– Enc(pk,m) and Dec(dk, c) are same as those of the underlying PKE.
– Sign(sk, m̃): Let G be PKE.KeyGen1, i.e., the algorithm that outputs the

first outcome pk of PKE.KeyGen. G and F induce an NP relation Rkey over
PK × {0, 1}n defined as below.

Rkey = {(pk, sk) | pk = G(F(sk))} (1)

We are thus able to build a signature scheme with sk as the signing key and
pk as the verification key from a three-round public-coin ZKPoK for Rkey.
1. Run the prover algorithm P (sk) with randomness α to sample a ran-

dom element a from the initial message space A. We assume that |A| is
exponential in λ.

2. Hash a with the message m̃ to be signed into the challenge, i.e., e ←
H(a, m̃). Here, H is a cryptographic hash function, which is modeled as
a random oracle.

3. Run the prover algorithm P (sk, α, e) to generate a response z.
Finally, outputs the signature σ = (a, z) for m̃.

sk r pk dk
F G

PKE.KeyGen

Rkey

Fig. 2: The hierarchical key structure

– Vrfy(pk, m̃, σ): on input a public key pk, a message m̃ and a signature
σ = (a, z), first recovers the challenge e ← H(a, m̃), then runs the veri-
fier’s verification algorithm V (a, e, z) to decide if (a, e, z) is an accepting
transcript w.r.t. Rkey.

In the above construction, the signature generation follows the same rou-
tine of crushing the ZKPoK into a non-interactive one via Fiat-Shamir heuris-
tic. Thus, we can simplify the syntax of the construction by describing the
signing procedure as NIZKPoK.Prove(pk, sk, m̃) and the verifying procedure as
NIZKPoK.Verify(pk, m̃, σ), where pk serves as the instance, sk serves as the wit-
ness, m̃ is treated as auxiliary input, and σ serves as the proof.

The correctness of the above construction follows from those of the underlying
PKE and ZKPoK. For the security, we have the following theorem.
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Theorem 2. The above HISE construction is jointly secure assuming the secu-
rity of its building blocks and modeling H as a random oracle.

Due to space limit, we defer the security proof to the full version.

6 Global Escrow PKE

As discussed in the introduction, HISE naturally supports individual key escrow
mechanism, but may not satisfy global key escrow property. To investigate how
to further support global escrow mechanism for HISE in a general manner, next
we make a little detour to revisit the topic of global escrow PKE, with focus on
formal definition and generic construction. The obtained results can be used in
a mixed way with the results in Section 4, yielding global escrow HISE.

Global escrow PKE is an extension of PKE. In global escrow PKE, there is a
single global escrow decryption key that enables the decryption of ciphertexts en-
crypted under any public key. Such scheme enables government intelligence and
law enforcement agencies to reveal encrypted information without the knowledge
or consent of users. Formally, a global escrow PKE consists of five polynomial
time algorithms (Setup,KeyGen,Enc,Dec,Dec′). KeyGen, Enc, and Dec are the
same as those of ordinary PKE. The Setup algorithm outputs an additional es-
crow decryption key, while Dec′ can decrypt ciphertexts under any public key
using this escrow decryption key.

– Setup(1λ): on input the security parameter λ, outputs global public param-
eters pp and a global escrow decryption key edk. This algorithm is run by a
trusted party.

– Dec′(edk, c): on input an escrow decryption key edk and a ciphertext c,
outputs a plaintext m or a special reject symbol ⊥ denoting failure.

In most applications of global escrow PKE, the escrow agent needs to know
the public key of the intended receiver. Therefore, we assume that the public
key of the intended receiver is always provided in the clear from ciphertext.

Correctness. For all m ∈M , we have Pr[Dec(sk, c) = m = Dec′(edk, c)] ≥ 1−
negl(λ), where the probability is taken over the choice of (pp, edk)← Setup(1λ),
(pk, sk)← KeyGen(pp), and c← Enc(pk,m).

Consistency. The definition of correctness stipulates that the decryption re-
sults of the receiver and the escrow agent are identical when the ciphertexts
are honestly generated. In applications of escrow PKE, the sender may gener-
ate the ciphertexts dishonestly to evade supervision. Therefore, in addition to
correctness, we also need to consider the notion of consistency for global es-
crow PKE. The intuition is that the decryption results of the receiver and the
escrow agent are still identical when the ciphertexts are dishonestly generated.
Fix pp, we define a collection of NP languages indexed public key, namely,
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Lpk = {c | ∃m, r s.t. c = Enc(pk,m; r)}, which represents the set of all valid ci-
phertexts encrypted under pk. We are now ready to formally define consistency.
For an adversary A against consistency, we define its advantage function as:

AdvA(λ) = Pr

 c /∈ Lpk∧
Dec(sk, c) 6= Dec′(edk, c)

:
(pp, edk)← Setup(1λ);
(pk, sk)← KeyGen(pp);
c← A(pp, pk);

 .

A global escrow PKE is computationally (resp. statistically) consistent if no
PPT (resp. unbounded) adversary has non-negligible advantage in the above
experiment.

Security. Let A be an adversary against global escrow PKE and define its
advantage in the following experiment.

AdvA(λ) = Pr

b = b′ :

(pp, edk)← Setup(1λ);
(pk, sk)← KeyGen(pp);
(m0,m1)← AOdec(·)(pp, pk);

b
R←− {0, 1}, c∗ ← Enc(pk,mb);

b′ ← AOdec(·)(pp, pk, c∗);

− 1

2
.

Here, Odec(·) is the decryption oracle. A can make polynomial number of decryp-
tion queries with the restriction that A is not allowed to query Odec(·) with c∗ in
Phase 2. A global escrow PKE scheme is IND-CCA secure if no PPT adversary
has non-negligible advantage in the above experiment. We can define IND-CCA1
security (resp. IND-CPA security) similarly by only giving A access to Odec(·)
in Phase 1 (resp. denying access to Odec(·)).

6.1 Global Escrow PKE from PKE and NIZK

At first glance, it seems that global escrow PKE is trivially implied by broadcast
encryption by having the receiver set include the public keys of the intended
receiver and the escrow agent. However, the consistency of this construction
is not guaranteed since broadcast encryption always assume that the sender
generates ciphertexts honestly.

Next, we show how to make any PKE scheme satisfy global escrow property
by leveraging NIZK. The idea is that when building up the system the escrow
agent generates a keypair (pkγ , skγ) himself, and then includes his public key
pkγ in the public parameters and uses the secret key skγ as escrow decryption
key. To send an encrypted message to receiver with public key pk, the sender
encrypts the same plaintext m twice under pk and pkγ independently, then
appends a NIZK proof for the consistency of encryption. To decrypt the cipher-
text, both the receiver and the escrow agent first check the correctness of NIZK
proof, then decrypts the corresponding part using their secret keys. Our con-
struction coincides with the celebrated Naor-Yung double encryption paradigm
for chosen-ciphertext security. In the Naor-Yung paradigm, the two public keys
belong to the receiver, and the NIZK proof is used to achieve CCA security. In
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our case, one public key belongs to the receiver, the other key belongs to the
escrow agent, and the NIZK proof is used to the ensure that the escrow agent
has the same decryption capability as the receiver. Our construction is some-
what dual to previous solutions [YY98, YY99, PY99]. Rather than providing a
proof of key recoverability to CA when registering public key, our construction
provides a proof of correct encryption each time when generating ciphertexts.
The advantage of our construction is that it removes the need of recoverability
certificate entirely, and efficient zero-knowledge proof is relatively easy to design
for most PKE schemes. Moreover, if we aim for CCA security, then the added
zero-knowledge proofs do not constitute extra overhead.

For completeness, we present our construction as below.
– Setup(1λ): runs pppke ← PKE.Setup(1λ), (pkγ , skγ) ← PKE.KeyGen(pppke),

ppnizk ← NIZK.Setup(1λ), generates crs ← NIZK.CRSGen(ppnizk), outputs
pp = (pppke, ppnizk, crs, pkγ) and edk = skγ .

– KeyGen(pp): parses pp = (pppke, ppnizk, crs, epk), then outputs (pk, dk) ←
PKE.KeyGen(pppke).

– Enc(pk,m): picks two random coins r1 and r2 independently, computes c1 ←
PKE.Enc(pk,m; r1) and c2 ← PKE.Enc(pkγ ,m; r2), then generates π ←
NIZK.Prove(crs, (pk, c1, c2), (r1, r2,m)), outputs c = (pk, c1, c2, π). Here, π
is a proof for (c1, c2) being encryptions of the same plaintext under pk and
pkγ , i.e., (pk, c1, c2) ∈ Lpk, where Lpk is defined as below:

Lpk = {(pk, c1, c2) | ∃m, r1, r2 s.t.
c1 = PKE.Enc(pk,m; r1) ∧ c2 = PKE.Enc(pkγ ,m; r2)}

– Dec(sk, c): on input a decryption key sk and a ciphertext c = (pk, c1, c2, π),
first runs NIZK.Verify(crs, (pk, c1, c2), π) to check if c is a valid encryption
under pk; if the check fails then returns⊥, else returns m← PKE.Dec(dk, c1).

– Dec′(edk, c): on input a global escrow decryption key edk = skγ and a ci-
phertext c = (pk, c1, c2, π), first checks if c is a valid encryption under pkγ
by running NIZK.Verify(crs, (pkγ , c1, c2), π); if the check fails then returns
⊥, else returns m← PKE.Dec(skγ , c2).
The correctness follows from that of PKE and NIZK, and the consistency

holds based on the adaptive soundness of the underlying NIZK. For the security,
we have the following theorem.
Theorem 3. The above construction of global escrow PKE is CCA1-secure
(resp. CCA-secure) if the underlying PKE is CPA-secure and the NIZK is adap-
tively secure (resp. simulation sound adaptive secure).
Proof. The security proofs are very similar to those for Naor-Yung construc-
tion [NY90] and Sahai construction [Sah99]. We omit the details here.
Remark 3. The above generic construction encrypts the plaintext twice indepen-
dently under the public keys of the intended receiver and the escrow agent. When
the underlying PKE satisfies a mild property called “randomness fusion”, we can
safely reuse the random coins and apply twisted Naor-Yung transform [BMV16],
leading to improvements in terms of both efficiency and bandwidth.
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6.2 Global Escrow PKE from Three-party NIKE and SKE
In this section, we present another generic construction of global escrow PKE
from three-party NIKE and SKE. This construction follows the KEM-DEM
paradigm. We start by defining the notion of global escrow KEM by adapting
KEM to the escrow setting. A global escrow KEM consists of five polynomial
time algorithms (Setup,KeyGen,Encaps,Decaps,Decaps′). The KeyGen, Encaps,
and Decaps algorithms are same as those of an ordinary KEM. The Setup algo-
rithm outputs an additional escrow decryption key, while Decaps′ decapsulates
ciphertexts using this escrow decryption key.

– Setup(1λ): on input a security parameter λ, outputs global public parameters
pp and a global escrow decryption key edk. This algorithm is run by a trusted
party. We assume that pp includes the description of session key space K.

– Decaps′(edk, c): on input a global escrow decryption key edk and a ciphertext
c, outputs a session key k or a special reject symbol ⊥ denoting failure.

Correctness. We require that Pr[Decaps(sk, c) = k = Decaps′(edk, c)] ≥ 1 −
negl(λ), where the probability is taken over the choice of (pp, edk)← Setup(1λ),
(pk, sk)← KeyGen(pp), and (c, k)← Encaps(pk).
Consistency. Analogous to the setting of global escrow PKE, we also need to
consider the notion of consistency for global escrow KEM. Fix pp, we define
a collection of NP languages indexed by pk. Let Lkem

pk = {c | ∃r s.t. (c, k) =
Encaps(pk; r)}, which represents all valid ciphertexts encapsulated under pk. We
are now ready to define consistency. For an adversary A against consistency, we
define its advantage function as:

AdvA(λ) = Pr

 c /∈ Lkem
pk ∧

Decap(sk, c) 6= Decap′(edk, c)
:
(pp, edk)← Setup(1λ);
(pk, sk)← KeyGen(pp);
c← A(pp, pk);

 .

We say that a global escrow KEM is computationally (resp. statistically) con-
sistent if no PPT (resp. unbounded) adversary has non-negligible advantage in
the above experiment.
Security. Let A be an adversary against global escrow KEM and define its
advantage in the following experiment.

AdvA(λ) = Pr

b = b′ :

(pp, edk)← Setup(1λ);
(pk, sk)← KeyGen(pp);
(c∗, k∗0)← Encaps(pk), k∗1 ← K;

b
R←− {0, 1};

b′ ← AOdecaps(·)(pp, pk, c∗, k∗b );

− 1

2
.

Here,Odecaps(·) denotes the decapsulation oracle.A can make polynomial number
of such queries with the restriction that c 6= c∗, and the challenger responds
with k ← Decaps(sk, c). A global escrow KEM is IND-CCA secure if no PPT
adversary has non-negligible advantage in the above experiment. A global escrow
KEM is IND-CPA secure if no PPT adversary has non-negligible advantage in
the same experiment but denying access to Odecaps(·).
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6.2.1 Global Escrow PKE from Global Escrow KEM and SKE
We build global escrow PKE from global escrow KEM and SKE as below.

– Setup(1λ): runs (ppkem, edk) ← KEM.Setup(1λ), ppske ← SKE.Setup(1λ),
outputs pp = (ppkem, ppske) and edk.

– KeyGen(pp): parses public parameters pp = (ppkem, ppske), outputs (pk, sk)←
KEM.KeyGen(ppkem).

– Enc(pk,m): computes (ckem, k)← KEM.Encaps(pk), cske ← SKE.Enc(k,m),
outputs c = (ckem, cske).

– Dec(sk, c): parses c = (ckem, cske), computes k ← KEM.Decaps(sk, cske); if
k = ⊥ outputs ⊥, else outputs m← SKE.Dec(k, cske).

– Dec′(edk, c): parses c = (ckem, cske), computes k ← KEM.Decaps′(edk, cske);
if k = ⊥ outputs ⊥, else outputs m← SKE.Dec(k, cske).

The correctness follows from that of global escrow KEM and SKE. We analyze
the consistency requirement as below. The above construction follows the KEM-
DEM approach. Fix pp, we define a collection of NP languages indexed by pk.
Let Lpk = {(ckem, cske) | ∃m, r1, r2 s.t. (ckem, k) = KEM.Encaps(pk; r1) ∧ cske =
SKE.Enc(k,m; r2)}. It is easy to see that no matter whether ckem ∈ Lkem

pk or not,
the consistency of global escrow KEM guarantees that the decapsulation results
are identical, and so are the final decryption results.

Theorem 4. The above construction is IND-CPA secure (resp. IND-CCA se-
cure) if the underlying global escrow KEM is IND-CPA secure (resp. IND-CCA
secure) and the SKE is IND-CPA secure (resp. IND-CCA secure).

Proof. The security proof is similar to that of PKE from the KEM-DEM method-
ology. We omit the details here.

6.2.2 Global Escrow KEM from Three-Party NIKE
We present a generic construction of global escrow KEM from three-party NIKE.
The high-level idea is that the escrow agent generates a keypair (pkγ , skγ), then
publishes pkγ as part of the public parameters and keeps skγ to itself. To send
a ciphertext to the receiver with public key pk = pkβ , the sender generates a
random keypair (pkα, skα), then runs the three-party NIKE in his head to derive
a shared key for {pkα, pkβ , pkγ}, and finishes encapsulation by setting pkα as the
ciphertext and the shared key as the session key. According to the functionality
and security of NIKE, both the escrow agent and the receiver can derive the
same session key, which is pseudorandom in any PPT adversary’s view. The
construction is as below.

– Setup(1λ): on input a security parameter λ, runs ppnike ← NIKE.Setup(1λ)
and (pkγ , skγ) ← NIKE.KeyGen(ppnike), outputs public parameters pp =
(ppnike, pkγ) and sets the global escrow decryption key edk = skγ .

– KeyGen(pp): parses pp = (ppnike, pkγ), runs NIKE.KeyGen(ppnike) to generate
a keypair (pk, sk).
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– Encaps(pk): parses pk = pkβ , the sender runs NIKE.KeyGen(ppnike) to gen-
erate a random keypair (pkα, skα), sets S = {pkα, pkβ , pkγ}, computes kS ←
ShareKey(skα, S), outputs ciphertext c = (pkα, pkβ) and session key k = kS .
The language for valid encapsulation is: LKEM

pk = {(pkα, pk) | pkα ∈ PK}.
– Decaps(sk, c): on input a secret key sk = skβ and a ciphertext c = (pkα, pkβ),

first sets S = {pkα, pkβ , pkγ}, then computes kS ← ShareKey(skβ , S) and
outputs session key k = kS .

– Decaps′(edk, c): on input edk = skγ and a ciphertext c = (pkα, pkβ), sets
S = {pkα, pkβ , pkγ}, then computes kS ← ShareKey(skγ , S) and outputs
session key k = kS .

The correctness and consistency of global escrow KEM follow from those of
the underlying three-party NIKE. For security, we have the following theorem.

Theorem 5. If the three-party NIKE is CKS-light secure in the HKR setting
(resp. in the DKR setting), then the resulting global escrow KEM is IND-CPA
secure (resp. IND-CCA secure).

Due to space limit, we defer the security proof to the full version.

6.2.3 Relaxation of Three-Party NIKE
We note that the above construction of global escrow KEM does not require
the full power of three-party NIKE. In fact, a relaxed version suffices for our
purpose, a.k.a., there are three types of public keys in the system (say Type-
A, Type-B and Type-C), and the shared key can be agreed upon if the three
participants hold different types of public keys. When building global escrow
KEM, we can set user’s public key as Type-A, the temporary public key as
Type-B (serves as the ciphertext), and the escrow agent’s public key as Type-C
(serves as part of the public parameters). This relaxation increases the space of
the underlying protocols that can be used, and hence can potentially lead to
more efficient construction of global escrow PKE. Next, we show how to build
an efficient global escrow KEM from a relaxed version of Joux’s protocol [Jou04]
to exemplify the power of this conceptual insight.

As noticed by [GPS08, AGH15], there is a huge gap in pairing-based cryp-
tography: schemes are usually presented in the academic literature via symmet-
ric pairing because it is simpler and the complexity assumptions can be weaker,
while schemes are preferable to be implemented via asymmetric pairing (notably
Type-III pairing) since it is the most efficient choice in terms of bandwidth and
computation time. Such gap also occurs in our case. The original Joux’s protocol
is based on symmetric pairing and cannot be easily adapted to the setting of
asymmetric pairing. Consequently, it does not lend itself to an efficient global
escrow KEM. We fill this gap by observing that the relaxed version of Joux’s pro-
tocol described above can be realized using Type-III pairing under the co-DBDH
assumption. Towards minimizing the public key size of the resulting global es-
crow KEM, we adapt the original Joux’s protocol by designating Type-A public
key of the form gb1 ∈ G1, Type-B public key of the form gc2 ∈ G2, and Type-C
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public key of the form (ga1 , g
a
2 ) ∈ G1×G2. This yields a global escrow KEM (and

hence a global escrow PKE) from asymmetric pairing based on the co-DBDH
assumption. See Section 8 for comparison with the only known prior work called
escrow ElGamal PKE [BF03].

7 Instantiations

In this section, we present instantiations of our two generic HISE constructions
(described in Section 4 and 5) and two generic global escrow HISE construc-
tions (yielded by mixing the general approaches for building HISE and global
escrow PKE). We limit ourselves to discrete-log/pairing-based realizations since
factoring-based and lattice-based realizations suffer from large key size.

7.1 Instantiation of HISE from IBE

We instantitate our first HISE construction (presented in Section 4) by choosing
Boneh-Franklin IBE with asymmetric pairing as the underlying IBE scheme,
yielding HISE scheme 1 as below.

– Setup(1λ): runs (G1,G2,GT , p, e) ← BLGroupGen(1λ), picks g1
R←− G1, sets

id∗ = 1ℓ+1, outputs pp = id∗. We assume that pp also includes the descrip-
tions of bilinear groups and a hash function H : {0, 1}ℓ+1 → G2.

– KeyGen(pp): on input pp = id∗, picks sk
R←− Zp, computes pk = gsk1 ∈ G1.

– Derive(sk): on input sk, outputs dk = H(id∗)sk ∈ G2.
– Enc(pk,m): on input pk and m ∈ GT , picks r R←− Zp, computes c1 ← gr1 ∈ G1

and c2 ← e(pk,H(id∗))r ·m, outputs c = (c1, c2).
– Dec(dk, c): on input dk and c, outputs m = c2/e(c1, dk).
– Sign(sk, m̃): on input sk and m̃ ∈ {0, 1}ℓ, outputs σ = H(0||m̃)sk ∈ G2.
– Vrfy(pk, m̃, σ): picks r

R←− Zp, outputs “1” if e(pk,H(0||m̃))r = e(gr1, σ) and
“0” otherwise.

Remark 4. HISE scheme 1 is obtained by faithfully applying the generic trans-
form to the Boneh-Franklin IBE. We note that in this case the Vrfy algorithm
could be simplified by directly checking if e(pk,H(0||m̃)) = e(g1, σ), the resulting
the signature component is exactly the Boneh-Lynn-Shacham signature [BLS01]
from the asymmetric pairing.

We realize HISE scheme 1 atop pairing-friendly curve bls12-381 with 128-bit
security level [SKSW20]12, in which |G1| = 48 bytes, |G2| = 96 bytes, |Zp| = 32
bytes, and |GT | = 191 bytes (by exploiting compression techniques [RS08]).
12 Recent security evaluations show that the security level of bls12-381 is close to but

less than 128-bit. As curves of 128-bit security level are currently the most widely
used, BLS12-381 and BN462 are recommended in the memo [SKSW20] in order to
have a more efficient and a more prudent option respectively.
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7.2 Instantiation of HISE from PKE and ZKPoK
Public-key encryption. We choose the ElGamal PKE as the starting PKE
scheme. The randomness space R for KeyGen is Zp. The KeyGen algorithm on
input r

R←− Zp outputs sk = r and pk = gr. Thus, G : Zp → G is defined as
r 7→ gr. Clearly, G is injective, and thus it is unconditionally target-collision
resistant. We assume that there is a one-to-one mapping from {0, 1}ℓ to Zp for
some integer ℓ. Concretely, we choose the elliptic curve secp256k1 with 128-
bit security. We demonstrate the generality of our second HISE construction by
providing two more eligible PKE candidates (see the full version for the details).
Uniform one-way function. After fixing R = {0, 1}ℓ, we choose a one-way
function H from {0, 1}n to {0, 1}ℓ. A popular choice is using hash function like
SHA-256, in which the number of AND gates of a single call is about 25000. Mo-
tivated by applications in FHE schemes, MPC protocols and SNARKs, recently
there is a trend to design lightweight symmetric encryption primitives with a low
number of multiplications or a low multiplicative depth. In our instantiation, we
choose the POSEIDON-128 hash [GKR+21], whose number of rank-1 constraint
satisfiability (R1CS) constraints is roughly 300.
General purpose ZKPoK. Due to the involvement of F, Rkey defined by G◦F
is unlikely to be an algebraic relation. As a consequence, it is difficult to prove
Rkey using simple Sigma protocols. Our solution is to resort efficient general pur-
pose public-coin ZKPoK protocols. A flurry of recent work on zk-SNARKs with
transparent setup offers plenty of candidates, including the backbone protocols
that underlie almost all the known zk-SNARKs in the random oracle model.
In our instantiation, we choose Spartan [Set20]. We convert the proved relation
Rkey into R1CS format using xJsnark [KPS18]; the number of R1CS constraints
of is roughly 680, 000 ≈ 220.

We are now ready to instantiate our second HISE construction (presented in
Section 5) from the above building blocks, yielding HISE scheme 2.

– Setup(1λ): on input a security parameter λ, runs (G, g, p)← GroupGen(1λ),
picks a uniform one-way function F : {0, 1}n → {0, 1}ℓ, runs ppnizkpok ←
NIZKPoK.Setup(1λ), and outputs pp = (F, ppnizkpok). The plaintext space is
M = G. The message space is M̃ = {0, 1}∗.

– KeyGen(pp): on input pp = (F, ppnizkpok), picks sk
R←− {0, 1}n, computes

pk = gF(sk) ∈ G.
– Derive(sk): on input sk, outputs dk ← F(sk) ∈ Zp.
– Enc(pk,m): on input pk and m ∈ G, picks r

R←− Zp, computes X ← gr ∈ G,
Y ← pkr ·m, outputs C = (X,Y ).

– Dec(dk, c): on input dk and C = (X,Y ), outputs m← Y/Xdk.
– Sign(sk, m̃): computes σ ← NIZKPoK.Prove(pk, sk, m̃).
– Vrfy(pk, m̃, σ): on input pk, m̃ and σ, outputs b← NIZKPoK.Verify(pk, σ, m̃).

7.3 Two Instantiations of Global Escrow HISE
As depicted in Figure 1 in the introduction part, there are two paths to build
global escrow HISE. Our first construction is along the path enabled by the
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GE conversion. Starting from the HISE scheme presented in Section 7.1, we
compile it into a global escrow one by applying the twisted Naor-Yung trans-
form [BMV16], yielding global escrow HISE scheme 1. Our second construction
is along the path enabled by the HI conversion. Starting from the global es-
crow PKE based a relaxed version of Joux’s three-party NIKE (sketched in
Section 6.2.3), we add the signing functionality via the HI conversion, yielding
global escrow HISE scheme 2. The joint security of the above two schemes follows
from the fact that the signing key is independent of the global escrow decryption
key.

Due to space limit, we defer the specification global escrow HISE scheme 1/2
to the full version.

8 Comparison and Evaluation

This section compares (global escrow) HISE with CPK and ISE in terms of
security and functionality properties, then evaluates our instantiations of (global
escrow) HISE and global escrow PKE.

8.1 Comparison of Security and Functionality Properties

Paterson et al. [PSST11] introduce a “Cartesian product” construction of CPK
(henceforth CP-CPK for short). The construction uses arbitrary encryption and
signature schemes as components, runs the key generation algorithms indepen-
dently, then concatenates the keypairs of the encryption scheme and signature
scheme, and uses the appropriate component of the compound keypair for each
operation. CP-CPK best formalizes the principle of key separation, and hence
also naturally supports individual key escrow. We choose it as a baseline to judge
(global escrow) HISE schemes that use the principle of key reuse.

Table 1 offers a comparision of (global escrow) HISE against previous CP-
CPK and ISE in terms of security and functionality properties as well as cer-
tificate cost. The results show that HISE supports individual key escrow in the
context of key reuse, while global escrow HISE further supports global key es-
crow. Besides, we highlight that CP-CPK doubles the certificate cost, which
should be minimized in practice.

8.2 Efficiency Evaluation of (Global Escrow) HISE

Baseline. We build a concrete CP-CPK scheme atop elliptic curve secp256k1
with 128-bit security (where |G| = 33 bytes, |Zp| = 32 bytes) as a baseline. More
precisely, we choose ElGamal PKE as the encryption component and Schnorr
signature as the signature component, because they are among the most efficient
elliptic-curve based cryptosystems with short public keys.
Methodology. We implement the CP-CPK scheme and our (global escrow)
HISE instantiations in C++ based on the mcl library [Shi]. Parameters of all
schemes are set to achieve 128-bit security level. All experiments are carried on
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Table 1: Comparison between CP-CPK, ISE, and our (global escrow) HISE
Scheme strong

joint security
individual

escrow
global
escrow

key
reuse

certificate
cost

CP-CPK [PSST11] 3 3 7 7 ×2
ISE [PSST11] 7 7 7 3 ×1

HISE 3 3 7 3 ×1
global escrow HISE 3 3 3 3 ×1

For certificate cost, ×1 (resp. ×2) means the cost associated with one (resp. two) certificate(s). As
aforementioned, certificate costs include but not limit to registration, issuing, storage, transmis-
sion, verification, and building/recurring fees. Take SSL certificate as an example, one certificate is
roughly 1KB, takes roughly 200∼300ms to transmit in WAN setting with 50Mbps network band-
width and 8ms to verify. The monetary cost for an SSL certificate varies depending on features
and business needs. While the cost of an SSL certificate for common usage is $10∼$2000/year,
the banks and large financial institutions could spend up to $500,000/year on an SSL certificate
with high-level security guranttee.

a MacBook Pro with Intel i7-9750H CPU (2.6GHz) and 16GB of RAM. We view
the key size and the associated certificate cost as the primary metric of interest.
The experimental results are presented in Table 2. As shown in this table, our
(global escrow) HISE schemes have more compact key size than the CP-CPK
in both asymptotic and concrete sense. Among the five schemes, global escrow
HISE scheme 1 achieves joint security, while the rest schemes achieve weak joint
security (the encryption component is CPA-secure).

The ciphertext size of HISE scheme 1 and global escrow HISE scheme 1
and 2 are slightly large. Nevertheless, this is not a big issue since in real-world
applications long plaintexts are typically encrypted using hybrid encryption,
thereby the overhead of the PKE ciphertext can be greatly amortized. The sig-
nature components of (global escrow) HISE scheme 2 are less efficient due to
the involvement of general-purpose ZKPoK for large-size circuit describing the
composite relation Rkey. We hence regard (global escrow) HISE scheme 2 more of
theoretical interest for the time being. We leave how to improve the efficiency as
an interesting problem. A possible solution is to adapt the techniques of creating
efficient NIZK for composite statement [AGM18] to the public-coin setting.

8.3 Comparison of Global Escrow PKE

As a byproduct, we obtain a global escrow PKE, which serves as the starting
point of our global escrow HISE 2. Our scheme (see details in the full version)
can be viewed as an adaption of Boneh-Franklin escrow ElGamal PKE [BF03,
Section 7] to the setting of asymmetric pairing, and hence enjoys much better
efficiency. While this may appear straightforward in hindsight, we stress again
that the adaptation is non-trivial, which is leaded by our observation that global
escrow PKE can be derived from a relaxed version of three-party NIKE (see
discussions in Section 6.2.3).
13 The frontend of a ZK proof system provides means to express statements in high-

level language and compile them into low-level representation (e.g., rank 1 constraint
system), then invokes a suitable ZK backend.
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Table 2: Efficiency comparison of CPK and our proposed (global escrow) HISE schemes

Scheme efficiency (ms) [# exp, #pairing] sizes (bytes) [# G, # Zp]
KGen Sign Vrfy Enc Dec Der Dec′ |pk| |sk| |c| |σ|

CP-CPK 0.015 0.064 0.120 0.118 0.056 ⊘ ⊘ 66 64 66 65
[2, 0] [1, 0] [2, 0] [2, 0] [1, 0] ⊘ ⊘ 2G 2Zp 2G [G,Zp]
0.057 0.148 0.733 0.569 0.364 0.148 ⊘ 48 32 239 96HISE scheme 1 [1, 0] [1, 0] [0, 2] [2, 1] [0, 1] [1, 0] ⊘ G1 Zp [G1,GT ] G2

0.058 3.5s 250 0.115 0.056 0.0004 ⊘ 33 32 66 40KHISE scheme 2 [1, 0] N/A N/A [2, 0] [1, 0] N/A ⊘ G Zp 2G N/A
global escrow 0.057 0.148 0.733 1.462 1.505 0.148 1.505 48 32 701 96

HISE scheme 1 [1, 0] [1, 0] [0, 2] [5, 2] [4, 1] [1, 0] [4, 1] G1 Zp [2G1, 3GT ,Zp] G2

global escrow 0.057 3.5s 250 0.629 0.531 0.0004 0.532 48 32 287 40K
HISE scheme 2 [1, 0] N/A N/A [2, 1] [1, 1] N/A [1, 1] G1 Zp [G2,GT ] N/A

Performance of Cartesian product CPK and (global escrow) HISE schemes with 128-bit security
level. (G1,G2,GT ) refers to asymmetric pairing groups. G refers to ordinary elliptic group. We
report times for setup, key generation, signing, verification, key derivation, encryption, and
(escrow) decryption, as well as the sizes of public key pk, secret key sk, ciphertext c and signature
σ, and ignore the size of public parameters and group operations in the interests of space. The
symbol ⊘ indicates that there is no corresponding algorithm. The symbol N/A indicates that the
efficiency (or bandwidth) is hard to measure by algebra operations (or elements). At the time
of this writing, the frontend tool13 for Spartan [Set20] is not available, and hence we estimate
the costs of signing/verification operations and signature size of (global escrow) HISE scheme 2
using the cost model provided by the authors, and mark the figures with gray color.

We build escrow ElGamal PKE on supersingular curve ss-1536 [SKSW20]
(where |G| = 193 bytes, |GT | = 192 bytes, |Zp| = 32 bytes)14 based on the relic
library [AGM+]. We implement our global escrow PKE atop pairing-friendly
curve bls12-381. To attain the same security level, our scheme could operate in
elliptic groups defined on much smaller base field than the case of escrow ElGa-
mal PKE. The comparison results in Table 3 show that our scheme outperforms
escrow ElGamal PKE in all parameters, in particularly, being several orders of
magnitude faster in terms of speed.

Table 3: Comparison of escrow ElGamal PKE [BF03] and our global escrow PKE
Scheme efficiency (ms) [# exp, #pairing] sizes (bytes) [# G, # Zp]

Setup KGen Enc Dec Dec′ |pp| |edk| |pk| |sk| |c|
Boneh-Franklin 2.879 2.014 8.723 6.654 6.745 386 32 193 32 385

escrow ElGamal PKE [2, 0] [1, 0] [2, 1] [1, 1] [1, 1] 2G Zp G Zp [G,GT ]
our proposed 0.243 0.058 0.680 0.579 0.586 288 32 48 32 287

global escrow PKE [4, 0] [1, 0] [2, 1] [1, 1] [1, 1] [2G1, 2G2] Zp G1 Zp [G2,GT ]

Performance of global escrow PKE schemes with 128-bit security level. (G1,G2,GT ) refers to
asymmetric pairing groups. (G,GT ) refers to symmetric pairing groups. We report times for setup,
key generation, encryption, and (escrow) decryption, as well as the sizes of public parameters
pp, global escrow decryption key edk, public key pk, secret key sk, and ciphertext c.

14 So far, ss-1536 is the only reported pairing-friendly curve with 128-bit security that
supports Weil pairing.
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9 Conclusion

Key reuse and key escrow are two broad issues arising from practical applications
of cryptography. In this work, we investigated the interdiscipline of these two
contradictory objects, an important but much-overlooked problem in prior work,
aiming to enjoying the best of both worlds. We introduced a new notion called
HISE featuring a novel two-level key derivation structure, which hits a sweet
balance between key separation and key reuse. HISE not only admits individual
key escrow, but also retains the benefit of key reuse. We then gave a black-box
construction from (constrained) IBE, as well as a non-black-box construction
from uniform OWF, PKE, and ZKPoK. To further attain global key escrow,
we initiated a systematic study of global escrow PKE, which is long overdue
for formal definition and efficient construction. We provided rigorous security
notions and two generic constructions. The first uncovers a new application of
the Naor-Yung paradigm. The second establishes an interesting connection to the
three-party NIKE, and leads to the most efficient global escrow PKE to date.
By mixing the results developed above, we suggested two paths for building
global escrow HISE. The concrete (global escrow) HISE schemes instantiated
from our generic constructions have competitive performance to the best CP-
CPK scheme, and exhibit advantages in terms of richer functionality and public
key reuse.

On the theoretical side our work resolves the problems left open in prior
works [Ver01, PSST11], of reconciling the conflict between key reuse and key
escrow. On the practical side our work serves as a developer guide for integrated
usage of signature and encryption.

Finally, we remark that it is possible to consider a dual version of HISE,
in which the hierarchy between signing key and decryption key are reversed.
Such dual HISE could be useful in scenarios where decryption capability is a
first priority. We leave the construction and application of dual HISE as an
interesting problem.
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