
Modular Design of Role-Symmetric
Authenticated Key Exchange Protocols

Yuting Xiao1, Rui Zhang(�)1,2, and Hui Ma1

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences

2 School of Cyber Security, University of Chinese Academy of Sciences
{xiaoyuting,r-zhang,mahui}@iie.ac.cn

Abstract. Authenticated Key Exchange (AKE) is an important prim-
itive in applied cryptography. Previously several strong models of AKE
were introduced, e.g., CK, CK+, eCK and their extended versions consid-
ering perfect forward secrecy (PFS), (denoted by a “-PFS” suffix). These
models provide different security guarantees and they are incomparable.
Hence, one still lacks systematic understanding of the prerequisites for
secure AKEs and a modular design of AKE protocols. In this paper, we
investigate this issue in the context of One-Round Authenticated Key
Exchange (ORKE), which is role-symmetric for players and only needs
a single round to establish a session key.
Our treatments are as follows: First, we reformat the CK, CK-PFS, CK+,
CK+-PFS, eCK and eCK-PFS models in the context of ORKE, some of
which are formulated for the first time in the literature. Next, we intro-
duce a new tool, Key-wise Recoverable Function (KRF). With merely
black-box calls to KRFs, we build modular constructions for ORKEs.
As an immediate application, many previous protocols can be explained
naturally by the construction. We further build a protocol with CK,
CK+, eCK, CK-PFS, CK+-PFS and eCK-PFS security simultaneously,
by properly instantiating the underlying KRF. As a by-product, we have
simplified proofs for a few known protocols, with non-standard assump-
tions avoidable.

Keywords: role-symmetric, one-round authenticated key exchange, key-
wise recoverable functions, modular construction

1 Introduction

Authenticated Key Exchange (AKE) is a fundamental cryptographic primitive to
set up secure channels between parties over an open network. In the last decades,
many AKE protocols have been developed and used in practice, e.g., SSL/TLS,
IPSec and SSH. Typically, in a two-party AKE protocol Π, each party possesses
a long-term public/secret key pair. If any two parties want to negotiate a session
key, they should select their own ephemeral keys, then exchange messages in
a specific order (e.g., the initiator I starts by sending M1, the responder R

sends M2, the initiator I sends M3, and so on), finally compute the session
key from four pieces of information, including their own long-term secret and
ephemeral keys, the other party’s long-term public key and the transcript (i.e.,
the concatenation of the identities of both sides and all transmitted messages).

We say that Π is an n-round protocol if the maximum number of messages ex-
changed from an initiator to a responder during one protocol execution is n. We
say a protocol is role-symmetric if both sides have equivalent roles, namely, nei-
ther side needs to wait for the other party’s message to arrive. It is a significant
useful property in practice, which greatly reduces latency. In the literature, sev-
eral famous protocols are role-symmetric, e.g., MQV [20], HMQV [18], NAXOS
[19], etc. In particular, these protocols only involve two messages in one round
to establish a session key. Such protocols have attracted much attention due to
their simplicity and their efficiency in terms of bandwidth usage. In this paper,
we focus on this case, also known as One-Round Authenticated Key Exchanges
(ORKEs).

Up to now, a number of security models have been introduced for AKEs.
The first is the BR model introduced by Bellare and Rogaway [2], capturing an
open network fully controlled by adversaries. It is an indistinguishability-based
security definition. Any party executing one protocol instance is called a session.
Adversaries are allowed to launch various interleaving attacks, corrupt parties’
long-term keys and reveal session keys. These behaviours are formally modeled as
performing Send(·), Corrupt(·) and SKReveal(·) queries on specific sessions. The
security is defined via an experiment between an adversary and the challenger,
where the adversary is allowed to adaptively ask above queries, and choose a
target session in a Test(·) query that outputs a real or random session key ac-
cording to a flipped coin. The adversary is said to win if it guesses the correct
bit with non-negligible advantage over random guess. To avoid trivial success,
the target session must be fresh throughout the experiment. Note that the fresh-
ness notion is important help us understand different security models, which in
turn depends on the definitions of session identifiers (to identify sessions) and
matching-session (to denote the session via the same execution instance with
the target session), and mainly reflects the restrictions on the adversary’s access
to secret information of the target session. After that, several stronger security
models were developed, namely, CK [7], eCK [19] and CK+ [18]. In these models,
the adversaries are allowed to obtain more secret information.

The CK model was introduced by Canetti and Krawczyk [7], which addi-
tionally allows an adversary to obtain the secret state of a specific session via
the SSReveal(·) query. Since Canetti and Krawczyk did not explicitly specify
what information is included in the session state, the claiming CK-security of
a particular protocol should come with a careful pre-definition of it. The eCK
(extended CK) model was introduced by LaMacchia, Lauter and Mityagin [19].
They replaced the SSReveal(·) query by the EphKReveal(·) query, which gives
an adversary the power to corrupt the ephemeral key (i.e., the randomness used)
of a specific session. As the name implies, the eCK model provides more secu-
rity guarantees that are not originally considered by the CK model, e.g., weak

2

perfect forward secrecy (wPFS) [1,18], as well as resistance to key-compromise
impersonation attack (KCI) [23,15] and maximal exposure attack (MEX, where
a non-trivial combination of the ephemeral and long-term keys of the target ses-
sion and its matching session are exposed to the adversary). The CK+ model
was originally used to capture the security properties of HMQV [18] and later
reformatted by Fujioka et al. [11]. It seems like but not actually a combination of
the CK and eCK models. In the CK+ model, an adversary can ask SSReveal(·)
queries and get a non-trivial combination of the ephemeral and long-term keys
of the target session and its matching session.

In the literature, several works have developed the CK, CK+ and eCK models
for capturing perfect forward secrecy (PFS). Boyd and Nieto [6] considered PFS
for the CK model, which we prefer call the CKBN model. Yoneyama [27] proposed
the CK+-sFSNSR model based on the CK+ model. Cremers and Feltz [9] also
proposed the eCK-PFS model to capture the PFS for the eCK model. Note that,
when considering PFS, both parties’ long-term keys will eventually be exposed
to the adversary, thus if it is also allowed to reveal the ephemeral secret of
either party, the adversary would trivially win. To avoid trivial success, some
less common constraints on the adversaries’ behaviours were raised in the CKBN

and CK+-sFSNSR models, e.g., SSReveal(·) query is not allowed on any session
between the owner and the peer of the target session. While in the eCK-PFS
model, the notion of origin-session was proposed, which facilitates analysing and
limiting the adversaries’ behaviours in a more granular way, thus following the
common manner defining security in the CK, CK+ and eCK models.

To date, only a few work attempted to investigate relations of the existing
models. Cremers [8] noticed that, the original versions of the CK [7], CK+ [18]
and eCK [19] models are incomparable, by showing a (somehow artificial) pro-
tocol provable secure in one model is insecure in other models. This accounts for
why later work only considered security in a single model: e.g., [17,4,22] in the
CK model, [21,16,25] in the eCK model, [24] in the CK+ model and [3,26] in the
eCK-PFS model.

On the other hand, some subsequent works did make subtle changes to these
models. For instance, Boyd et al. [4] redefined the session identifiers for the
CK model using the concatenation of the messages sent and received by parties
instead of a string required to be sent along with the message, which requires
the definition of matching notion to be modified accordingly; in the CK+ model
by Fujioka et al. [11,12], the definition of matching notion includes an extra
restriction, i.e., two sessions must have non-equal role identifiers (denoting the
actor of a session is an initiator or a responder); in the eCK-PFS model by
Bergsma et al. [3], such restriction was dropped in defining the matching notion,
differing from the original eCK and eCK-PFS models.

Hence a natural question arises whether insisting these different definitions
of session identifiers and matching sessions really matters in practice? In addi-
tion, many different techniques and different assumptions were used for different
schemes in different models, therefore, a systematic understanding of how to con-
struct secure ORKEs is extremely necessary and helpful.

3

The above are exactly our motivations to revisit the CK, eCK, CK+ and
eCK-PFS models, in the context of ORKE as a first step, and develop a modular
construction that can be proved secure in these models, respectively. As a result,
we show there exists an ORKE protocol provably secure in different models, if
its underlying building-blocks meet some natural security properties.

1.1 Our Results

A Complete Set of Definitions for ORKE. We present a succinct and
comprehensible unification of the existing models in the context of ORKE. We
also formally defined CK-PFS and CK+-PFS models utilizing the notion of origin
session. As the name suggests, these two models extend naturally the CK and
CK+ models by capturing perfect forward secrecy (PFS). Note that, they are
stronger than the CKBN and CK+-sFSNSR models, respectively. Combining with
the existing CK, eCK, CK+ and eCK-PFS models, we have a complete set of
unified strong security definitions for ORKE.

A New Tool KRF for Secure ORKEs. We introduce a new tool, called
Key-wise Recoverable Function (KRF). Using KRF and passively secure Key
Exchange (KE) as building blocks, we give a modular construction (Fig. 6) and
other extended variants, whose security holds in all the above-mentioned strong
models by assuming the underlying KRF meets different security definitions.

Unification of the Previous Works. We note that our modular construction
simultaneously captures the ideas behind several well-known constructions, in-
cluding 2×KEM+DH [4] (CK security), NAXOS [19] (eCK security), HMQV [18]
(CK+ security) and BJS [3] (eCK-PFS security).

Independent from our work, Xue et al. [24] introduced a primitive called
double-key key encapsulation mechanism (2-key KEM), based on which, they
presented modular constructions to simplify the construction and analysis of
CK+-secure and eCK-secure AKEs. Compared with their work, our work has a
wider range of application as the CK, CK-PFS, CK+-PFS and eCK-PFS models
were also taken into account. In addition, our modular constructions are role-
symmetric, which makes it more suitable for some scenarios.

Table 1. Detailed Comparisons with Xue et al.

Constructions Role-Symmetric Tools Applicable Models Unification of Previous Works

Xue et al. [24] N 2-key KEM CK, eCK
HMQV [18] CK+

NAXOS [19] eCK
Okamoto [21] eCK

FSXY12,13 [11,12] CK+

Our work Y KRF,KE CK, CK+, eCK
CK-PFS, CK+-PFS, eCK-PFS

2KEM+DH [4] CK
HMQV [18] CK+

NAXOS [19] eCK
BJS [3] eCK-PFS

†† “N” denotes “no”, and “Y” denotes “yes”.

4

New Results for ORKEs with KRFs. We have the following new results:

– We observe that our modular construction using a same KRF achieves CK+

(resp., CK+-PFS) security and eCK (resp., eCK-PFS) security, which makes
a protocol selection much easier in practice.

– By instantiating our modular construction with a proper KRF, we obtain
a secure protocol in the CK-PFS model (first formulated in this work).
Compared with the SIG(2KEM+DH) construction, an immediate scheme
inspired by the work of Cremers and Feltz [9], this proposal is more efficient
in terms of computation and bandwidth.

– Finally, we show that there is a KRF with full security (i.e., meeting all the
security definitions), applying our modular construction, a secure ORKE is
then acquired in all the known security models, namely, CK, CK+, eCK,
CK-PFS, CK+-PFS and eCK-PFS.

2 Preliminary

In this section, we review some useful notations and notions.

Notations. For arbitrary k ∈ N, 1k denotes the string of k ones. For an integer
m, [m]

def
= {1, 2, . . . ,m}. If S is a distribution, x←$S denotes randomly choosing

an element according to S. If A is an algorithm, A(x; r)→ y denotes that A takes
x as input and r as internal randomness returns output y. If y is a variable,
y ← A(x) denotes assigning the output of A with x as input to y. A function
µ(·) is called negligible, if for every polynomial p(·), there exists some λ0 such
that µ(λ) ≤ 1/p(λ), for every λ > λ0.

Passively Secure Key Exchange. Here we define passively secure Key Ex-
change (KE) that is used without any long-term keys, which consists of two
polynomial time algorithms: a probabilistic algorithm KE.Gen(1λ) → (pk, sk)
that takes as input a security parameter 1λ and returns a key pair (pk, sk);
a deterministic algorithm KE.Key(sk, pk′) → k that takes as input a secret
key sk and a public key pk′ and returns a key k. Let CKey(pk, pk′) denote
k ← KE.Key(sk, pk′). Correctness requires that for any (pk, sk) ← KE.Gen(1λ)
and (pk′, sk′)← KE.Gen(1λ), CKey(pk, pk′) = CKey(pk′, pk) holds.

Definition 1 (Passive-Security). A KE scheme KE = (KE.Gen,KE.Key) is
called Passively Secure (PS), if for any PPT adversary A, its advantage:

AdvPSKE,A(λ)
def
= Pr[b′ = b : b′ ← APExecute(·),PReveal(·),PTest(·)(1λ)] ≤ µ(λ),

where A is allowed to adaptively query:

– PExecute(i): For unused identity i, compute (pki, ski) ← KE.Gen(1λ) and
(pk′i, sk

′
i)← KE.Gen(1λ), and return (pki, pk

′
i). Otherwise, do nothing.

– PReveal(i): If the identity i has been used in previous PExecute(·) queries,
compute ki ← KE.Key(ski, pk

′
i) and return ki.

5

– PTest(i∗): This can be asked for only once. If b = 0, return the real key
ki∗ ← KE.Key(ski∗ , pk

′
i∗); else if b = 1, return a random key. Throughout

the experiment, PReveal(i∗) should never been queried.

Pseudo-Random Function. Let F def
= {Fλ : Sλ ×Domλ → Rngλ}λ∈N define

a function family with families of key spaces {Sλ}λ∈N, domains {Domλ}λ∈N and
ranges {Rngλ}λ∈N, where λ denotes a security parameter.

Definition 2 (PRF). A function family F is called a secure Pseudo-Random
Function (PRF) family if for any PPT adversary A, its advantage

AdvPRF
F,A (λ)

def
=| Pr[1← AFλ(·)]− Pr[1← ARFλ(·)] |≤ µ(λ),

where RFλ(·) : Domλ → Rngλ is a truly random function family.

3 Security Definitions for ORKEs

In this section, we unify the definitions of the CK [7,4,5], eCK [19,21], CK+

[18,11,12] and eCK-PFS [9,3] models in the context of ORKE, and introduce
the CK-PFS and CK+-PFS models. We resemble the method defining security
models used in [11], namely we formulate these models as follows: wPFS, PFS,
KCI resistance, and MEX resistance are integrated into the experiments of con-
sidered models by exhaustively classifying leakage patterns. Such definitional
treatment is convenient for capturing all required properties rigorously in each
model, and greatly simplifies the security proofs in these models.

P̂i P̂jInput: (ski,pkj) Input: (skj , pki)

1. Sample an ephemeral key ri
2. (msgi, si)← f(ski, pkj , ri)
2. (msgi, si)← f(pkj , ri)

↓ (ri, si)

3. (sj , sij)← f̄c(ski, ri,msgj)
– sj ← f̄(ski,msgj)
– sij ← fc(ri,msgj)

4. k ← KDF(msgi,msgj , si, sj , sij)

msgi−−−→
msgj←−−−

1. Sample an ephemeral key rj
2. (msgj , sj)← f(skj , pki, rj)
2. (msgj , sj)← f(pki, rj)

↓ (rj , sj)

3.(si, sij)← f̄c(skj , rj ,msgi)
– si ← f̄(skj ,msgi)
– sij ← fc(rj ,msgi)

4. k ← KDF(msgi,msgj , si, sj , sij)

Output: k Output: k

Fig. 1. A generic description of ORKE

We first present a generic description of ORKE to help us understand the
security models. Assume each party P̂i possesses a long-term public/secret key
pair (pki, ski), and will select an ephemeral key (i.e., the randomness r) in each
execution instance. In general, we use three functions to abstract each party’s
local computations: (1) f to generate the message sent to its peer party; (2) f̄c
to deal with the received message; (3) KDF to compute the session key. Take one

6

execution instance between two parties P̂i and P̂j as an illustration (see Fig. 1).
The function f may take two forms. The first takes the party’s own secret key
as a partial input, while the second does not. We use them to capture different
forms of existing protocols. For examples: in 2KEM+DH [4] and HMQV [18],
each party’s own secret key is not required to compute a sent message; while in
NAXOS [19] and BJS [3], that is required. The function f̄c can be subdivided
into f̄ and fc. Note that, in ORKE, each party only sends a single message
independent of the message sent by its peer party. Therefore, the usages of its
long-term key and ephemeral key are different: the former is used to recover the
embedded key material along with the received message, i.e., si and sj ; the latter
is used to negotiate a new piece of key material, i.e., sij .

Syntax. Let P = {P̂1, P̂2, ..., P̂N} be a finite set of N parties’ identities. A
protocol Π is a collection of N interactive PPT Turing machines run by differ-
ent parties. Each party can execute multiple protocol instances, called sessions,
concurrently. Each session can only be activated once. The i-th session at P̂U
is denoted as (P̂U , i) ∈ P × N. For each session s, a tuple of variables partially
selected form the following lists will be set:

– sactor: To denote the identity of the session’s actor;
– speer: To denote the identity of the session’s intended peer;
– ssent: The concatenation of timely ordered messages sent by sactor;
– srecv: The concatenation of timely ordered messages received by sactor;
– sid: A string generated by sactor to explicitly identify the session and required

to be sent along with the message;
– srole: To denote the role of sactor, e.g., initiator or responder.

These values will be determined once a session is activated or during the
protocol execution. A session is called completed if it returns a session key then
terminates normally. In previous works, to identify any two distinct sessions s
and s′ involved in the same instance, the notion of matching-session was defined:

– sactor = s′peer ∧ speer = s′actor ∧ ssid = s′sid; or
– sactor = s′peer ∧ speer = s′actor ∧ ssent = s′recv ∧ srecv = s′sent; or
– sactor = s′peer ∧ speer = s′actor ∧ ssent = s′recv ∧ srecv = s′sent ∧ srole ̸= s′role.

Among these notions: using an explicit string (i.e., ssid) to identify a session
is seldom adopted now; and in the role-symmetric setting, the variable srole
cannot be utilized to determine whether two sessions are matched or not, since
both sides are allowed to be the initiator. For these reasons, we adopt the second
type. Besides, we will use the notion of origin-session introduced in [9], which is
important to define “-PFS” models. A (possibly incomplete) session s′ is called
an origin session for a completed session s when s′sent = srecv.

Matching-Session vs Origin-Session. Take the right session in (b) from the
three execution instances shown in Fig. 2 as an illustration, its matching session
is thought to be non-existent (since that is not an honest session), but its origin

7

session is thought to be existent, say the left session in (a). “The origin session
of a session s does not exist” means that srecv is not originated from an honest
party but the adversary. In fact, two honest sessions are matched if and only if
they are both origin sessions of each other.

P̂i msg∗i−−−→
P̂j

msg∗j←−−−
(i,j,msg∗i ,msg∗j) (j,i,msg∗j ,msg∗i)

(a)

P̂i(A) msg∗i−−−→
P̂j

msgj←−−−
non-existent (j,i,msgj ,msg∗i)

P̂i msgi−−−→
P̂j(A)

msg∗j←−−−
(i,j,msgi,msg∗j) non-existent

(b) (c)

Fig. 2. Protocol execution instances with an adversary A. (a) A passively observes.
(b) A replays messages originated from P̂i. (c) A replays messages originated from P̂j .

Oracle Queries. The adversary is modeled as an interactive PPT Turing ma-
chine that controls all communications between parties, i.e., the adversary can
eavesdrop, stop, delay and alter the messages passing over the channel. And it
may be allowed to obtain session-specific secret information. These abilities are
modeled via different oracle queries:

– Send(s,m): This query models the adversary sending a message m to a
session s, and responses according to the protocol description. Abusing no-
tations, the adversary is allowed to activate a sessuib s with a peer P̂U via a
Send(P̂U , s) query, or communicate with a session s by sending a message
m on behalf of P̂U via a Send(P̂U , s,m) query.

– Corrupt(P̂U): This query models long-term key (LTK) leakages, and returns
the LTK of P̂U , which is denoted as LTK[P̂U].

– SKReveal(s): This query models session key (SK) leakages, and returns the
SK of s if it is completed, which is denoted as SK[s].

– EphKReveal(s): This query models ephemeral key (EphK) leakages, and
returns the EphK (i.e., the randomness) of s, which is denoted as EphK[s].

– SSReveal(s): This query models session state (SS) leakages, and returns
the SS of s before it completes, which is denoted as SS[s].

– Test(s): This query does not model practical attacks, but is important for
indistinguishability-based security definitions. A random coin b is flipped: if
b = 0, return SK[s]; else return a random key. This query can be issued for
only once and must be on a session that is both completed and fresh. The
notion of freshness is defined as in the last column of Table 2. Jumping ahead,
in the experiment, the input of this query is called the adversary’s target
session, and denoted as s∗ throughout this paper. In addition, we use s̄∗ and
s̃∗ to denote its intended matching session and origin session, respectively.
If without any explicit statement, they are thought to be existent.

8

Table 2. Allowed Queries and Freshness in Different Models

Model Allowed Queries Freshness

CK

Send(·)
Corrupt(·)

SSReveal(·)
SKReveal(·)

Test(·)

The adversary has never perform:
· SKReveal(s∗) and SSReveal(s∗);
· SKReveal(s̄∗) and SSReveal(s̄∗);
· Corrupt(s∗peer) if the target’s matching session does not exist.

CK-PFS

The adversary has never perform:
· SKReveal(s∗) and SSReveal(s∗);
· SKReveal(s̄∗) and SSReveal(s̄∗);
· Corrupt(s∗peer) if the matching session does not exist but the

origin session does exist;
· Corrupt(s∗peer) before the completion of s∗ if the target’s ori-

gin session does not exist.

CK+

The adversary has never perform:
· SKReveal(s∗) and SSReveal(s∗);
· SKReveal(s̄∗) and SSReveal(s̄∗);
It is limited to obtain one key combination as follows:
· LTK[s∗actor] and LTK[s̄∗actor];
· EphK[s∗] and EphK[s̄∗];
· LTK[s∗actor] and EphK[s̄∗];
· EphK[s∗] and LTK[s̄∗actor];
· LTK[s∗actor] if the target’s matching session does not exist;
· EphK[s∗] if the target’s matching session does not exist.

CK+-PFS

The adversary has never perform:
· SKReveal(s∗) and SSReveal(s∗);
· SKReveal(s̄∗) and SSReveal(s̄∗);
It is limited to obtain one key combination as follows:
· LTK[s∗actor] and LTK[s̃∗actor];
· EphK[s∗] and EphK[s̃∗];
· LTK[s∗actor] and EphK[s̃∗];
· EphK[s∗] and LTK[s̃∗actor];
· LTK[s∗actor] and LTK[s∗peer] if the target’s origin session does

not exist, but the latter should be after the completion of s∗;
· EphK[s∗] and LTK[s∗peer] if the target’s origin session does

not exist, but the latter should be after the completion of s∗.

eCK

Send(·)
Corrupt(·)

EphKReveal(·)
SKReveal(·)

Test(·)

The adversary has never perform:
· SKReveal(s∗) and SKReveal(s̄∗);
· both Corrupt(s∗actor) and EphKReveal(s∗);
· both Corrupt(s̄∗actor) and EphKReveal(s̄∗);
· Corrupt(s∗peer) if the target’s matching session does not exist.

eCK-PFS

The adversary has never perform:
· SKReveal(s∗) and SKReveal(s̄∗);
· both Corrupt(s∗actor) and EphKReveal(s∗);
· both Corrupt(s̃∗actor) and EphKReveal(s̃∗);
· Corrupt(s∗peer) before the completion of s∗ if the target’s ori-

gin session does not exist.

†† In the CK-PFS and CK+-PFS models, SSReveal(·) is only forbade on the target session s∗ and its
matching session s̄∗, but still allowed on its origin session s̃∗. Under a special case that the target’s
matching session doesn’t exist but its origin session exists. , the adversary may perform SSReveal(s̃∗)
to get SS[s̃∗] that includes EphK[s̃∗] and some other intermediates.

Important Security Notions and the Experiment. Before giving the for-
mal security definition, we recall several important security goals for ORKEs:

– Perfect Forward Secrecy (PFS): To guarantee the secrecy of older SKs,
say any PPT adversary is unable to distinguish them from random keys,
even when the LTKs of both parties are corrupted.

– weak Perfect Forward Secrecy (wPFS), a weak version of PFS: To
guarantee the secrecy of older SKs, whose negotiation processes were not
thrust in, even when the LTKs of both parties are corrupted.

9

– resistance to Key-Compromise Impersonation (KCI): To guarantee
the secrecy of SKs under KCI attacks. In a KCI attack, an adversary corrupts
a party P̂i and tries to authenticate itself to P̂i as some uncorrupted party
P̂j . Once succeeds, it can compute the SK and break the secrecy trivially.

– resistance to Maximal EXposure (MEX): To guarantee the secrecy of
a SK under the disclosure of any pair of LTKs and EphKs of both parties in
the session except for both the LTK and EphK of each party.

The formal security definition in each model is defined via a two-phase ex-
periment played between a challenger and an adversary A. In Phase-I, A may
adaptively perform allowed oracle queries as collected in Table 2. At some point,
A performs a Test(·) query on a target of its choice. In Phase-II, A can continue
with its regular actions like in the first phase. Eventually, A outputs a guess
bit b′ and halts. If b = b′ and the target session is kept fresh throughout the
experiment, then A is determined as winning in the experiment.

Defining the Output of SSReveal(·). In Fig. 3, we illustrate the execution
processes of P̂i in Fig. 1 and the timing of the SSReveal(·) query may be allowed.
The adversary may trivially win without any limitation.

Start 1. Sample EphK 2. Compute f 3. Compute f̄c

4. Compute KDF End

ri ri, si

si, sj , sij

SSReveal(·)

?

Fig. 3. An illustration of the execution processes

Consider the most extreme case that the SSReveal(·) query may return all
internal states, i.e., (ri, si, sj , sij). Elaborate with the CK+ experiment and the
three execution instances shown in Fig. 2. Assume the adversary A chooses the
left session in (a) as its target eventually, the session key materials of which we
denoted as s∗i , s∗j and s∗ij . According to the definition, the right session in (b)
and the left session in (c) are both not matched to the target session, thus A
can perform SSReveal(·) queries on them to get s∗i and s∗j , respectively. Besides,
A can chose to reveal the EphK of the target’s matching session, say the right
session in (a), which helps A to obtain s∗ij . By doing so, A can compute the
target session key, thus trivially win.

In previous works [4,5,11,12,24], it is assumed that the intermediate values
computed from the received message and own secret key will not be stored for
a long time before computing the session key, which should be securely erased
once the computation is over. That is equivalent to assume the 3rd and 4th steps
shown in Fig. 1 and Fig. 3 are inseparable, thus the SSReveal(·) query is broken
down once the party begins dealing with the received message. To make the
security model definitions still meaningful in the role-symmetric and one-round
setting, we also put such constraint on SSReveal(·) queries.

10

Table 3. The CK Model

Case the target session s∗ the matching session s̄∗ SecurityEphK[s∗] LTK[s∗actor] EphK[s̄∗] LTK[s∗peer]=LTK[s̄∗actor]
I ✓ ✓ wPFS
II ✓ − KCI

Table 4. The CK-PFS Model

Case the target session s∗ the origin session s̃∗ SecurityEphK[s∗] LTK[s∗actor] EphK[s̃∗] LTK[s∗peer]=LTK[s̃∗actor]
I ✓ ✓ wPFS
II ✓ ✓ KCI
III ✓ − ✓τ KCI-PFS

Table 5. The CK+ Model

Case the target session s∗ the matching session s̄∗ SecurityEphK[s∗] LTK[s∗actor] EphK[s̄∗] LTK[s∗peer]=LTK[s̄∗actor]
I ✓ ✓ MEX
II ✓ ✓ MEX
III ✓ ✓ wPFS
IV ✓ ✓ MEX
V ✓ − MEX
VI ✓ − KCI

Table 6. The CK+-PFS Model

Case the target session s∗ the origin session s̃∗ SecurityEphK[s∗] LTK[s∗actor] EphK[s̃∗] LTK[s∗peer]=LTK[s̃∗actor]
I ✓ ✓ MEX
II ✓ ✓ MEX+

III ✓ ✓ wPFS
IV ✓ ✓ MEX+

V ✓ − ✓τ MEX-PFS
VI ✓ − ✓τ KCI-PFS

Table 7. The eCK Model

Case the target session s∗ the matching session s̄∗ SecurityEphK[s∗] LTK[s∗actor] EphK[s̄∗] LTK[s∗peer]=LTK[s̄∗actor]
I ✓ ✓ MEX
II ✓ ✓ MEX
III ✓ ✓ wPFS
IV ✓ ✓ MEX
V ✓ − MEX
VI ✓ − KCI

Table 8. The eCK-PFS Model

Case the target session s∗ the origin session s̃∗ SecurityEphK[s∗] LTK[s∗actor] EphK[s̃∗] LTK[s∗peer]=LTK[s̃∗actor]
I ✓ ✓ MEX
II ✓ ✓ MEX
III ✓ ✓ wPFS
IV ✓ ✓ MEX
V ✓ − ✓τ MEX-PFS
VI ✓ − ✓τ KCI-PFS

†† The symbol ✓denotes that A is allowed to corrupt the key; − denotes empty value because the
corresponding session does not exist at all; ✓τ denotes that A is allowed to corrupt the key, but
should after the completion of the target session.

Model Formulations. We formulate the CK, CK-PFS, CK+, CK+-PFS, eCK
and eCK-PFS models as in Tables 3 to 8. We use “KCI-PFS”, “MEX-PFS” and
“MEX+” to distinguish them from the standard KCI and MEX notions. The
first two are considered in the “-PFS” models, where if the origin session of the
target session s∗ doesn’t exist, LTK(s∗actor) is allowed to be corrupted after the
completion of s∗. As for the notion of “MEX+”, it is only used in the CK+-
PFS model, where a spacial event may occur, i.e., the matching session of the
target session doesn’t exist but its origin session exists. Recall that, SSReveal(·)
query is not forbade on the target’s non-matching sessions, thus the EphK of
the origin session may be corrupted. Note that the SSReveal(·) query does not
merely return the EphK, which makes it different to the same numbered cases
in the CK+, eCK and eCK-PFS models.

In the literature, the CKBN [6] and CK+-sFSNSR [27] were also introduced
to capture PFS for the CK and CK+ models, respectively. But they both didn’t
utilize the notion of origin-session. To avoid the trivial case that the adversary
derives the EphK of the target’s origin session and the LTK of the peer party at
the same time, some constraints are required. In the CKBN model, SSReveal(·)
query should be forbade to capture PFS, otherwise one should back done to
consider wPFS. In the CK+-sFSNSR model: if the target’s matching session does
not exist, the adversary is allowed to corrupt the owner of the target session,
and also the peer party after the completion of s∗, but with a precondition that
SSReveal(·) query is not allowed to any session between the owner and the peer
of s∗; otherwise, the adversary is not allowed to corrupt the peer party at all.

11

We should emphasize, what are considered in the CKBN model can be classi-
fied into the Case-I and Case-III in Table 4. Moreover, the CK-PFS model also
take KCI resistance into consideration, which makes it stronger. Besides, what
are considered in the CK+-sFSNSR model are also considered in the CK+-PFS
model. But as we insist, the existence of the origin session does not imply
the existence of the matching session, such that the cases considered in the
CK+-PFS model cannot be fully covered by the CK+-sFSNSR model. Therefore,
the CK+-PFS model is stronger than the CK+-sFSNSR model too.

Differences Among These Models. The key difference between “-PFS” mod-
els and others is that the formers allow LTK[s∗peer] corruption after the comple-
tion of the target session, even its origin session does not exist. Recall that the
existence of the target’s matching session implies its origin session’s existence,
but not vice versa. Therefore, “-PFS” models consider more complex situations,
e.g., the cases I and III in the CK+-PFS model are not allowed in the CK+

model. The CK and CK-PFS models differ from others: they do not consider
the MEX attack and its variants. The eCK (resp., eCK-PFS) model differs from
the CK and CK+(resp., CK-PFS and CK+-PFS) models: it does not allow the
SSReveal(·) query, instead of the EphKReveal(·) query. The former not only re-
turns EphKs, but also some intermediates. As shown in Fig. 1, computing these
intermediates may involve the session owner’s LTK, thus the leakage through
the SSReveal(·) query is at least no smaller than the EphKReveal (·) query.
We should emphasize that this statement is not absolute when other variants of
SSReveal(·) out of this paper are considered, e.g., it merely returns intermediates
derived from both the LTK and EphK through some one-way computations, the
adversary may learn no more than directly asking the EphKReveal(·) query.

Definition 3. A protocol Π is called secure in a specific model if and only if for
any PPT adversary A, the following properties hold,

– Two honest parties complete matching sessions output the same key;
– The advantage AdvModel

A,Π (λ) = |Pr[b′ = b]−1/2| that A wins in the experiment
is negligible, where Model ∈ {CK,CK-PFS,CK+,CK+-PFS, eCK, eCK-PFS}.

4 Our Modular Construction

In this section, we present some observations, motivated by which, we introduce
a new tool KRF (Key-wise Recoverable Function) and our modular construction.

Essential Observations. Recall the abstraction in Fig. 1. To build a secure
ORKE protocol, one should give proper implementations of (f, f̄c = (f̄ , fc),
KDF). Among these functions, fc is used to negotiate a key material from both
parties’ EphKs. To the best of our knowledges, this is to achieve wPFS, an
important security goal as we mentioned before. In fact, by itself, only passive
attacks can be resisted. We can find its implementations easily, e.g., the typical
Diffie-Hellman Key Exchange (DHKE). As for KDF, its functionality is just to

12

derive a session key from already prepared key materials. Our essential goal is to
give a modular understanding how to prepare these key materials. Put together
f that locates on the left (resp., right) and f̄ that locates on the right (resp.,
left). The conceptual structure of ORKE can be abstracted as the “2× (f, f̄) +
fc +KDF” paradigm.

4.1 Key-wise Recoverable Function (KRF)

How to implement (f, f̄) becomes very important, which motivates us to define
a new tool, namely Key-wise Recoverable Function (KRF). To give a proper
definition for it is our starting point. Note that (f, f̄) can be essentially viewed
as an abstraction of an another type of key exchange (sometimes called One-
Pass Key Exchange), where the initiator (e.g., P̂i) sends a single message to the
responder (e.g., P̂j) without requiring response message: with f , P̂i takes its
own secret key ski, P̂j ’s public key pkj and a randomness ri as input, and gets
two output (msg, s); with f̄ , P̂j takes its own secret key skj , P̂i’s public key
pki and the received message msg as input, can recover the secret s. Intuitively,
to achieve an authenticated key establishment, it’s well if such key exchange
module satisfies the following properties:
1. P̂j assures that the message msg is indeed sent from the claimed P̂i;
2. P̂i assures that only the intended P̂j is able to compute the correct s.

These two properties inspired us to define private evaluation and private
recoverability for KRF, respectively. Besides these, to determine whether more
properties are required or not, we take a closer look at the CK, eCK, CK+, CK-
PFS, eCK-PFS and CK+-PFS models. Recall that, to achieve security in these
models, the key is to achieve wPFS and resistances to the KCI, MEX, MEX+,
MEX-PFS and KCI-PFS attacks. Among these goals, achieving wPFS can be
achieved by properly implementing fc.

To resist the MEX and MEX+ attacks, it is required to assure that as long
as one of the EphK (i.e., ri) and the LTK (i.e.,ski) is kept secret, the adversary
is unable to compute the correct s. To achieve this, we further define the notion
private recoverability under different leakages, i.e., under the leakage of the ran-
domness ri or the secret key ski. After defining private recoverability under the
leakage of the secret key ski, we were able to resist the KCI attack. Consider a
case that an adversary tries to authenticate itself to P̂i as P̂j . Even the adversary
has corrupted ski, basing on this property, it is unable to compute the correct s.
To resist the MEX-PFS and KCI-PFS attacks, our idea is similar to [9,3]: if the
adversary doesn’t know the LTK of the target’s peer, it is unable to originate a
valid message to make the target session terminate normally without rejection.
To achieve this, it is enough to define the private evaluation property.

Up to now, we have roughly considered all intended security goals. Next we
formally define KRFs.

Informal Description of KRF. A KRF evaluates a set of function pairs{
(f, f̄)

}
indexed by an evaluation/re-evaluation key pair, e.g., (ek, rk), and their

13

public keys are denoted as epk and rpk, respectively. As shown in Fig. 4: on input
(rpk, x1, x2), fek(·, ·, ·) outputs (y,w); for its paired function f̄rk(·, ·, ·), it is able to
recover w from (epk, x1, y). Here x1 captures some public input, which can also
be set as empty if useless. A KRF may provide following security guarantees:

f ... f̄

x1

x2

rpk

y

w

ek

x1

epk

y

w

rk

Fig. 4. An Illustration of KRF

– Private Evaluation: without ek, any adversary is unable to generate a
proper (x1, y) pair such that f̄rk(epk, x1, y) ̸= ⊥.

– Private Recoverability: without rk, any adversary is unable to recover
any information of w from (x1, y) even the secret ek or x2 has been leaked.

Formal Definition of KRF. A Key-wise Recoverable Function (KRF) consists
of the following three polynomial time algorithms:

– KRF.Setup(1λ)→ pp: a probabilistic algorithm that takes as input a security
parameter 1λ and returns a common parameter pp that determines the key
space K = (K0,K1) and four other spaces (X1,X2,Y,W);

– KRF.KG(pp, ψ) → (pk, sk): a probabilistic algorithm that takes as input a
common parameter pp and a signal bit ψ ∈ {0, 1}, and returns a public/secret
key pair (pk, sk) ∈ Kψ;

– KRF.Eval(ψ, input) → output: a deterministic algorithm that evaluates f or
f̄ according to the signal bit ψ ∈ {0, 1}:

• if ψ = 0, phrase input as a tuple of (ek, rpk, x1, x2) ∈ K0 ×K1 × X1 × X2

and evaluate fek(rpk, x1, x2) that outputs a tuple (y,w) ∈ Y ×W.
• else if ψ = 1, phrase input as a tuple of (rk, epk, x1, y) ∈ K1×K0×X1×Y

and evaluate f̄rk(epk, x1, y) that outputs an element w ∈ W or a rejection
symbol ⊥ indicating false input.

Correctness. For any pp← KRF.Setup(1λ), (epk, ek)← KRF.KG(pp, 0), (rpk, rk)←
KG(pp, 1) and (x1, x2) ∈ X1 × X2, (y,w) ← KRF.Eval(0, ek, rpk, x1, x2), w′ ←
KRF.Eval(1, rk, epk, x1, y), it holds that w = w′ with overwhelming probability.

Definition 4 (KRF). A KRF scheme KRF=(KRF.Setup, KRF.KG, KRF.Eval)
is called Privately Evaluateable (PE), Privately Recoverable under the Leakage
of Evaluation Key (PR-LEK) or Privately Recoverable under the Leakage of Full
Input (PR-LEX), if for any PPT adversary A, its advantage

Adv
PE/PR-LEK/PR-LX
KRF,A (λ)

def
= Pr[Exp

PE/PR-LEK/PR-LX
KRF,A (λ) = 1] ≤ µ(λ).

14

ExpPEKRF,A(λ) : Initialization(λ):
Initialization(λ) Q ← ∅, pp← KRF.Setup(1λ)

(x∗1 , y
∗)← AO(·)(info, rk∗) (epk∗, ek∗)← KRF.KG(pp, 0)

if KRF.Eval(1, rk∗, epk∗, x∗1 , y
∗) ̸= ⊥ ∧ (x∗1 , y

∗) /∈ Q, (rpk∗, rk∗)← KRF.KG(pp, 1)

return 1; else return 0 info← (pp, epk∗, rpk∗)

ExpPR-LEK
KRF,A=(A1,A2)(λ) : O(rpk, x1, x2):
Initialization(λ) if (rpk, x1, x2) = (rpk∗, x∗1 , x

∗
2)

x∗1 ← A
Ō(·)
1 (info, ek∗), x∗2 ← X2 output ⊥

(y∗,w∗
0)← KRF.Eval(0, ek∗, rpk∗, x∗1 , x

∗
2) else if (rpk, x1, x2) ̸= (rpk∗, x∗1 , x

∗
2)

w∗
1 ←$W, b←$ {0, 1} (y,w)← KRF.Eval(0, ek∗, rpk, x1, x2)

b′ ← AŌ(·)
2 (info, ek∗, x∗1 , y

∗,w∗
b) if rpk = rpk∗

if b′ = b, return 1; else return 0 Q ← Q∪ {(x1, y)}
ExpPR-LX

KRF,A=(A1,A2)(λ) : output (y,w)

Initialization(λ) Ō(epk, x1, y):
x∗1 ← A

O(·),Ō(·)
1 (info), x∗2 ← X2 if (epk, x1, y) = (epk∗, x∗1 , y

∗)

(y∗,w∗
0)← Eval(0, ek∗, rpk∗, x∗1 , x

∗
2) output ⊥

w∗
1 ←$W, b←$ {0, 1} else if (epk, x1, y) ̸= (epk∗, x∗1 , y

∗)

b′ ← AO(·),Ō(·)
2 (info, x∗1 , x

∗
2 , y

∗,w∗
b) w← KRF.Eval(1, rk∗, epk, x1, y)

if b′ = b, return 1; else return 0 output w

Fig. 5. The PE, PR-LEK and PR-LX experiments of KRF

4.2 A Modular Construction for ORKE

In this section, we introduce our modular construction. Two building blocks are
used, i.e., a KRF scheme KRF=(KRF.Setup, KRF.KG, KRF.Eval) that evaluates
f and f̄ functions, and a KE scheme KE = (KE.Gen,KE.Key) with randomness
message R. Our modular construction consists of the following three parts:
Setup. Generate pp ← KRF.Setup(1λ), select a collision resilient hash function
H0 : {0, 1}∗ → X1, and publish (pp,H0) as the system parameters.
Long-term secrets. Each party P̂i is identified by an unique identifier i ∈ [N]
and in possession of two key pairs (epki, eki) ← KRF.KG(pp, 0) and (rpki, rki) ←
KRF.KG(pp, 1). We assume all identifiers are comparable.
Session execution. To negotiate a session key, two parties, say P̂i and P̂j (with
i ≤ j), should execute as the description in Fig. 6.

P̂i(eki, rki) P̂j(ekj , rkj)

pki, yi−−−−→
pkj , yj←−−−−

ri,1 ←$R, ri,2 ←$X2 rj,1 ←$R, rj,2 ←$X2

(pki, ski)← KE.Gen(1λ) (pkj , skj)← KE.Gen(1λ)

xi,1 ← H0(pki), xi,2 ← ri,2 xj,1 ← H0(pkj), xj,2 ← rj,2
(yi,wi)← feki (rpkj , xi,1, xi,2) (yj ,wj)← fekj (rpki, xj,1, xj,2)

xj,1 ← H0(pkj) xi,1 ← H0(pki)

w′
j ← f̄rki (epkj , xj,1, yj) w′

i ← f̄rkj (epki, xi,1, yi)

Abort if w′
j = ⊥ Abort if w′

i = ⊥
k ← KE.Key(ski, pkj) k′ ← KE.Key(skj , pki)

Let T ← epki||rpki||epkj ||rpkj ||pki||yi||pkj ||yj
P̂i compute: SKi ← PRF(wi, T)⊕ PRF(w′

j , T)⊕ PRF(k, T)

P̂j compute: SKj ← PRF(w′
i, T)⊕ PRF(wj , T)⊕ PRF(k′, T)

Fig. 6. Our modular construction

15

Theorem 1. The modular construction shown in Fig. 6 instantiated by different
KEs and KRFs yields different ORKEs in different models as shown in Table 9:

Table 9. The main results of our modular construction

Instantiations Models Requirements for the KE Requirements for the KRF
PE PR-LEK PR-LX

ORKEs

CK

PS

◦
CK-PFS ◦ ◦

CK+ ◦ ◦
CK+-PFS ◦ ◦ ◦

eCK ◦ ◦
eCK-PFS ◦ ◦ ◦

†† The symbol ◦ denotes that the corresponding property is required.

Table 10. High-level proof strategies of our modular construction

Models Sub-Events Sessions A’s Knowledge Unexposed
Intermediates Reductionmatching session s̄∗ origin session s̃∗ LTK[s∗actor] LTK[s∗peer] EphK[s∗] EphK[s̄∗] EphK[s̃∗]

CK CK1 ∃ ∃ × × k∗ PS
CK2 ∄ not sure × × w∗i PR-LEK

CK-PFS
CK-PFS1 ∃ ∃ × × k∗ PS
CK-PFS2 ∄ ∃ × × w∗i PR-LEK
CK-PFS3 ∄ ∄ ✓τ × – PE

CK+

CK+
1 ∃ ∃ × × w∗j PR-LEK

CK+
2 ∃ ∃ × × w∗i PR-LX

CK+
3 ∃ ∃ × × k∗ PS

CK+
4 ∃ ∃ × × w∗i PR-LEK

CK+
5 ∄ not sure × × w∗i PR-LX

CK+
6 ∄ not sure × × w∗i PR-LEK

CK+-PFS

CK+-PFS1 not sure ∃ × × w∗j PR-LEK
CK+-PFS2 not sure ∃ × × w∗i PR-LX
CK+-PFS3 not sure ∃ × × k∗ PS
CK+-PFS4 not sure ∃ × × w∗i PR-LEK
CK+-PFS5 ∄ ∄ ✓τ – PE

eCK

eCK1 ∃ ∃ × × w∗j PR-LEK
eCK2 ∃ ∃ × × w∗i PR-LX
eCK3 ∃ ∃ × × k∗ PS
eCK4 ∃ ∃ × × w∗i PR-LEK
eCK5 ∄ not sure × × w∗i PR-LX
eCK6 ∄ not sure × × w∗i PR-LEK

eCK-PFS

eCK-PFS1 not sure ∃ × × w∗j PR-LEK
eCK-PFS2 not sure ∃ × × w∗i PR-LX
eCK-PFS3 not sure ∃ × × k∗ PS
eCK-PFS4 not sure ∃ × × w∗i PR-LEK
eCK-PFS5 ∄ ∄ ✓τ – PE

†† ∃ (resp., ∄) denotes that the corresponding session does exists (resp., doesn’t exist). × denotes
that the corresponding LTK or EphK is always kept secret throughout the experiment.

Proof. For simplicity, let s∗actor = i and s∗peer = j, thus SS[s∗] = (r∗i,1, r
∗
i,2,w

∗
i)

and SS[s̄∗] = (r∗j,1, r
∗
j,2,w

∗
j) if s̄∗ exists. Recall the formulations of the CK, CK-

PFS, CK+, CK+-PFS, eCK and eCK-PFS models in Table 3 to 8. The adversary
is allowed to corrupt different key combinations in different models and differ-
ent cases. We split the statement into several events, covering all the possible
behaviors of the adversary. Once the underlying KE and KRF meet proper se-
curity, no matter under which event, at least one of the three key materials
(w∗i ,w∗j , k∗) would never be exposed. That helps to further prove the target ses-
sion key sk∗ = PRF(w∗i , T) ⊕ PRF(w∗j , T) ⊕ PRF(k∗, T) is pseudorandom by
assuming the underlying PRF is secure.

16

As summarized in Table 10, the modular construction is secure in different
models if they meet the corresponding requirements. Under the event CK1, the
randomness selected by both sides are kept secret throughout the experiment.
If the underling KE is PS secure, k∗ is always kept secret from the adversary.
Under the event CK2, even the matching session of the target does not exist, the
message s∗recv still might be an replay-message generated in other session (i.e., its
origin-session does exist), A may have performed SSReveal(·) query on it, thus
(k∗,w∗j) may have been exposed to A. But SSReveal(·) query on s∗ is forbid,
thus SS[s∗] is always kept secret from the adversary. Moreover, if the underling
KRF is PR-LEK, w∗i would never been exposed. Under the event CK-PFS3, if
the underling KRF is PE, A is unable to generate a valid message to make s∗
accept before corrupting LTK[s∗peer], thus s∗ would always terminate with abort.
The analyses under other events are essentially similar. Due to page limitations,
more details should be found in the full version. ⊓⊔

In particular, we can also sum up the high-level proof strategies shown in
Table 10 to get a simplified version of it as shown in Table 11.

Table 11. Simplified proof strategies of our modular construction

Case The origin session s̃∗
A’s knowledge Unexposed

Intermediates
Reduce to

LTK[s∗actor] LTK[s∗peer] EphK[s∗] EphK[s̃∗]
I ∃ × × w∗

j PR-LEK
II × × k∗ PS
III not sure × × w∗

i PR-LX
IV × × w∗

i PR-LEK
V ∄ ✓τ − PE

4.3 Two Enhanced Versions of Our Modular Construction

In this section, we present two enhanced versions of our modular construction
to reduce the randomness used, thus to decrease the communication and com-
putation overheads to some extent. In particular, the same randomness will be
used for both the KRF and KE modules.

P̂i (eki, rki) P̂j (ekj , rkj)

yi−−−→yj←−−−
xi,2 ←$X2 xj,2 ←$X2

(yi,wi)← feki (rpkj ,−, xi,2) (yj ,wj)← fekj (rpki,−, xj,2)

w′
j ← f̄rki (epkj ,−, yj) w′

i ← f̄rkj (epki,−, yi)
Abort if w′

j = ⊥ Abort if w′
i = ⊥

k ← CKey(yi, yj) k′ ← CKey(yj , yi)

Let T ← epki||rpki||epkj ||rpkj ||yi||yj
P̂i compute: SKi ← PRF(wi, T)⊕ PRF(w′

j , T)⊕ PRF(k, T)

P̂j compute: SKj ← PRF(w′
i, T)⊕ PRF(wj , T)⊕ PRF(k′, T)

Fig. 7. Our first enhanced modular construction.

17

The first enhanced construction. As shown in Fig. 7, the KRF output y is
used as a KE public key pk, and its specific input x1 is set as an empty string.

Theorem 2. Theorem 1 holds for the modular construction shown in Fig. 7
if Simulatability holds for the underlying KRF and KE, i.e., for any pp ←
KRF.Setup(1λ), (epk, ek) ← KRF.KG(pp, 0), (rpk, rk) ← KRF.KG(pp, 1) and x1 ∈
X1, there exists a simulator S = (S1,S2) such that

i for any PPT algorithm D, the following equality holds:

Pr[x2 ←$X2, (y,w)← fek(rpk, x1, x2), pk ← S1(epk, rpk, x1, y) : D(pk) = 1]

= Pr[(pk, sk)← KE.Gen(1λ) : D(pk) = 1];

ii for any PPT algorithm D̂, the following equality holds:

Pr[(pk, sk)← KE.Gen(1λ), (y,w)← S2(pk, epk, ek, rpk, rk, x1) : D̂(y,w) = 1]

= Pr[x2 ←$X2, (y,w)← fek(rpk, x1, x2) : D̂(y,w) = 1].

Proof. During the security proof, no matter in which case shown in Table 11,
the adversary’s view should be perfectly simulated. For those sessions that are
non-origin sessions of the target session, executes honestly according to the pro-
tocol description; as for the target session and its origin session, embed different
challenges according different reduction strategies as follows:

1. for Case-I that LTK[s∗actor] and EphK[s̃∗] are kept secret, set LTK[s∗actor] as
rpk∗ and y∗j as the PR-LEK challenge y∗.

2. for Case-II that EphK[s∗] and EphK[s̃∗] are kept secret, perform PExecute(·)
query to get a PS challenge (pk∗i , pk

∗
j).

3. for Case-III that LTK[s∗actor] and LTK[s∗peer] are kept secret, set LTK[s∗actor]
as epk∗, LTK[s∗peer] as rpk∗, and y∗i as the PR-LX challenge y∗.

4. for Case-IV that LTK[s∗peer] and EphK[s∗] are kept secret, set LTK[s∗peer] as
rpk∗ and y∗i as the PR-LEK challenge y∗.

5. for Case-V that LTK[s∗peer] are not corrupted before the target session com-
pletes, set LTK[s∗peer] as epk∗, once the adversary is able to make the target
session accepts, out put its message as a solution of PE experiment.

For the modular construction shown in Fig. 6 that uses independent ran-
domness, the two parts of s∗sent = (pk∗i , y

∗
i) or s∗recv = (pk∗j , y

∗
j) can be simulated

separately. In particular, one part is set with the corresponding challenge, while
the another part is generated honestly. But for the enhanced modular construc-
tion shown in Fig 7 that uses the same randomness for both the KRF and KE
modules, above simulation strategies 1–4 cannot work any more. Technically, if
Simulatability is satisfied, we only need to make some minor changes to keep the
original reduction strategies work: for Case-I, invoke S1 to get pk∗j ; for Case-II,
invoke S2 two times to get corresponding (y∗i ,w

∗
i) and (y∗j ,w

∗
j); for Case-III, use

the exposed randomness in the PR-LX security experiment to compute pk∗i di-
rectly; for Case-IV, invoke S1 to get pk∗i . ⊓⊔

18

The second enhanced construction. We first introduce the notion of KE-
simulatable KRF, whose security experiments are defined as in Fig. 8. Simu-
latability is inherently required: a KE public key pk can be directly used as a
KRF output y, and vice versa. In addition, the computation of w is allowed to
be delayed until some x1 is specified.

ExpSPR-LEK
KRF,A (λ) : ExpSPR-LX

KRF,A (λ) :

Initialization(λ) Initialization(λ)
(pk, sk)← KE.Gen(1λ) (pk, sk)← KE.Gen(1λ)

x2
∗ ← sk, y∗ ← pk x2

∗ ← sk, y∗ ← pk

x∗1 ← A
Ō(·)
1 (info, ek∗, y∗) x∗1 ← A

O(·),Ō(·)
1 (info, y∗)

w∗
0 ← KRF.Eval(0, ek∗, rpk∗, x∗1 , x2

∗) w∗
0 ← KRF.Eval(0, ek∗, rpk∗, x∗1 , x

∗
2)

w∗
1 ←$W, b←$ {0, 1} w∗

1 ←$W, b←$ {0, 1}
b′ ← AŌ(·)

2 (info, ek∗, x∗1 , y
∗,w∗

b) b′ ← AO(·),Ō(·)
2 (info, x∗1 , x

∗
2 , y

∗,w∗
b)

if b′ = b, return 1; else return 0 if b′ = b, return 1; else return 0

Fig. 8. The SPR-LEK and SPR-LX experiments of KE-simulatable KRF

Definition 5 (KE-simulatable KRF). Given a KE scheme KE = (KE.Gen,
KE.Key), a scheme KRF=(KRF.Setup, KRF.KG, KRF.Eval) is called KE-simulatable
KRF with SPR-LEK or SPR-LX security, if for any PPT stateful adversary
A = (A1,A2), its advantage

Adv
SPR-LEK/SPR-LX
KRF,A (λ)

def
= Pr[Exp

SPR-LEK/SPR-LX
KRF,A (λ) = 1] ≤ µ(λ).

If taking a KE-simulatable KRF as the building block, our modular construc-
tion in Fig. 6 can be enhanced as in Fig. 9.

P̂i (eki, rki) P̂j (ekj , rkj)

pki−−−−→(pki, ski)← KE.Gen(1λ) (pkj , skj)← KE.Gen(1λ)pkj←−−−−
xi,1 ← H0(pkj), xj,1 ← H0(pki) xi,1 ← H0(pkj), xj,1 ← H0(pki)

wi ← feki (rpkj , xi,1, ski) wj ← fekj (rpki, xj,1, skj)

w′
j ← f̄rki (epkj , xj,1, pkj) w′

i ← f̄rkj (epki, xi,1, pki)

k ← KE.Key(ski, pkj) k′ ← KE.Key(skj , pki)

Let T ← epki||rpki||epkj ||rpkj ||pki||pkj
P̂i compute: SKi ← PRF(wi, T)⊕ PRF(w′

j , T)⊕ PRF(k, T)

P̂j compute: SKj ← PRF(w′
i, T)⊕ PRF(wj , T)⊕ PRF(k′, T)

Fig. 9. Our second enhanced modular construction

Theorem 3. The second enhanced modular construction shown in Fig. 9 in-
stantiated by PS KE and different KE-simulatable KRFs yields different ORKEs
in different models as in Table 12.

Proof. Note that CK-PFS, CK+ and eCK-PFS models are not considered here.
We can prove this enhanced modular construction’s security using the simplified
proof strategies as shown in Table 13.

1. for Case-I that LTK[s∗actor] and EphK[s̃∗] are kept secret, set LTK[s∗actor] as
rpk∗ and pk∗j as the SPR-LEK challenge y∗.

19

Table 12. The main results of our second enhanced modular construction

Instantiations Models Requirements for the KE Requirements for the KRF
SPR-LEK SPR-LX

ORKEs
CK

PS
◦

CK+ ◦ ◦
eCK ◦ ◦

Table 13. The simplified proof strategies of our second enhanced modular construction

Case matching session s̄∗
A’s knowledge Unexposed

Intermediates
Reduce to

LTK[s∗actor] LTK[s∗peer] EphK[s∗] EphK[s̄∗]
I ∃ × × w∗

j SPR-LEK
II × × k∗ PS
III ∄ × × w∗

i SPR-LX
IV × × w∗

i SPR-LEK

2. for Case-II EphK[s∗] and EphK[s̃∗] are kept secret, perform PExecute(·)
query to get two public keys pk∗i and pk∗j , and compute w∗i and w∗j using
LTK[s∗peer] and LTK[s∗actor], respectively.

3. for Case-III that LTK[s∗actor] and LTK[s∗peer] are kept secret, set LTK[s∗actor]
as epk∗, LTK[s∗peer] as rpk∗, and pk∗i as the SPR-LX challenge y∗.

4. for Case-IV that LTK[s∗peer] and EphK[s∗] are kept secret, set LTK[s∗peer] as
rpk∗ and pk∗i as the SPR-LEK challenge y∗. ⊓⊔

5 Unification of Previous Constructions

Here, we show that several well-known constructions can be viewed as spe-
cial cases in our (enhanced) modular construction, including 2KEM+DH [4]
(Sec. 5.1), HMQV [18] (Sec. 5.2), NAXOS [19] (Sec. 5.3) and BJS [3] (Sec. 5.4).

5.1 2KEM+DH

2KEM+DH was proved secure in the CK model. In 2KEM+DH, the KRF is
initiated by KRF2KEM+DH in Fig. 10. Let KEM=(KEM.Gen, KEM.Enc, KEM.Dec)
be a KEM with randomness space R. Here ϖ denotes a fixed public string.

KRF2KEM+DH.KG(pp, ψ):
if ψ = 0

return (epk, ek)
def
= (ϖ,ϖ)

else if ψ = 1
(ek, dk)← KEM.Gen(1λ)

return (rpk, rk)
def
= (ek, dk)

KRF2KEM+DH.Eval(ψ, input):
if ψ = 0

(ϖ, rpk,−, x2)← input
(c, k)← KEM.Enc(rpk; x2)

return (y,w)
def
= (c, k)

else if ψ = 1
(rk, ϖ,−, y)← input
k ← KEM.Dec(rk, y)

return w
def
= k

Fig. 10. The KRF2KEM+DH implied by 2KEM+DH [4]

Theorem 4. If KEM is IND-CCA, KRF2KEM+DH shown in Fig. 10 is PR-LEK.

20

P̂i(eki, dki) P̂j(ekj , dkj)

ci, X−−−→
cj , Y←−−−

x←$Zp, X ← gx y ←$Zp, Y ← gy

(ci, ki)← KEM.Enc(ekj) (cj , kj)← KEM.Enc(eki)

k′j ← KEM.Dec(dki, cj) k′i ← KEM.Dec(dkj , ci)

Let T ← eki||ekj ||ci||X||cj ||Y
P̂i compute ski ← PRF(ki, T)⊕ PRF(k′j , T)⊕ PRF(Y x, T)

P̂j compute skj ← PRF(k′i, T)⊕ PRF(kj , T)⊕ PRF(Xy, T)

Fig. 11. P2KEM+DH: apply KRF2KEM+DH and DHKE into our modular construction. Let
G be a group of prime order p with a generator g.

Proof. It is quite easy to prove that Theorem 4 holds. Since the PR-LEK chal-
lenge is in fact an IND-CCA challenge, and the Ō(·) oracle can be perfectly
simulated using the underlying decryption oracle. Once the adversary is able to
win in the experiment with non-negligible advantage, the IND-CCA security is
also broken. Due to page limitations, we drop the details here. ⊓⊔

5.2 HMQV

HMQV was proved secure in the CK+ model. In HMQV, the KRF is initiated
by KRFHMQV in Fig. 12. Let G be a group of prime order p with g as a generator,
H : {0, 1}∗ → Zp and H̄ : Zp → Zp be two hash functions.

KRFHMQV.KG(pp, ψ):
if ψ = 0
a←$Zp, A← ga

return (epk, ek)
def
= (A, a)

else if ψ = 1
b←$Zp, B ← gb

return (rpk, rk)
def
= (B, b)

KRFHMQV.Eval(ψ, input):
if ψ = 0

(ek, rpk, x1, x2)← input
y← gx2 , d← H(y, rpk)

e← H(x1, epk), w← H̄(rpke(d·ek+x2))
return (y,w)

else if ψ = 1
(rk, epk, x1, y)← input:
d← H(y, rpk), e← H(x1, epk)

return w
def
= H̄((epkdy)e·rk)

Fig. 12. The KRFHMQV implied by HMQV [18]

P̂i(A = ga, a) P̂j (B = gb, b)

X←−−−
Y−−−→

x←$Zp, X ← gx y ←$Zp, Y ← gy

d← H(X,B), e← H(Y,A) d← H(X,B), e← H(Y,A)

ski ← H1((Y B
e)da+x, A,B,X, Y) skj ← H1((XA

d)eb+y, A,B,X, Y)

Fig. 13. PHMQV: apply KRFHMQV into our second enhanced modular construction. The
required PRF is replaced by a RO H1, which covers the internal H̄.

Theorem 5. If the GDH problem holds in G, H and H̄ are modeled as random
oracles, KRFHMQV shown in Fig. 12 is both SPR-LEK and SPR-LX.

Proof. First we can see that KRFHMQV and DHKE meet Simulatability, and the
corresponding simulator S = (S1,S2) can be constructed as follows:

21

S1(epk, rpk, x1, y):
pk ← y

return pk

S2(pk, epk, ek, rpk, rk, x1):
y← pk, d← H(y, rpk), e← H(x1, epk)

w← H̄((epkdy)e·rk)
return (y,w)

For any PPT adversary A1 against ExpSPR-LEK
KRF,A1

, we build an algorithm that
simulates this experiment with these changes:
1. given a GDH challenge (X,Y), set rpk∗ ← X, y∗ ← Y and w∗0 ←$W;
2. initialize two empty lists LH̄ and Lf̄ ;
3. for a H̄(input) query:

(a) if ∃ (input, h) ∈ LH̄, return h;
(b) else if ∃ ((epk, x1, y),w) ∈ Lf̄ s.t. CDH(X, (y · epkd)e) = input, where

d← H(y, X) and e← H(x1, epk), return w and record (input,w) into LH̄;
(c) otherwise, return h←$Zp and record (input, h) into LH̄.

4. for an Ō(epk, x1, y) query:
(a) if ∃ ((epk, x1, y),w) ∈ Lf̄ , return w.
(b) else if ∃ (V, h) ∈ LH̄ s.t. CDH(X, (y · epkd)e) = V , where d ← H(y, X)

and e← H(x1, epk), return h and record ((epk, x1, y), h) into Lf̄ .
(c) otherwise, return w←$Zp and record ((epk, x1, y),w) into Lf̄ .

5. if A1 has never queried on the correct value in a H̄ query, it cannot win
in the experiment. Such that there must exist a tuple (J,w) ∈ LH̄ and
the value J1/e∗/Xd∗·ek∗ is a solution of the GDH problem instance, where
d∗ ← H(Y,X) and e∗ ← H(x1

∗, epk∗).

Similarly, for any PPT adversaryA2 against ExpSPR-LX
KRF,A2

, we build an algorithm
that simulates this experiment with these changes:
1. given a GDH challenge (X,Y), set (epk∗, rpk∗)← (X,Y) and w0

∗←$W;
2. initialize three empty lists LH̄, Lf and Lf̄ ;
3. for a H̄(input) query:

(a) if ∃ (input, h) ∈ LH̄, return h;
(b) else if ∃ ((rpk, x1, x2),w) ∈ Lf s.t. CDH(X, rpke·d) = input/rpke·x2 , where

d← H(y, rpk) and e← H(x1, X), return w and record (input,w) into LH̄;
(c) else if ∃ ((epk, x1, y),w) ∈ Lf̄ s.t. CDH(Y, (y · epkd)e) = input, where

d← H(y, Y) and e← H(x1, epk), return w and record (input,w) into LH̄;
(d) otherwise, return h←$Zp and record (input, h) into LH̄.

4. for an O(rpk, x1, x2) query, compute y← gx2 :
(a) if ∃ ((rpk, x1, x2),w) ∈ LF, return (y, h);
(b) else if ∃ (V, h) ∈ LH̄ s.t. CDH(X, rpke·d) = V/rpke·x2 , where d← H(y, rpk)

and e← H(x1, X), return (y, h) and record ((rpk, x1, x2), h) into Lf ;
(c) otherwise, return (y,w←$Zp) and record ((rpk, x1, x2),w) into Lf .

5. for an Ō(epk, x1, y) query:
(a) if ∃ ((epk, x1, y),w) ∈ Lf̄ , return w.
(b) else if ∃ (U, h) ∈ LH̄ s.t. CDH(Y, (y · epkd)e) = U , where d ← H(y, Y)

and e← H(x1, epk), return h and record ((epk, x1, y), h) into Lf̄ .
(c) otherwise, return w←$Zp and record ((epk, x1, y),w) into Lf̄ .

22

6. Similarly, if A2 is able to win in the experiment, there must exist a tuple
(J,w) ∈ LH̄ and the value (J1/e∗/Y x∗2)1/d

∗ is a solution of the GDH problem
instance, where d∗ ← H(y∗, Y) and e∗ ← H(x1

∗, X). ⊓⊔

Note that to agree on a session key, the following equation should hold, where
computing Be(da+x) and Ad(eb+y) can be viewed as invoking KRFHMQV.Eval(0, (a,
B, Y, x)) and KRFHMQV.Eval(0, (b, A,X, y)), respectively. But the common part
Aedb = Beda is computed for only once.

(Y Be)da+x = Y x · Y da · Be(da+x)

= Xy ·Ady ·Aedb ·Xeb

= Xy · Ad(eb+y) ·Xeb

= (XAd)eb+y

5.3 NAXOS

NAXOS was proved secure in the eCK model. In NAXOS, the KRF is initiated
by KRFNAXOS in Fig. 14. Let G be a group of prime order p with g as a generator,
H : {0, 1}∗ → Zp and H̄ : Zp → {0, 1}λ be two hash functions.

KRFNAXOS.KG(pp, ψ):
if ψ = 0
a←$Zp, A← ga

return (epk, ek)
def
= (A, a)

else if ψ = 1
b←$Zp, B ← gb

return (rpk, rk)
def
= (B, b)

KRFNAXOS.Eval(ψ, input):
if ψ = 0

(ek, rpk,−, x2)← input

y← gH(ek,x2)

w← H̄(epk, rpkH(ek,x2))
return (y,w)

else if ψ = 1
(rk, epk,−, y)← input

w← H̄(epk, yrk)
return w

Fig. 14. The KRFNAXOS implied by NAXOS [19]

P̂i (A = ga, a) P̂j (B = gb, b)

X−−−→
Y←−−−

r ←$ {0, 1}λ, X ← gH(a,r) r′ ←$ {0, 1}λ, Y ← gH(b,r′)

ski←H1(Y
a, BH(a,r),Y H(a,r), A,B) skj←H1(A

H(b,r′), Xb,XH(b,r′), A,B)

Fig. 15. PNAXOS: apply KRFNAXOS into our first enhanced modular construction. The
required PRF is replaced by a RO H1, which covers the internal H̄.

Theorem 6. If the GDH problem holds in G, H and H̄ are modeled as random
oracles, KRFNAXOS shown in Fig. 14 is both PR-LEK and PR-LX.

Proof. For any PPT adversary A against the ExpPR-LEK
KRF,A or ExpPR-LX

KRF,A, we build
an algorithm simulating the corresponding experiments with these changes:

1. given a GDH challenge (X,Y), set rpk∗ ← X, y∗ ← Y and w∗0 ←$W;

23

2. initialize three empty lists LH, LH̄ and Ly;
3. for a H(input) query:

(a) if input = (ek∗, x2
∗), terminate the simulation with failure;

(b) else if ∃ (input, h) ∈ LH, return h;
(c) otherwise, return h←$Zp and record (input, h) into LH.

4. for a H̄(epk, Z) query:
(a) if ∃ ((epk, Z), h) ∈ LH̄, return h;
(b) else if CDH(X,Y) = Z, halt and output Z as the solution;
(c) else if ∃ (y,−,w) ∈ Ly s.t. CDH(y, X) = Z, return w. In addition, update

corresponding records in Ly and LH̄;
(d) otherwise, returns h←$ {0, 1}λ and record ((epk, Z), h) into LH̄.

5. for an Ō(epk,−, y) query:
(a) if y = Y , return w←$ {0, 1}λ and record ((epk,−),w) into LH̄;
(b) else if ∃ ((epk, Z), h) ∈ LH̄ s.t. CDH(X, y) = Z, return h;
(c) otherwise, return w←$ {0, 1}λ, record ((epk,−),w) into LH̄ and (y,−,w)

into Ly, respectively.
6. if A is able to win in either experiment, there must exist a tuple ((epk∗, J),

w) ∈ LH̄ and the value J is a solution of the GDH problem instance.

If A has queried H on (ek∗, x2
∗), the simulation fails. However, A just has

a partial knowledge of the input, i.e., ek∗ (resp., x2∗) when it is attempting to
break the PR-LEK security (resp., the PR-LX security). Such bad event only
occurs with negligible probability. ⊓⊔

Note that KRFNAXOS and DHKE also meet Simulatability, and the corresponding
simulator S = (S1,S2) can be constructed as follows:

S1(epk, rpk,−, y):
pk ← y

return pk

S2(pk, epk, ek, rpk, rk, x1):
y← pk, w← H̄(epk, yrk)

return (y,w)

5.4 BJS

BJS was proved secure in the eCK-PFS model. In BJS, the KRF is initiated by
KRFBJS in Fig. 16. Let NIKE=(NIKE.Gen, NIKE.Key) be a NIKE with randomness
space R and SIG=(SIG.Gen, SIG.Sign, SIG.Vrfy) be a deterministic signature.

Theorem 7. If NIKE is CKS-light secure and SIG is EUF-CMA, KRFBJS shown
in Fig. 16 is PE, PR-LEK and PR-LX.

Proof. KRFBJS is PE, since y
def
= (pkt, σ) is actual a message/signature pair,

any PPT adversary A1 is unable to output such a fresh and valid pair without
breaking the EUF-CMA-security of the underlying SIG. Note that the O(·) oracle
can be perfectly emulated using the underlying singing oracle.

KRFBJS is also PR-LEK (resp., PR-LX), since the underlying NIKE is CKS-
light secure, and w = CKey(epk[1], rpk) ⊕ CKey(pkt, rpk), thus any PPT ad-
versary A2 is unable to distinguish it from a random value without knowing
(ek[1], skt) or rk. However, if A2 is attempting to break the PR-LEK-security

24

KRFBJS.KG(pp, ψ):
if ψ = 0

(pks, sks)← SIG.Gen(1λ)

(pkn, skn)← NIKE.Gen(1λ)
return

(epk, ek)
def
= ((pks, pkn), (sks, skn))

else if ψ = 1
(pkn, skn)← NIKE.Gen(1λ)

return (rpk, rk)
def
= (pkn, skn)

KRFBJS.Eval(ψ, input):
if ψ = 0

(ek, rpk,−, x2)← input

(pkt, skt)← NIKE.Gen(1λ; x2)
σ ← SIG.Sign(ek[0], pkt)
w← NIKE.Key(ek[1], rpk)⊕ NIKE.Key(skt, rpk)

return (y
def
= (pkt, σ),w)

else if ψ = 1
(rk, epk,−, y)← input, (pkt, σ)← y
if SIG.Vrfy(epk[0], pkt, σ) ̸= 1, return ⊥
else return

w
def
= NIKE.Key(rk, epk[1])⊕ NIKE.Key(rk, pkt)

Fig. 16. The KRFBJS from BJS [3]

P̂i (pkni , pk
s
i), (sk

n
i , sk

s
j) P̂j (pknj , pk

s
j), (sk

n
j , sk

s
j)

pkti, σi−−−−→
pktj , σj
←−−−−

(pkti, sk
t
i)← NIKE.Gen(1λ) (pktj , sk

t
j)← NIKE.Gen(1λ)

σi ← SIG.Sign(sksi, pk
t
i) σB ← SIG.Sign(sksj , pk

t
j)

Abort if SIG.Vrfy(pksj , σj) ̸= 1 Abort if SIG.Vrfy(pksi, σi) ̸= 1

kn,n ← NIKE.Key(skni , pk
n
j) k′n,n ← NIKE.Key(sknj , pk

n
i)

kn,t ← NIKE.Key(skni , pk
t
j) k′n,t ← NIKE.Key(sktj , pk

n
i)

kt,n = NIKE.Key(skti, pk
n
j) k′t,n ← NIKE.Key(sknj , pk

t
i)

kt,t ← NIKE.Key(skti, pk
t
j) k′t,t ← NIKE.Key(sktj , pk

t
i)

Let T ← pkni ||pk
s
i||pk

n
j ||pk

s
j ||pk

t
i||σi||pktj ||σj

P̂i compute ski ← PRF(kn,n, T)⊕ PRF(kn,t, T)⊕ PRF(kt,n, T)⊕ PRF(kt,t, T)

P̂j compute skj ← PRF(k′n,n, T)⊕ PRF(k′n,t, T)⊕ PRF(k′t,n, T)⊕ PRF(k′t,t, T)

Fig. 17. PBJS: apply KRFBJS into our first enhanced modular construction.

(resp., PR-LX-security) of KRFBJS, it can only learn ek (resp., skt derived from
x2). Note that by setting the pair of public keys (pkt, rpk) (resp., (epk[1], rpk))
as the target two honestly registered keys, and the Ō(·) (and O(·)) oracle can be
perfectly emulated using the underlying CorruptReveal(·) oracle. Due to page
limitations, we drop the details here. ⊓⊔

Note that it is easy to conclude that NIKE implies passively secure KE. In
addition, KRFBJS and NIKE meet Simulatability, and the corresponding simulator
S = (S1,S2) can be constructed as follows:

S1(epk, rpk,−, y):
(pkt, σ)← y

return pk
def
= pkt

S2(pk, epk, ek, rpk, rk,−):
pkt ← pk, σ ← SIG.Sign(ek[0], pkt)
w← NIKE.Key(ek[1], rpk)⊕ NIKE.Key(rk, pkt)

return (y
def
= (pkt, σ),w)

6 Further Results for ORKEs

In this section, we give some new results regarding ORKEs by applying our main
results in this paper.

6.1 A Protocol with CK-PFS Security

According to our main results in Theorem 1, we can get the following result:

25

Corollary 1. According to the modular construction in Fig. 6, one protocol
instantiation proved secure in the CK+ (resp., CK+-PFS) model is also secure
in the eCK (resp., eCK-PFS) model, and vice versa.

Thus, our modular construction can be instantiated in the new CK+-PFS
model using the the protocol PBJS illustrated in Fig. 17. As an application of
our modular construction, we present an another protocol secure in the CK-PFS
model in this section.

An Immediate Construction. Inspired by previous works [6,27,9,3,26], we
can immediately get a construction in the CK-PFS model by applying a com-
piler to an 2KEM+DH in the CK model (see Fig 11) using an EUF-CMA
deterministic signature SIG=(SIG.Gen,SIG.Sign,SIG.Vrfy), which we denote as
SIG(2KEM+DH) (see Fig. 18). It is easy to prove its security in the CK-PFS
model. We drop the details here.

P̂i(eki, dki)(ski, vki) P̂j(ekj , dkj)(skj , vkj)

ci, X, σi−−−−−−→
cj , Y, σj←−−−−−−

x←$Zp, X ← gx y ←$Zp, Y ← gy

(ci, ki)← KEM.Enc(ekj) (cj , kj)← KEM.Enc(eki)

σi ← SIG.Sign(ski, ci||X) σj ← SIG.Sign(skj , cj ||Y)

Abort if SIG.Vrfy(vkj , cj ||Y, σj) ̸= 1 Abort if SIG.Vrfy(vki, ci||X,σi) ̸= 1

k′j ← KEM.Dec(dki, cj) k′i ← KEM.Dec(dkj , ci)

Let T ← eki||vki||ekj ||vkj ||ci||X||σi||cj ||Y ||σj

P̂i compute ski ← PRF(ki, T)⊕ PRF(k′j , T)⊕ PRF(Y x, T)

P̂j compute skj ← PRF(ki, T)⊕ PRF(k′j , T)⊕ PRF(Xy, T)

Fig. 18. The protocol SIG(2KEM+DH)

A New Construction from Our Modular Construction. According to
our main results in Theorem 1, the key to achieve secure ORKE in the CK-PFS
model is to construct a KRF that is both PE and PR-LEK. On another side,
we have proved in Theorem 7 that the KRFBJS (see Fig. 16) is PE, PR-LEK and
PR-LX. It is quite nature to build a new scheme using the similar idea behind the
construction of KRFBJS by reducing some unnecessary secrets and computations.
Let SIG=(SIG.Gen, SIG.Sign, SIG.Vrfy) be a deterministic signature and NIKE be
a NIKE. We first give a construction KRFnew as in Fig. 19, then apply it into
our modular construction to derive an ORKE protocol Pnew as in Fig. 20.

Theorem 8. If SIG is EUF-CMA and NIKE is secure in the CKS-light model
with randomness space R, KRFnew shown in Fig. 19 is both PE and PR-LEK.

Proof. It is also easy to prove this theorem. First, KRFBJS is PE, since y
def
=

(pkt, σ) is actual a message/signature pair, any PPT adversary A1 is unable to
output such a fresh and valid pair without breaking the EUF-CMA-security of
the underlying SIG. Note that the Of oracle can be perfectly emulated using the
underlying singing oracle.

26

KRFnew.KG(pp, ψ):
if ψ = 0

(vk, sk)← SIG.Gen(1λ)

return (epk, ek)
def
= (vk, sk)

else if ψ = 1
(pkn, skn)← NIKE.Gen(1λ)

return (rpk, rk)
def
= (pkn, skn)

KRFnew.Eval(ψ, input):
if ψ = 0

(ek, rpk,−, x2)← input

(pkt, skt)← NIKE.Gen(1λ; x2)
σ ← SIG.Sign(ek, pkt)
w← NIKE.Key(skt, rpk)

return (y def
= (pkt, σ),w)

else if ψ = 1
(rk, epk,−, (pkt, σ))← input
s← SIG.Vrfy(epk, pkt), σ)
if s ̸= 1, return ⊥
else return w

def
= NIKE.Key(rk, pkt)

Fig. 19. Our proposal KRFnew

P̂i(pk
n
i , pk

s
i), (sk

n
i , sk

s
i) P̂j(pk

n
j , pk

s
j), (sk

n
j , sk

s
j)

pkti, σi−−−−→
pktj , σj
←−−−−

(pkti, sk
t
i)← NIKE.Gen(1λ) (pktj , sk

t
j)← NIKE.Gen(1λ)

σi ← SIG.Sign(sksi, pk
t
i) σj ← SIG.Sign(sksj , pk

t
j)

Abort if SIG.Vrfy(pksj , σj) ̸= 1 Abort if SIG.Vrfy(pksi, σi) ̸= 1

kn,t ← NIKE.Key(skni , pk
t
j) k′n,t ← NIKE.Key(sktj , pk

n
i)

kt,n ← NIKE.Key(skti, pk
n
j) k′t,n ← NIKE.Key(sknj , pk

t
i)

kt,t ← NIKE.Key(skti, pk
t
j) k′t,t ← NIKE.Key(sktj , pk

t
i)

Let T ← pkni ||pk
s
i||pk

n
j ||pk

s
j ||pk

t
i||σi||pktj ||σj

P̂i compute ski ← PRF(kn,t, T)⊕ PRF(kt,n, T)⊕ PRF(kt,t, T)

P̂j compute skj ← PRF(k′n,t, T)⊕ PRF(k′t,n, T)⊕ PRF(k′t,t, T)

Fig. 20. Pnew: apply KRFnew into our first enhanced modular construction.

Second, KRFBJS is PR-LEK, since the underlying NIKE is CKS-light secure,
and w = CKey(pkt, rpk), any PPT adversary A2 is unable to distinguish it from
a random value without knowing skt or rk. If A2 is attempting to break the
PR-LEK-security, it cannot learn neither skt (due to the privacy of x2) nor rk.
Note that by setting the pair of public keys (pkt, rpk) as the target two honestly
registered keys, the Ō(·) oracle can be perfectly emulated using the underlying
CorruptReveal(·) oracle. Due to page limitations, we drop the details here. ⊓⊔

Note that KRFnew and NIKE also meet Simulatability, and the corresponding
simulator S = (S1,S2) can be constructed as follows:

S1(epk, rpk,−, y):
(pkt, σ)← y

return pk
def
= pkt

S2(pk, epk, ek, rpk, rk,−):
pkt ← pk, σ ← SIG.Sign(ek, pkt)
w← NIKE.Key(rk, pkt)

return (y
def
= (pkt, σ),w)

Comparisons Between the Two Constructions. We compared our new
proposal Pnew with the SIG(2KEM+DH) construction by instantiating it us-
ing the most efficient factoring-based NIKE [10] that was proved secure in the
RO model. To make them comparable, we instantiate the required KEM in the
generic SIG(2KEM+DH) construction using the ElGamal encryption after ap-
plying a FO-transformation [13,14], thus a ciphertext includes at least 2 group
elements, and each call of the encapsulation (resp., decapsulation) algorithm
costs at least 2 (resp., 3) modular exponentiations. The comparison details are
shown in Table 14. On both of the communication and computation overheads,
our proposal is more efficient.

27

Table 14. Comparisons Between Pnew and SIG(2KEM+DH)

Scheme Security Model Group elements sent.
per party

Exp.
per party Compiler Used

SIG(2KEM+DH) CK-PFS 3 7 SIG(·)
Pnew CK-PFS 1 4 Our modular construction

†† We do not distinguish an Exponentiation (Exp.) in a DH group from an Exp. in an RSA group.
As both schemes involve signature generating and validating, we omit them in the comparisons.

The comparisons supported the usability of our framework well, namely, it is
not only a generalization of the existing works, but also a useful tool to construct
efficient protocols in different models due to its simplicity.

6.2 A Construction Secure in All the Considered Models

Cremers [8] pointed out that the original CK [7], CK+ [18] and eCK [19] models
are not comparable, by showing a protocol can be secure in one model and yet
insecure in other models. One of the reasons behind is that these models used
matching notions in different ways. They defined four types of session relations:

– s ≈A s′
def
= sactor = s′peer ∧ speer = s′actor ∧ ssent = s′recv ∧ srecv = s′sent;

– s ≈B s′
def
= s ≈A s′ ∧ (srole ̸= s′role ∨ sactor = speer);

– s ≈C s′
def
= s ≈A s′ ∧ (srole ̸= s′role);

– s ≈D s′
def
= sactor = s′peer ∧ speer = s′actor ∧ sid = s′id.

The original CK, CK+ and eCK models used ≈D, ≈A and ≈C , respectively.
Two sessions matched in one model are not necessarily matched in another
model, thus trivial success may occur. However, we have unified the way to
define matching sessions in these models, i.e., the ≈A type. As we are consid-
ering the security in the context of ORKE, which is role-symmetric (i.e., the
messages of each role are identical up to their order), the ≈A type definition is
our preference. In [8], it is also pointed out that “role-symmetric protocols with
key type ≈B or ≈C do not satisfy CK+ security.” The key type is defined as:
a protocol has key type ≈T |T∈{A,B,C,D}, if for all completed sessions s and s′,
kdf(s) = kdf(s′) ⇔ s ≈T s′, where kdf is an abstraction of the key derivation
function of this protocol. Technically, our modular construction adopted a ≈A
type key derivation function. Our result does not contradict the results in [8].

Hence, even if we have a preconception that the CK, CK+ and eCK models
are incomparable, it is not precluded that a protocol can be secure in two or
more models. Therefore, it is an nature question that does there exist a protocol
that is secure in all of the CK, CK+, eCK, CK-PFS, CK+-PFS and eCK-PFS
models we considered. The answer is yes based on Theorem 1:

Corollary 2. If KE is passively secure and KRF is fully secure, i.e., meets
PE, PR-LEK and PR-LX simultaneously, the modular construction illustrated
in Fig. 6 is secure in the CK, CK-PFS, CK+, CK+-PFS, eCK and eCK-PFS
models at the same time.

28

Combining Theorem 1 and 7, the protocol PBJS illustrated in Fig. 17 (con-
structed from the basic idea of BJS [3]) is simultaneously secure in these models.

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments.
This work was supported in part by National Natural Science Foundation of
China (Nos. 61772520, 61802392 and 61972094).

References

1. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Se-
cure against Dictionary Attacks. In: EUROCRYPT’00. pp. 139–155 (2000).
https://doi.org/10.1007/3-540-45539-6_11

2. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In:
CRYPTO’93. pp. 232–249 (1993). https://doi.org/10.1007/3-540-48329-2_21

3. Bergsma, F., Jager, T., Schwenk, J.: One-Round Key Exchange with Strong Secu-
rity: An Efficient and Generic Construction in the Standard Model. In: PKC’15.
pp. 477–494 (2015). https://doi.org/10.1007/978-3-662-46447-2_21

4. Boyd, C., Cliff, Y., Nieto, J.M.G., Paterson, K.G.: Efficient One-Round
Key Exchange in the Standard Model. In: ACISP’08. pp. 69–83 (2008).
https://doi.org/10.1007/978-3-540-70500-0_6

5. Boyd, C., Cliff, Y., Nieto, J.M.G., Paterson, K.G.: One-round key
exchange in the standard model. IJACT 1(3), 181–199 (2009).
https://doi.org/10.1504/IJACT.2009.023466

6. Boyd, C., Nieto, J.G.: On Forward Secrecy in One-Round Key Exchange. In:
IMACC’11. pp. 451–468 (2011). https://doi.org/10.1007/978-3-642-25516-8_27

7. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their
Use for Building Secure Channels. In: EUROCRYPT’01. pp. 453–474 (2001).
https://doi.org/10.1007/3-540-44987-6_28

8. Cremers, C.: Examining indistinguishability-based security models for key ex-
change protocols: the case of CK, CK-HMQV, and eCK. In: ASIA CCS’11. pp.
80–91 (2011). https://doi.org/10.1145/1966913.1966925

9. Cremers, C.J.F., Feltz, M.: Beyond eCK: Perfect Forward Secrecy under Actor
Compromise and Ephemeral-Key Reveal. In: ESORICS’12. pp. 734–751 (2012).
https://doi.org/10.1007/978-3-642-33167-1_42

10. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-Interactive Key Ex-
change. In: PKC’13. pp. 254–271. https://doi.org/10.1007/978-3-642-36362-7_17

11. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly Secure Authenticated
Key Exchange from Factoring, Codes, and Lattices. In: PKC’12. pp. 467–484.
https://doi.org/10.1007/978-3-642-30057-8_28

12. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Practical and post-quantum
authenticated key exchange from one-way secure key encapsulation mechanism. In:
ASIA CCS ’13. pp. 83–94 (2013). https://doi.org/10.1145/2484313.2484323

13. Fujisaki, E., Okamoto, T.: How to Enhance the Security of Public-Key Encryption
at Minimum Cost. In: PKC ’99. pp. 53–68 (1999). https://doi.org/10.1007/3-540-
49162-7_5

29

14. Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Sym-
metric Encryption Schemes. In: CRYPTO ’99. pp. 537–554 (1999).
https://doi.org/10.1007/3-540-48405-1_34

15. Just, M., Vaudenay, S.: Authenticated Multi-Party Key Agreement. In: ASI-
ACRYPT’96. pp. 36–49 (1996). https://doi.org/10.1007/BFb0034833

16. Kim, M., Fujioka, A., Ustaoglu, B.: Strongly Secure Authenticated Key
Exchange without NAXOS’ Approach. In: IWSEC’09. pp. 174–191 (2009).
https://doi.org/10.1007/978-3-642-04846-3_12

17. Krawczyk, H.: SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE-Protocols. In: CRYPTO’03. pp. 400–425 (2003).
https://doi.org/10.1007/978-3-540-45146-4_24

18. Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In:
CRYPTO’05. pp. 546–566 (2005). https://doi.org/10.1007/11535218_33

19. LaMacchia, B.A., Lauter, K.E., Mityagin, A.: Stronger Security of Authenticated
Key Exchange. In: ProvSec’07. pp. 1–16 (2007). https://doi.org/10.1007/978-3-
540-75670-5_1

20. Law, L., Menezes, A., Qu, M., Solinas, J.A., Vanstone, S.A.: An Efficient Protocol
for Authenticated Key Agreement. Des. Codes Cryptogr. 28(2), 119–134 (2003)

21. Okamoto, T.: Authenticated Key Exchange and Key Encapsulation in the Standard
Model. In: ASIACRYPT’07. pp. 474–484 (2007). https://doi.org/10.1007/978-3-
540-76900-2_29

22. Peikert, C.: Lattice Cryptography for the Internet. In: PQCrypto’14. pp. 197–219
(2014). https://doi.org/10.1007/978-3-319-11659-4_12

23. Strangio, M.A.: On the Resilience of Key Agreement Protocols to
Key Compromise Impersonation. In: EuroPKI’06. pp. 233–247 (2006).
https://doi.org/10.1007/11774716_19

24. Xue, H., Lu, X., Li, B., Liang, B., He, J.: Understanding and Constructing AKE
via Double-Key Key Encapsulation Mechanism. In: ASIACRYPT’18. pp. 158–189
(2018). https://doi.org/10.1007/978-3-030-03329-3_6

25. Yang, Z.: Efficient eCK-Secure Authenticated Key Exchange Protocols in the Stan-
dard Model. In: ICICS’13. pp. 185–193 (2013). https://doi.org/10.1007/978-3-319-
02726-5_14

26. Yang, Z., Chen, Y., Luo, S.: Two-Message Key Exchange with Strong Security from
Ideal Lattices. In: CT-RSA’18. pp. 98–115 (2018). https://doi.org/10.1007/978-3-
319-76953-0_6

27. Yoneyama, K.: One-Round Authenticated Key Exchange with Strong Forward Se-
crecy in the Standard Model against Constrained Adversary. In: IWSEC 2012. pp.
69–86 (2012). https://doi.org/10.1007/978-3-642-34117-5_5

30

	Modular Design of Role-Symmetric Authenticated Key Exchange Protocols
	Introduction
	Our Results

	Preliminary
	Security Definitions for ORKEs
	Our Modular Construction
	Key-wise Recoverable Function (KRF)
	A Modular Construction for ORKE
	Two Enhanced Versions of Our Modular Construction

	Unification of Previous Constructions
	2KEM+DH
	HMQV
	NAXOS
	BJS

	Further Results for ORKEs
	A Protocol with CK-PFS Security
	A Construction Secure in All the Considered Models

