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Abstract. Viable cryptosystem designs must address power analysis
attacks, and masking is a commonly proposed technique for defend-
ing against these side-channel attacks. It is possible to overcome sim-
ple masking by using higher-order techniques, but apparently only at
some cost in terms of generality, number of required samples from the
device being attacked, and computational complexity. We make progress
towards ascertaining the significance of these costs by exploring a cou-
ple of attacks that attempt to efficiently employ second-order techniques
to overcome masking. In particular, we consider two variants of second-
order differential power analysis: Zero-Offset 2DPA and FFT 2DPA.

1 Introduction

Power analysis is a major concern for designers of smartcards and other embed-
ded cryptosystems. The advance of Differential Power Analysis (DPA) in 1998
by Paul Kocher [1] made power analysis attacks even more practical since an
attacker using DPA did not need to know very much about the device being
attacked.

The technique of masking or duplication is commonly suggested as a way
to stymie first-order power attacks, including DPA. In order to defeat masking,
attacks would have to correlate the power consumption at multiple times during
a single computation. Attacks of this sort were suggested and investigated (for
example, by Thomas Messerges [2]), but it seems that the attacker was once
again required to know significant details about the device under analysis.

This paper attempts to make progress towards a second-order analog of Dif-
ferential Power Analysis. To this end, we suggest two second-order attacks, nei-
ther of which require much more time than straight DPA, but which are able to
defeat some countermeasures. These attacks are basically preprocessing routines
that attempt to correlate power traces with themselves and then apply standard
DPA to the results.

In Section 2, we give some background and contrast first-order and second-
order power analysis techniques. We also discuss the apparently inherent costs
of higher-order attacks.

In Section 3, we present our model and give the intuition behind our tech-
niques.

In Section 4, we give some techniques for second-order power analysis. In
particular, we present some algorithms and analyze them in terms of limitations
and requirements: generality, runtime, and number of required traces.



Section 5 contains some closing remarks, and Appendix A gives the formal
derivations for the noise amplifications that are behind the limitations of the
attacks in Section 4.

2 First-Order and Second-Order Power Analysis

We consider a cryptosystem that takes an input, performs some computations
that combine this input and some internally stored secret, and produces an
output. For concreteness, we will refer to this computation as an encryption, an
input as a plaintext, the secret as a key, and the output as a ciphertext, though
it is not necessary that the device actually be encrypting. An attacker would
like to extract the secret from this device. If the attacker uses only the input
and output information (i.e., the attacker treats the cryptosystem as a “black
box”), it is operating in a traditional private-computation model; in this case,
the secret’s safety is entirely up to the algorithm implemented by the device.

In practice, however, the attacker may have access to some more side-channel

information about the device’s computation; if this extra information is corre-
lated with the secret, it may be exploitable. This information can come from
a variety of observables: timing, electromagnetic radiation, power consumption,
etc. Since power consumption can usually be measured by externally probing the
connection of the device with its power supply, it is one of the easiest of these
side-channels to exploit, and it is our focus in this discussion.

2.1 First-Order Power Analysis Attacks

First-order attacks are characterized by the property that they exploit highly lo-
cal correlation of the secret with the power trace. Typically, the secret-correlated
power draw occurs at a consistent time during the encryption and has consistent
sign and magnitude.

Simple Power Analysis (SPA) In simple first-order power analysis attacks,
the adversary is assumed to have some fairly explicit knowledge of the analyzed
cryptosystem. In particular, he knows the time at which the power consumption
is correlated with part of the secret. By measuring the power consumption at
this time (and perhaps averaging over a few encryptions to reduce the ambiguity
introduced by noise), he gains some information about the key.

As a simple example, suppose the attacker knows that the first bit of the
key k0 is loaded into a register at 100µs into the encryption. The average power
draw at 100µs is m, but when the k0 is 0 this average is m − δ and when k0 is
1, this average is m + δ. Given enough samples of the power draw at 100µs to
distinguish these means (where the number of samples required depends on the
level of noise relative to δ), he can determine the first bit of the key.



Differential Power Analysis (DPA) One of the most amazing and trouble-
some features of differential power analysis is that, unlike with SPA, the attacker
does not need such specific information about how the analyzed device imple-
ments its function. In particular, she can be ignorant of the specific times at
which the power consumption is correlated with the secret; it is only necessary
that the correlation is reasonably consistent.

In differential power analysis attacks, the attacker has identified some in-
termediate value in the computation that is 1) correlated with the power con-
sumption, and 2) dependent only on the plaintext (or ciphertext or both) and
some small part of the key. She gathers a collection of power traces by sampling
power consumption at a very high frequency throughout a series of encryptions
of different plaintexts. If the intermediate value is sufficiently correlated with the
power consumption, the adversary can use the power traces to verify guesses at
the small part of the key.

In particular, for each possible value of relevant part of the key, the attacker
will divide the traces into groups according to the intermediate value predicted
by current guess at the key and the trace’s corresponding plaintext (or cipher-
text); if the averaged power trace of each group differs noticeably from the others
(the averaged differences will have a large difference at the time of correlation),
it is likely that the current key guess is correct. Since incorrectly predicted inter-
mediate value will not be correlated with the measured power traces, incorrect
key guesses should result in all groups having very similar averaged power traces.

2.2 Higher-Order Attacks

A higher-order attack addresses a situation where there is some intermediate
value (or set of values) that depends only on the plaintext and some small part
of the key, but it is not correlated directly with the power consumption at any
particular time. Instead, this value contributes to the joint distribution of the
power consumption at a few times during the computation.

An important example of such a situation comes about when the masking

(or duplication) technique is employed to protect against first-order attacks.
As a typical example of masking, consider an implementation that wishes to
perform a computation using some intermediate, key-dependent bit b. Rather
than computing directly with b and opening itself up to DPA attacks, however,
it performs the computation twice: once with a random bit r, then with the
masked bit (r + b).1 The implementation is designed to use these two masked
intermediate results as inputs to the rest of the computation.

In this case, knowledge of either r or r + b alone is not of any use to the at-
tacker. Since the first-order attacks look for local, linear correlation of b with the
power draw, they are stymied. If, however, an attack could correlate the power

1 Though we use the symbol ‘+’ to denote the masking operation, we require nothing
from it other than that c = a + b implies (−1)c = (−1)a+b; for our purposes, it is
convenient to just assume that ‘+’ is exclusive-or.



consumption at the time r is present and the time r + b is present (e.g., by mul-
tiplying the power consumptions at these times), it could gain some information
on b.

For example, suppose a cryptographic device employs masking to hide some
intermediate bit b that is derived directly from the key, but displays the following
behavior: at 100µs, the average power draw is m + δ(−1)r and at 210µs it is
m + δ(−1)(r+b). An attacker aware of this fact could multiply the samples at
these times for each trace and obtain a product value with expected value2

E[product of samples] =

{

m2 + δ2 if b = 0

m2 − δ2 if b = 1
(1)

Summing the samples over n encryptions, the means would be n(m2 +δ2) for
b = 0 and n(m2−δ2) for b = 1. By choosing n large enough to reduce the relative
effect of noise, the attacker could distinguish these distributions and deduce b.
An attack of this sort is the second-order analog of an SPA attack.

But how practical is this really? A higher-order attack seems to face two
major problems:

– How much does the process of correlation amplify the noise, thereby increas-
ing standard deviation and requiring more samples to reliably differentiate
distributions?

– How does it identify the times when the power consumption is correlated
with an intermediate value?

The first issue is apparent when calculating the standard deviation of the product
computed in the above attack. If the power consumption at times 100µs and
210µs both have standard deviation σ, then the product has standard deviation

σproduct =

{√
σ4 + 2σ2m2 + 4δ2mm + 2δ2σ2 if b = 0,√
σ4 + 2σ2m2 + 2δ2σ2 if b = 1

(2)

effectively squaring the standard deviation of zero-mean noise. This means that
substantially many more samples are required to distinguish the b = 0 and b = 1
distributions than would be required in a first-order attack, if one were possible.

The second issue is essentially the higher-order analog of the problem with
SPA: attackers require exact knowledge of the time at which the intermediate
value and the power consumption are correlated. DPA resolves this problem by
considering many samples of the power consumption throughout an encryption.
Unfortunately, the natural generalization of this approach to even second-order
attacks, where a product would be accumulated for each (t1, t2) time pair, is
extremely computationally taxing. The second-order attacks discussed in this
paper avoid this overhead.

2 Here the expectation is taken over both the random noise and the value of the
masking bit r, and the noise components at times 100µs and 210µs are assumed
independent.



3 The Power Analysis Model

Both of the attacks we present are second-order attacks which are essentially
preprocessing steps applied to the power traces followed by standard DPA.

In this section, we develop our model and present standard DPA in this
framework, both as a point of reference and as a necessary subroutine for our
attacks, which are described in Section 4.

3.1 The Model

We assume that the attacker has guessed part of the key and has predicted an
intermediate bit value b for each of the power traces, grouping them into a b = 0
and a b = 1 group. For simplicity, we assume there are n traces in each of these
groups: trace i from group b is called T b

i , where 0 ≤ i < n. Each trace contains
samples at m evenly spaced times; the sample at time t from this trace is denoted
T b

i (t), where 0 ≤ t < m.
Each sample has a noise component and possibly a signal component, if it is

correlated with b. We assume that each noise component is Gaussian with equal
standard deviation and independent of the noise in other samples in its own
trace and other traces. For simplicity, we also assume that the input has been
normalized so that each noise component is a 0-mean Gaussian with standard
deviation one (i.e., ∼ N (0, 1)). The random variable for the noise component in
trace i from group b at time t is Sb

i (t), for 0 ≤ t < m.
We assume that the device being analyzed is utilizing masking so that there

is a uniformly distributed independent random variable for each trace that cor-
responds to the masking bit; it will be more convenient for us to deal with {±1}
bit values, so if the random bit in trace i from group b is r, we define the random
variable Rb

i = (−1)r.
Finally, if the guess for b is correct, the power consumption is correlated

with the random masking bit and the intermediate value b at the same times in
each trace. Specifically, we assume that there is some parameter d (in units of
the standard deviation of the noise) and times c0 and c1 such that the random
bit makes a contribution of dRb

i to the power consumption at time c0 and the
masked bit makes a contribution of d(−1)bRb

i at time c1.
We can now characterize the trace sample distributions in terms of these

noise and signal components:

– If the guess of the key is correct, then for 0 ≤ i < n, 0 ≤ t < m, and
b ∈ {0, 1}, we have:

T b
i (t) =











Sb
i (t) + dRb

i if t = c0

Sb
i (t) + d(−1)bRb

i if t = c1

Sb
i (t) otherwise

(3)

– If the key is predicted incorrectly, however, then the groups are not correlated
with the true value of b in each trace and hence there is no correlation



between the grouping and the power consumption in the traces, so, for 0 ≤
i < n, 0 ≤ t < m, and b ∈ {0, 1}:

T b
i (t) = Sb

t (t) (4)

Given these traces as inputs, the algorithms try to decide whether the groupings
(and hence the guess for the key) are correct by distinguishing these distribu-
tions.

3.2 The Generic DPA Subroutine

Both algorithms use a subroutine DPA after their preprocessing step. For our
purposes, this subroutine simply takes the two groups of traces, T 0 and T 1, a
threshold value τ , and determines whether the groups’ totalled traces differ by
more than τ at any sample time. If the difference of the totalled traces is greater
than τ at any point, DPA returns 1, indicating that T 0 and T 1 have different
distributions; if the difference is no more than τ at any point, DPA returns 0,
indicating that it thinks T 0 and T 1 are identically distributed.

DPA(T 0, T 1, τ)
1 : for each t ∈ {0, . . . ,m− 1}:
2 : s← 0
3 : for each i ∈ {0, . . . , n− 1}:
4 : s← s + T 0

i (t)− T 1
i (t)

5 : if |s| > τ return 1
6 : return 0

When using the DPA subroutine, it is most important to pick the threshold,
τ , appropriately. Typically, to minimize the impact of false positives and false
negatives, τ should be half the difference. This is perhaps unexpected since
false positives are actually far more likely than false negatives when using a
midpoint threshold test since false positives can occur if any of the m times’
samples sum deviates above τ , while false negatives require exactly the correlated
time’s samples to deviate below τ . The reason for not choosing τ to equalize the
probabilities is that false negatives are far more detrimental than false positives:
an attack suggesting two likely subkeys is more helpful than an attack suggesting
none.

An equally important consideration in using DPA is whether τ is large enough
compared to the noise to reduce the probability of error. Typically, the samples’
noise components will be independent and the summed samples’ noise will be
Gaussian, so we can can achieve negligible probability of error by using n large
enough that τ is some constant multiple of the standard deviation.

DPA runs in time Θ(nm). Each run of DPA decides the correctness of only
one guessed grouping, however, so an attack that tries l groupings runs in time
Θ(nml).



4 Our Second-Order Attacks

The two second-order variants of DPA that we discuss are Zero-Offset 2DPA
and FFT 2DPA. The former is applied in the special but not necessarily un-
likely situation when the power correlation times for the two bits are coincident
(i.e., the random bit r and the masked bit r + b are correlated with the power
consumption at the same time). The latter attack applies to the more general
situation where the attacker does not know the times of correlation; it discovers
the correlation with only slight computational overhead but pays a price in the
number of required samples.

4.1 Zero-Offset 2DPA

Zero-Offset 2DPA is a very simple variation of ordinary first-order DPA that can
be applied against systems that employ masking in such a way that both the
random bit r and the masked intermediate bit r + b correlate with the power
consumption at the same time. In the language of our model, c0 = c1.

The coincident effect of the two masked values may seem to be too specialized
of a circumstance to occur in practice, but it does come up. The motivation for
this attack is the claim by Coron and Goubin [3] that some techniques suggested
by Messerges [4] were insecure due to some register containing the multi-bit
intermediate value a or its complement a. Since Messerges assumes a power
consumption model based on Hamming weight, it was not clear how a first-order
attack would exploit this register. However, we observe that such a system can
be attacked (even in the Hamming model) by a Zero-Offset 2DPA that uses as its
intermediate value the exclusive-or of the first two bits of a. Another example of
a situation with coincident power consumption correlation is in a paired circuit
design that computes with both the random and masked inputs in parallel.

Combining c0 = c1 with Equation (3), we see that in a correct grouping:

T b
i (t) =

{

Sb
i (t) + dRb

i + d(−1)bRb
i if t = c0

Sb
i (t) otherwise

(5)

In an incorrect grouping, T b
i (t) is distributed exactly as in the general uncorre-

lated case in Equation (4).

Note that in a correct grouping, when b = 1, the influence of the two bits
cancel, leaving T 1

i (c0) = S1
i (c0), while when b = 0, the influences of the two

bits combine constructively and we get T 0
i (c0) = S0

i (c0) + 2dR0
i . In the former

case, there appears to be no influence of the bits on the power consumption
distribution, but in the latter case, the bits contribute a bimodal component.
The bimodal component has mean 0, however, so it would not be apparent in a
first-order averaging analysis.

Zero-offset 2DPA exploits the bimodal component for the b = 0 case by
simply squaring the samples in the power traces before running straight DPA.



Zero-Offset-2DPA(T 0, T 1)
1 : for each b ∈ {0, 1}, i ∈ {0, . . . , n}, t ∈ {0, . . . ,m}:
2 : T b

i (t)← (T b
i (t))2

3 : return DPA(T 0, T 1, 2nd2)

Why does this work? Suppose we have a correct grouping and consider the
expected values for the sum of the squares of the samples at time c0 in the two
groups:

– if b = 0,

E

[

n−1
∑

i=0

[T 0
i (c0)]

2

]

=

n−1
∑

i=0

E[(S0
i (c0))

2 + 4dS0
i (c0)R

0
i + 4d2(R0

i )
2]

=
n−1
∑

i=0

(

E[(S0
i (c0))

2] + E[4dS0
i (c0)R

0
i ] + E[4d2(R0

i )
2]

)

=

n−1
∑

i=0

(1 + 0 + 4d2)

= 4nd2 + n (6)

– if b = 1,

E

[

n−1
∑

i=0

[T 1
i (c0)]

2

]

=

n−1
∑

i=0

E[(S1
i (c0))

2]

=
n−1
∑

i=0

1

= n (7)

The above derivations use the fact that if S ∼ N (0, 1) then S2 ∼ χ2(1, 0) (i.e., S2

has χ2 distribution with ν = 1 degree of freedom and non-centrality parameter
δ2 = 0), and the expected value of a χ2(ν, δ2) random variable is ν + δ2.

Thus, the expected difference of the sum of products for the c0 samples
is 4nd2, while the expected difference for incorrect groupings is clearly 0. In
Section A.1, we show that the difference of the groups’ sums of products is
essentially Gaussian with standard deviation

σ =
√

n(16d2 + 4). (8)

For an attack that uses a DPA threshold value at least k standard deviations
from the mean, we will need at least k2 · (4d2+1)

4d4 traces. This (4d2+1)
4d4 blowup

factor may be substantial; recall that d is in units of the standard deviation of
the noise, so it may be significantly less than 1.

The preprocessing in Zero-Offset-DPA takes time Θ(nm). After this pre-
processing, each of l subsequent guessed groupings can be tested using DPA in



time Θ(nm), for a total runtime of Θ(nm + nml) = Θ(nml). It is important to
keep in mind when comparing these run times that the number n of required
traces for Zero-Offset-DPA can be somewhat larger than would be necessary
for first-order DPA—if a first-order attack were possible.

A Natural Variation: Known-Offset 2DPA If the difference s = c1 − c0

is non-zero but known, a similar attack may be mounted. Instead of calculating
the squares of the samples, the adversary can calculate the lagged product:

Lb
i (t, s) = T b

i (t) · T b
i (t + s), (9)

where the addition t + s is intended to be cyclic in {0, . . . n− 1}.
This lagged product at the correct offset s = c1 − c0 has properties similar

to the squared samples discussed above, and can be used in the same way.

4.2 FFT 2DPA

Fast Fourier Transform (FFT) 2DPA is useful in that it is more general than
Zero-Offset 2DPA: it does not require that the times of correlation be coincident,
and it does not require any particular information about c0 and c1.

To achieve this, it uses the FFT to compute the correlation of a trace with
itself—an autocorrelation. The autocorrelation Ab

i of a trace T b
i is also defined

on values t ∈ {0, . . . ,m − 1}, but this argument is considered an offset or lag

value rather than an absolute time. Specifically, for b ∈ {0, 1}, 0 ≤ i < n, and
0 ≤ t < m,

Ab
i (t) =

m−1
∑

j=0

T b
i (j) · T b

i (j + t) (10)

The argument t + j in T b
i (j + t) is understood to be cyclic in {0, . . . ,m− 1}, so

that Ab
i (t) = Ab

i (m− t), and we really only need to consider 0 ≤ t ≤ m/2.
To see why Ab

i (t) might be useful, recall Equation (3) and notice that most
of the terms of Ab

i (t) are of the form Sb
i (j) · Sb

i (j + t); in fact, the only terms
that differ are where j or j + t is c0 or c1. This observation suggests a way to
view the sum for Ab

i (t) by splitting it up by the different types of terms from
Equation (3), and in fact it is instructive to do so. To simplify notation, let
Q = {c0 − t, c0, c1 − t, c1}, the set of “interesting” indices, where the terms of
Ab

i (t) are “unusual” when j ∈ Q. Assuming t 6= c1 − c0,

Ab
i (t) = Sb

i (c0 − t) · [Sb
i (c0) + dRb

i ]

+ [Sb
i (c0) + dRb

i ] · Sb
i (c0 + t)

+ Sb
i (c1 − t) · [Sb

i (c1) + d(−1)bRb
i ]

+ [Sb
i (c1) + d(−1)bRb

i ] · Sb
i (c1 + t)

+
∑

j /∈Q

Sb
i (j) · Sb

i (j + t) (11)



and we can distribute and recombine terms to get

Ab
i (t) = [Sb

i (c0 − t) + Sb
i (c0 + t)] · dRb

i

+ [Sb
i (c1 − t) + Sb

i (c1 + t)] · d(−1)bRb
i

+

m−1
∑

j=0

Sb
i (j) · Sb

i (j + t). (12)

Using Equation (12) and the fact that E[XY ] = E[X]·E[Y ] when X and Y are
independent random variables, it is straightforward to verify that E[Ab

i (t)] = 0
when t 6= c1 − c0; its terms in that case are products involving some 0-mean
independent random variable (this is exactly what we show in Equation (15)).
On the other hand, Ab

i (c1 − c0) involves terms that are products of dependent
random variables, as can be seen by reference to Equation (10). We make frequent
use of Equation (12) in our derivations in this section and in Appendix A.2.

This technique requires a subroutine to compute the autocorrelation of a
trace:

Autocorrelate(T )
1 : F ← FFT(T )
2 : for each t ∈ {0, . . . ,m− 1}:
3 : F (t)← |F (t)|2
4 : return Inv-FFT(F )

The |F (t)|2 in line 3 is the squared L2-norm of the complex number F (t) (i.e.,
|F (t)|2 = F (t) · F (t), where α denotes the complex conjugate of α).

The subroutine FFT computes the usual Discrete Fourier Transform:

(FFT(T ))(x) =
m−1
∑

j=0

T (j) · ω−xj (13)

and Inv-FFT computes the Inverse Discrete Fourier Transform:

(Inv-FFT(T ))(y) =
1

m

m−1
∑

j=0

T (j) · ωxj (14)

In the above equations, ω is a complex primitive mth root of unity (i.e., ω ∈ C,
ωm = 1, and ωk 6= 1 for all 0 < k < m).

The subroutines FFT, Inv-FFT, and therefore Autocorrelate itself all run in
time Θ(m log m).

We can now define the top-level FFT-2DPA algorithm:

FFT-2DPA(T 0, T 1, τ)
1 : for each b ∈ {0, 1}, t ∈ {0, . . . ,m− 1}:
2 : Zb(t)← 0
3 : for each b ∈ {0, 1}, i ∈ {0, . . . , n− 1}:
4 : Ab ← Autocorrelate(T b

i )



5 : for each t ∈ {0, . . . ,m− 1}:
6 : Zb(t)← Zb(t) + Ab(t)
7 : return DPA(Z0, Z1, nd2)

What makes this work? Assuming a correct grouping, the expected sums are:

– t 6= c1 − c0:

E[Zb(t)] = E





n−1
∑

i=0

m−1
∑

j=0

(T b
i (j) · T b

i (j + t))





= n
m−1
∑

j=0

E[T b
0 (j) · T b

0 (j + t)]

= n E
[

[Sb
0(c0 − t) + Sb

0(c0 + t)] · dRb
0

]

+ n E
[

[Sb
0(c1 − t) + Sb

0(c1 + t)] · d(−1)bRb
0

]

+ nm E
[

Sb
0(0) · Sb

0(0 + t)
]

= 0 (15)

– t = (c1 − c0):

E[Zb(t)] = E





n−1
∑

i=0

m−1
∑

j=0

(T b
i (j) · T b

i (j + t))





= n

m−1
∑

j=0

E[T b
0 (j) · T b

0 (j + t)]

= n E
[

[Sb
0(c0 − t) + Sb

0(c1)] · dRb
0

]

+ n E
[

[Sb
0(c0) + Sb

0(c1 + t)] · d(−1)bRb
0

]

+ n E[d2(Rb
0)

2(−1)b]

+ nm E
[

Sb
0(0) · Sb

0(0 + t)
]

= 0 + 0 + n E[d2(Rb
0)

2(−1)b] + 0

= nd2(−1)b (16)

So in a correct grouping, we have

E[Z0(t)− Z1(t)] =

{

2nd2 if t = c1 − c0

0 otherwise.
(17)

In incorrect groupings, however, E[Z0(t)−Z1(t)] = 0 for all t ∈ {0, . . . ,m−1}.
In Section A.2, we see that this distribution is closely approximated by a

Gaussian with standard deviation σ =
√

n(8d2 + 2m), so that an attacker who



wishes to use a threshold at least k standard deviations away from the mean

needs n to be at least about k2 · (4d2+m)
2d4 .

Note that the noise from the other samples contributes significantly to the
standard deviation at Zb(c1 − c0), so this attack would only be practical for
relatively short traces and a significant correlated bit influence (i.e., when m is
small and d is not much smaller than 1).

The preprocessing in FFT-2DPA runs in time Θ(nm log m). After this pre-
processing, however, each of l guessed groupings can be tested using DPA in
time Θ(nm), for a total runtime of Θ(nm log m + nml), amortizing to Θ(nml)
if l = Ω(log m). Again, when considering this runtime, it is important to keep
in mind that the number n of required traces can be substantially larger than
would be necessary for first-order DPA—if a first-order attack were possible.

FFT and Known-Offset 2DPA It might be very helpful in practice to use
the FFT in second-order power analysis attacks for attempting to determine the
offset of correlation. With a few traces, it could be possible to use an FFT to
find the offset s of repeated computations, such as when the same function is
computed with the random bit r at time c0 and with the masked bit r + b at
time c0 + s.

With even a few values of s suggested by an FFT on these traces, a Known-
Offset 2DPA attack could be attempted, which could require far fewer traces
than straight FFT 2DPA since Known-Offset 2DPA suffers from less noise am-
plification.

5 Conclusion

We explored two second-order attacks that attempt to defeat masking while
minimizing computation resource requirements in terms of space and time.

The first, Zero-Offset 2DPA, works in the special situation where the masking
bit and the masked bit are coincidentally correlated with the power consumption,
either canceling out or contributing a bimodal component. It runs with almost no
noticeable overhead over standard DPA, but the number of required power traces
increases more quickly with the relative noise present in the power consumption.

The second technique, FFT 2DPA, works in the more general situation where
the attacker knows very little about the device being analyzed and suffers only
logarithmic overhead in terms of runtime. On the other hand, it also requires
many more power traces as the relative noise increases.

In summary, we expect that Zero-Offset 2DPA and Known-Offset 2DPA can
be of some practical use, but FFT 2DPA probably suffers from too much noise
amplification to be generally effective. However, if the traces are fairly short and
the correlated bit influence fairly large, it can be effective.
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A Noise Amplification

In this section, we attempt to characterize the distribution of the estimators
that we use to distinguish the target distributions. In particular, we show that
the estimators have near-Gaussian distributions and we calculate their standard
deviations.

A.1 Zero-Offset 2DPA

As in Section 4.1, we assume that the times of correlation are coincident, so
that c0 = c1. From this, we get that the distribution of the samples in a correct
grouping follows Equation (5):

T b
i (t) =

{

Sb
i (t) + dRb

i + d(−1)bRb
i if t = c0

Sb
i (t) otherwise

(18)

The sum
n−1
∑

i=0

[T 0
i (c0)]

2 =
n−1
∑

i=0

[S0
i (c0) + 2dR0

i ]
2 (19)

is then a χ2(ν, δ2)-distributed random variable with ν = n degrees of freedom

and non-centrality parameter δ2 =
∑n−1

i=0 (2dR0
i )

2 = 4nd2. It has mean ν + δ2 =

4nd2+n and standard deviation
√

2(ν + 2δ2) =
√

2(n + 8nd2) =
√

n(16d2 + 2).

A common rule of thumb is that χ2-distributed random variables with over
thirty degrees of freedom are closely approximated by Gaussians. We expect
n≫ 30, so we say

n−1
∑

i=0

[T 0
i (c0)]

2 ∼ N
(

4nd2 + n,
√

n(16d2 + 2)
)

. (20)



Similarly, we obtain
∑n−1

i=0 [T 1
i (c0)]

2 ∼ χ2(n, 0), which, since n ≫ 30, we
approximate with

n−1
∑

i=0

[T 1
i (c0)]

2 ∼ N
(

n,
√

2n
)

. (21)

The difference of the summed squares is then

n−1
∑

i=0

[

(T 0
i (c0))

2 − (T 1
i (c0))

2
]

∼ N
(

4nd2,
√

n(16d2 + 4)
)

. (22)

A.2 FFT 2DPA

Recalling our discussion from Section 4.2, we want to examine the distribution
of

Zb(t) =

n−1
∑

i=0

m−1
∑

j=0

T b
i (j) · T b

i (j + t). (23)

when t = c1 − c0. Its standard deviation should dominate that of Zb(t′) for
t′ 6= c1 − c0 (for simplicity, we assume c1 − c0 6= c0 − c1).

In Section 4.2, we saw that E[Zb(t)] = nd2(−1)b. We would now like to
calculate its standard deviation.

In the following, we liberally use the fact that

Var[X + Y ] = Var[X] + Var[Y ] + 2Cov[X,Y ], (24)

where Cov[X,Y ] is the covariance of X and Y (Cov[X,Y ] , E[XY ]−E[X] E[Y ]).
We would often like to add variances of random variables that are not indepen-
dent; Equation (24) says we can do so if the random variables have 0 covariance.

Since the traces are independent and identically distributed,

Var[Zb(t)] =

n−1
∑

i=0

Var





m−1
∑

j=0

T b
i (j) · T b

i (j + t)





= nVar





m−1
∑

j=0

T b
0 (j) · T b

0 (j + t)





= nVar
[

dRb
0([S

b
i (c0 − t) + Sb

0(c1)] + (−1)b[Sb
0(c0) + Sb

0(c1 + t)])
]

+ nVar





m−1
∑

j=0

Sb
0(j) · Sb

0(j + t)



 (25)

where we were able to split the variance in the last line since the two terms have
0 covariance.



To calculate Var
[

dRb
0([S

b
0(c0 − t) + Sb

0(c1)] + (−1)b[Sb
0(c0) + Sb

0(c1 + t)])
]

, note
that its terms have 0 covariance. For example:

Cov[dRb
0S

b
0(c0 − t), dRb

0S
b
0(c1)] = E[(dRb

0)
2Sb

0(c0 − t) · Sb
0(c1)]

− E[dRb
0S

b
0(c0 − t)] E[dRb

0S
b
0(c1)]

= 0− 0 = 0 (26)

since the expectation of a product involving an independent 0-mean random
variable is 0. Furthermore, it is easy to check that each term has the same
variance, and

Var[dRb
0S

b
0(c1)] = E

[

[dRb
0S

b
0(c1)]

2
]

− E[dRb
0S

b
0(c1)]

2

= d2
E

[

[Sb
0(c1)]

2
]

− 0

= d2, (27)

for a total contribution of

Var
[

dRb
0([S

b
0(c0 − t) + Sb

0(c1)] + (−1)b[Sb
0(c0) + Sb

0(c1 + t)])
]

= 4d2. (28)

The calculation of Var
[

∑m−1
j=0 Sb

0(j) · Sb
0(j + t)

]

is similar since its terms also

have covariance 0 and they all have the same variance. Thus,

Var





m−1
∑

j=0

Sb
0(j)S

b
0(j + t)



 = mVar[Sb
0(0)Sb

0(0 + t)]

= m
(

E
[

[Sb
0(0)]2[Sb

0(t)]
2
]

− E[Sb
0(0)Sb

0(t)]
2
)

= m(1 + 0) = m. (29)

Finally, plugging Equations (28) and (29) into Equation (25), we get the
result

Var[Zb(t)] = n(m + 4d2) (30)

and the corresponding standard deviation is
√

n(m + 4d2).
As in Section A.1, we expect n to be large and we say

Zb(t) ∼ N
(

nd2(−1)b,
√

n(4d2 + m)
)

. (31)

Finally, we get the distribution of the difference:

Z0(t)− Z1(t) ∼ N
(

2nd2,
√

n(8d2 + 2m)
)

. (32)


