
Long Modular Multiplication for
Cryptographic Applications1

Laszlo Hars

Seagate Research, 1251 Waterfront Place, Pittsburgh PA 15222, USA
Laszlo@Hars.US

Abstract. A digit-serial, multiplier-accumulator based cryptographic co-
processor architecture is proposed, similar to fix-point DSP's with enhance-
ments, supporting long modular arithmetic and general computations. Several
new “column-sum” variants of popular quadratic time modular multiplication
algorithms are presented (Montgomery and interleaved division-reduction with
or without Quisquater scaling), which are faster than the traditional implemen-
tations, need no or very little memory beyond the operand storage and perform
squaring about twice faster than general multiplications or modular reductions.
They provide similar advantages in software for general purpose CPU's.

Keywords: Computer arithmetic, cryptography, modular multiplication, Modu-
lar reduction, Montgomery multiplication, Quisquater multiplication, optimiza-
tion, multiply-accumulate architecture, reciprocal.

Introduction

Long exponentiation based cryptographic operations are performed infrequently in
secure client devices like smart cards or OSD disk drives [15] and it is not economical
to include a large piece of HW dedicated only to that task. A DSP-like architecture
with minor enhancements for speeding up long modular arithmetic can be used for
many other tasks, too, providing an almost free long modular arithmetic engine. A
digit-serial, multiplier-accumulator based cryptographic co-processor architecture is
proposed, like fix-point DSP's, with inexpensive enhancements for speeding up long
modular arithmetic.

Internal fast memory is expensive (storage for eight 2K-bit integers costs about
twice as much as the whole arithmetic engine), but only a portion of this memory is
needed for processing other than RSA or Diffie-Hellman type operations, so we try to
keep this memory small. Several new variants of popular modular multiplication
algorithms are presented (Montgomery and interleaved division-reduction with-, or
without Quisquater scaling), which either don't need extra memory beyond the pa-
rameters or, for extra speed, use one or two additional pre -computed parameters of the
size of the modulus. All of these algorithms perform squaring about twice faster than
general multiplications and modular reductions. The speed and memory usage advan-
tages of these algorithms are preserved for SW for general purpose CPU's as well.

1 The full version of the paper is at: http://www.hars.us/Papers/ModMult.pdf

Notations

• Long integers are denoted by A = {a n- 1…a1a0} = S d
iai in a d-ary number system,

where ai (0 = ai = d -1) are called the digits. We consider here d = 216 = 65,536,
that is 16 bits, but our results directly translate to other digit sizes, like d = 232

• |A| or |A|d denotes the number of digits, the length of a d-ary number
• [x] stands for the integer part of x.
• D0(Q) refers to the Least Significant digit (digit 0) of an integer or accumulator Q
• MS(Q) refers to the content of the accumulator Q, shifted to the right by one digit
• LS stands for Least Significant, the low order bit/s or digit/s of a number
• MS stands for Most Significant, the high order bit/s or digit/s of a number
• (Grammar) School multiplication : the digit-by-digit-multiplication algorithms, as

taught in schools. It has 2 variants in the order the digit -products are calculated:
− Row-order: fori=0…|a|-1 forj=0…|b|-1 …aibj…

− Column -order: fork=0…|a|+|b|-2 fori,j: i+j=k …aibj…

Computing architecture

Our experimental HW is clocked at 150 MHz. It is
designed around a 16×16-bit single cycle multiplier.
This is the largest, the most expensive part of the HW
after the memory (0.13µm CMOS: 16,000 µm2). Such
circuits have been designed for 300 MHz clock rate
and beyond in even for CMOS 0.18 µm technology,
often used in smart cards, but they are large and ex-
pensive. There are much faster or longer multipliers at
smaller feature sizes, like the 370 MHz 36×36-bit
multipliers in ALTERA FPGA 's [1].

We concentrate on algorithms, which accumulate
digit-products in column order, although many of the
speed-up techniques are applicable to row multiplications, too [17]. The digits of both
multiplicands are constantly reloaded to the multiplier: C = A·B = {a0b0, a1b0+a0b1,
a2b0+a1b1+a0b2…}. The digit-products are summed in columns. High-speed 40-bit
CMOS adders have 5 gates delay, can perform 4 additions in a single clock cycle with
time for loading and storing the results in RAM. After a digit-multiplication the 32-bit
result is added to the accumulator and the multiplier starts working on the next product.
When all digit-products are accumulated for the current digit of C the LS digit from the
accumulator is shifted out and stored. By feeding the multiplier and accumulator con-
stantly we achieve sustained single cycle digit multiply-accumulate operations.

Memory To avoid access conflicts separate RAM banks are needed for the operands
and the result. Optimal space efficiency requires the ability to change the value of a
digit, i.e., read and write to the same memory location within the same clock cycle. It
can be done easily at low speed (smart cards), but faster systems need tricky designs.
The algorithms presented here would benefit from this read/write capability, which is
only needed in one memory bank, holding the temporary results.

Memory
Bank0

Memory
Bank1

Memory
Bank 2

MUX0 MUX1

DeMUX

Shifter

A B

Memory Read Lines

Memory Write Lines

Multiplier

Accumulator
∑

Π31 .. 16 15 ... 0

As
P

Buffer-
Inverter

Buffer-
Inverter

MUX2

C

Buffer-
Inverter

Register
Bank

Fig. 1. Dataflow diagram

At higher clock frequencies some data buffering, pipelining is necessary to run the
algorithms at full speed, causing address offsets between the read and write phase of
the memory update. Because the presented algorithms access their data sequentially,
circular addressing can be used. The updated digit is written to the location where the
next digit is being read from, not where the changed digit was originated from. At
each update this causes a shift of loci in data storage. The corresponding circular
address offset has to be considered at the next access to the data.

This way, one address decoder for this memory bank is enough, with some regis-
ters and a little faster memory cells – still less expensive than any other solution.
However, it is a custom design; no off-the-shelf (library) memory blocks can be used.

A dual ported memory bank offer simultaneous read/write capabilities, but two
single ported RAM banks cost the same and provide double the storage room and
more options to optimize algorithms. With 2 banks, data is read from one and the
changed data is written to another memory bank, not being accessed by the read logic.

The accumulator consists of a couple of 50-bit registers (48 data bits with 2 addi-
tional bits for sign and carry/borrow), a barrel shifter and a fast 48-bit adder. It can be
laid out as a 32-bit adder and an 18-bit counter for most of our algorithms, performing
together up to 3 additions in a clock cycle. One of the inputs is from a 50-bit 2's com-
plement internal register, the other input is selected from the memory banks (can be
shifted), from the multiplier or from a (shifted) accumulator register. At the end of the
additions, the content of the register can be shifted to the left or (sign extended) to the
right and/or the LS digit stored in RAM.

Since only the LS digit is taken out from the accumulator, it can still work on carry
propagation while the next addition starts, allowing cheaper designs (0.13µm CMOS:
2,000µm2, 12.5% of the area of the multiplier). Some algorithms speed up with one or
two internal shift-add operations, effectively implementing a fast multiplier with
multiplicands of at most 2 nonzero bits (1, 2, 3, 4, 5, 6; 8, 9,10; 12; 17…).

Basic arithmetic

Addition/Subtraction: In our algorithms digits are generated, or read from me m-
ory, from right to left to handle carry propagation. The sign of the result is not known
until all digits are processed; therefore, 2's complement representation is used.

Multiplication: Cryptographic applications don't use negative numbers; therefore
our digit-multiplication circuit performs only unsigned multiplications. The products
are accumulated (added to a 32…50-bit register) but only single digits are extracted
from these registers and stored in memory.

For operand sizes in cryptographic applications the school multiplication is the
best, requiring simple control. Some speed improvement can be expected from the
more complicated Karatsuba method, but the Toom-Cook 3-way (or beyond) multi-
plication is actually slower for these lengths [6]. An FFT based multiplication takes
even longer until much larger operands (in our case about 8 times slower).

Division: The algorithms presented here compute long divisions with the help of
short ones (one- or two-digit divisors) performed by multiplications with reciprocals.
The reciprocals are calculated with only a small constant number of digit-operations.
In our test system linear approximations were followed by 3 or 4 Newton iterations. [9]

Traditional modular multiplication algorithms

We assume m = {mn- 1 mn- 2…m0} is normalized, that is ½ d = mn- 1 < d or
½ d

n- 1 = m < d
n. It is normally the case with RSA moduli. If not, we have to norma l-

ize it: replace m with 2km. A modular reduction step (discussed below) fixes the re-
sult: having Rk = a mod 2km calculated, R ← Rk - q·m, where q is computed from the
leading digits of Rk and 2km. These de/normalization steps are only performed at the
beginning and end of the calculations (in case of an exponentiation chain), so the
amortized cost is negligible.

There are a basically 4 algorithms used in memory constrained, digit serial applica-
tions (smart card, secure co-processors, consumer electronics, etc.): Interleaved row
multiplication and reduction, Montgomery, Barrett and Quisquater multiplications.
[1], [3], [12], [13]. We present algorithmic and HW speedups for them, so we have to
review their basic versions first.

Montgomery multiplication It is simple and fast, util-
izing right-to-left divisions (sometimes called exact
division or odd division [7]). In this direction there are
no problems with carries (which propagate away from
the processed digits) or with estimating the quotient
digit wrong, so no correction steps are necessary. This
gives it some 6% speed advantage over Barrett's reduc-
tion and more than 20% speed advantage over division based reductions [3]. The
traditional Montgomery mu ltiplication calculates the product in “row order”, but it
still can take advantage of a speedup for squaring. (This is commonly believed not to
be the case, see e.g. in [11], Remark 14.40, but the trick of Fig. 7 works here, too.)
The main disadvantage is that the numbers have to be converted to a special form
before the calculations and fixed at the end, that is, significant pre- and post-
processing and extra memory is needed.

 In Fig. 2 the Montgomery reduction is described. The constant m' = - m0
- 1 mod d

is a pre-calculated single digit number. It exists if m0 is odd, which is the case in cryp-
tography, since m is prime or a product of odd primes.

 The rational behind the algorithm is to repre-
sent a long integer a, 0 = a < m, as aR mod m
with the constant R = d

n. A modular product of
these (aR)(bR) mod m is not in the proper form.
To correct it, we have to multiply with R- 1, be-
cause (aR)(bR)R- 1 mod m = (ab)R mod m. This
x → xR- 1 mod m correction step is called Mont-
gomery reduction, taking about the same time as the school multiplication.

The product AB can be calculated interleaved with the reduction, called the Mont-
gomery multiplication (Fig. 3). It needs squaring-speedup as noted above. The in-
struction x =(x+aib+t·m)/d is a loop through the digits of B and m from right to left,
keeping the carry propagating to the left.

for i = 0 … n-1
 t = xi·m' mod d
 x = x + t·m·di
x = x / dn
if(x = m)
 x = x – m

Fig. 2. Montgomery
reduction of x

x = 0n
for i = 0 … n-1
 t = (x0+aib0)m' mod d
 x = (x + aib + t.m)/d
if(x = m)
 x = x – m

Fig. 3. Montgomery multiplication

Barrett multiplication It can take advantage of
double speed squaring, too, but calculates and
stores the quotient q = [a b / m], although it is not
needed later. (During the calculations q and the
remainder r cannot be stored in the same memory
bank.) To avoid slow divisions, Barrett uses µ, a
pre-computed reciprocal of m. These result in an extra storage need of 2n digits.

The modular reduction of a product is a b mod m = a b - [a b / m] m. Division by m is
slower than multiplication, therefore µ = 1/ m is calculated beforehand to multiply
with. It is scaled to make it suitable for integer arithmetic, that is, µ = [d 2n/m] is calcu-
lated (µ is 1 bit longer than m). Multiplying with that and keeping the most significant
n bits only, the error is at most 2, compared to the larger result of the exact division.
The subtraction gives at most n-digit results, i.e. the most significant digits of a b and
[a b / m] m agree, therefore only the least significant n digits of both are needed. These
yield the algorithm given in Fig. 4.

The half products can be calculated in half as many clock cycles as the full products
with school multiplication. In practice a few extra bits precision is needed to guarantee
that the last “while” cycle does not run too many times. This increase in operand length
makes the algorithm slightly slower than Montgomery's multiplication.

Quisquater's multiplication is a variant of Barrett's algorithm. It multiplies the
modulus with a number S, resulting in many leading 1 bits. This makes µ unneces-
sary, and the corresponding MS-half division becomes trivial. The conversion steps
and the calculation with longer modulus could offset the time savings, but in many
cases this algorithm is faster. [5]

Interleaved row-mul tiplication and reduction
Long division (modular reduction) steps can be
interleaved with the multiplication steps. The advan-
tage is that we don't need to store 2n-digit full prod-
ucts before the division starts. Furthermore, as the
digit-products are calculated, we can keep them in
short (32-bit) registers and subtract the digits calcu-
lated for the modular reduction, making storing and
re-loading unnecessary. During accumulation of the partial products if an intermediate
result becomes too large we subtract an appropriate multiple of the modulus.
- Multiply one of the operands, A, by the digits of the other one, from left to right:

Cn- 1 = Abn- 1, Cn- 2 = Abn- 2…C0 = Ab0. (Here each Ci can be n +1-digit long, im-
plicitly padded with i zeros to the right.)

- C ← Cn- 1- qn- 1m, with such a qn- 1, that reduces the length of C to n digits. (Mult i-
ply the MS digit of C with the pre-computed µ = d

2/mn- 1 to get the ratio. A few
extra guard bits ensure an error of qn- 1 to be at most 1.)

- For i = n -2…0: add Ci to C, shifted to the right by one digit. Again, C can be-
come n +1 digits long (excluded the trailing 0's), so C ← C - qi m, with such a qi,
that reduces the length of C to n digits. If the implicit padding is taken into con-
sideration, we actually subtracted d i- 1qm.

(A1dn + A0) ← a b
q ← MS n digits of A1µ
r ← A0- LS n digits of q m
if r < 0: r ← r + dn+1
while r = m: r ← r - m
Fig. 4. Barrett's multiplication

C = 0 // long integer
for i = n-1 … 0
 C = C·d + A·bi
 q = MS(MS(C)·µ)
 C = C–q·M
 if(C = M)
 C = C–M
Fig. 5. Interleaved row multi-
plication & modular reduction

 If the reduction C ← C- qi m is not sufficient to reduce the length of C to n digits (q is
off by 1), we need a subtraction of m (equivalent to setting qi ← qi +1). With guard bits
it is very rare, so the average time for modular multiplications is only twice longer
than what it takes to normally multiply 2 numbers. The result is AB mod m, and the
digits qi form the quotient q = S d

 iqi = [AB/m]. (When
not needed, don't store them.) It is a left-right version of
the Montgomery multiplication. The products A·bi and
q·M are calculated with loops collecting digit-products
in an accumulator, storing the LS digit of the accumula-
tor in memory shown in Fig. 6.

 Memory access If the number of read/write operations
is a concern, the MS digits of C·d + A·bi could be
calculated first, giving a good estimate for q. A single
loop calculates C'+A·bi- q·M, there is no need to store
and retrieve the digits of C in between.

 Squaring In row i the product ak ai is calculated, which
has the weight d

k+i. The same product is calculated in row
k , too. Instead of repeating the work, we accumulate 2ak ai in row i. In order to keep
track of which product is calculated when, in row i we consider only ak ai with k = i.
Because of the multiplier 2 the product is accumulated 1 bit shifted, but the result is still
at most i +1 digits. (The worst case if all the digits are d -1 gives d

i+2- d
i- 2d +2 < d

i+2.)
We can accumulate half products faster: ak ai and ak

2/2, and double the final result. When
a0 was odd we accumulate (a0

2-1)/2, with a final correction step [17].

New multiplication algorithms

Below new variants of popular modular multiplication algorithms are presented, tailored
to the proposed HW, which was in turn designed, to allow speeding up these algorithms.
Even as microprocessor software these algorithms are faster than their traditional coun-
terparts. Their running time comes from two parts, the multiplication and the modular
reduction. On the multiply-accumulate HW the products are calculated in n2 clock cy-
cles for the general case, and n (n +1)/2 clock cycles for squaring (loop j in Fig. 10 ig-
nores repeated products, double the result and adds the square term). The modular re-
duction phase differentiates the algorithms, taking (1+s) n2 + t·n + constant clock cycles.

Row- or Column- multiplication

At modular reduction a multiple of m: q·m is subtracted from the partial results. q is
computed from the MS digits. At row-multiplication they get calculated last, which
forces us to save/load partial results, or process the MS digits out of order. It slows
down the algorithms and causes errors in the estimation of q, to be fixed with extra
processing time. Calculating the product-digits in columns, the MS digits are avail-
able when they are needed, but with the help of longer or bundled accumulators. Both
techniques lead to algorithms of comparable complexities. Here we deal with column
multiplications, while the row multiplication results are presented in [17].

Q = 0 // 32-bit accu
for k = 0 … n-1
 Q = MS(Q) + akbi
 ck = D0(Q)
cn = MS(Q)

Fig. 6. Row products
C = A·bi

Q = 0 // 33-bit accu
for k = 0 … i-1
 Q = MS(Q) + 2akai
 ck = D0(Q)
Q = MS(Q) + ai2
ci,i+1 = Q

Fig. 7. Row-squaring

Left-Right-Left multiplication with interleaved modular reduction

The family of these algorithms is called LRL (or military-step) algorithms. They don't
need special representation of numbers and need only a handful of bytes extra memory.

Short reciprocal The LRL algorithms replace division with multiplication with the
reciprocal. For approximate 2-digit reciprocals, µ ˜ d

n+2/ 2m, only the MS digits are
used, making the calculation fast. Since m is normalized, ½ d

n = m < d
n, the exact

reciprocal ½ d
2 < [d

n+2/ 2m] = d
2 is 2 digits, except at the minimum of m = ½ d

n. De-
creasing the overflowed values, to make µ = d

2 -1, does not affect the overall accu-
racy of the approximation. Most algorithms work well with this approximate recipro-
cal, calculated with a small constant number of digit operations (around 20 with Ne w-
ton iteration). If the exact 2-digit reciprocal is needed, compare d n+2/ 2 and µm. If the
approximation is done according to Note R below, adding m if needed makes the error
0 = err < m. When this addition was necessary, µ+1 is the exact reciprocal, and it can
be calculated in 2n + O(1) clock cycles, in the average (4n + const worst case).
Lemma 1 The 2-digit approximate reciprocal calculated from the 2 MS digits of m
µ = [d 4/(2dmn- 1+2mn- 2)] has an error - 2 < ? < 1 from to the true ratio d n+2/ 2m.
Proof d n+2/ 2m = d 4/ (2dmn- 1+2mn- 2+2m') with 0 = m' < 1, m' representing the omitted
digits. d

4- µ·2(dmn- 1+mn- 2) = r, the remainder of the division. 0 = r < 2(dmn- 1+mn- 2).
From d 4/ (2dmn- 1+2mn- 2+2m') = µ + ? we get d 4

 = 2(dmn- 1+mn- 2+m') (µ + ?), or

 ? = (r/2 - µm') /(dmn- 1+mn- 2+m'). (1)

It is decreased by setting r = 0, giving a negative expression, which is decreasing
with m'. Putting m' = 1, larger than its maximum, gives - µ/(dmn- 1+ mn- 2+1) < ?. µ is
largest when the denominator is the smallest, resulting in - 2 < - (d 4/ d

2) / (d
2/2+1) < ?.

The other side of the inequality is proved by setting r to 2(dmn- 1+ mn- 2) larger than
its maximum. If the expression in (1) is positive, it is decreasing with m', so setting it to
its minimum m' = 0 gives the maximum: (dmn- 1+ mn- 2- µ·0)/(dmn- 1+ mn- 2+ 0)

 = 1 > ?. []

Let's denote the 2-digit reciprocals by µ = [d
n+2/ 2m], µ(0)

 = [d 4/(2dmn- 1+2mn- 2)], and
µ(1)

 = [d 4/(2dmn- 1+2mn- 2+2)] (subtracting 1 if needed to make them exactly 2-digit).
From the definition: µ(1) = µ = µ(0).

Lemma 2 a) If (dmn- 1+mn- 2)·(dmn- 1+mn- 2+1) = ½ d
4: µ(0) - µ(1) = 1 or 2 and

 b) if (dmn- 1+mn- 2)·(dmn- 1+mn- 2+1) = ½ d
4: µ(0) - µ(1) = 0 or 1.

Proof d
4/(2dmn- 1+2mn- 2) - d

4/(2dmn- 1+2mn- 2+2) = ½ d
4

 / ((dmn- 1+mn- 2)·(dmn- 1+mn- 2+1)).
In case a) the difference is less than 2, so the integer parts are at most 2 apart. In

case b) the difference is less than 1, making the integer part differ at most by 1. []
Corollary µ = [d 4/ 2m], the 2-digit reciprocal of m can be calculated from its 2 MS
digits with an error of = 2, with desired sign of the error, knowing µ(1) = µ = µ(0).

Lemma 3 If d = 216 and m = 0xB504 C417… > d
n/ 2 , the error µ(0) - µ(1) = 0 or 1.

Proof Easily verified by computing the values not covered by Lemma 2, case b). []
Corollary If d = 216 and m > d

n/ 2 = 0xB504 F333…, the error µ(0) - µ(1) = 0 or 1.
(Similar results hold for other practical digit sizes, like 24, 32, 48 or 64 bits.)
Note R In Lemma 2 Case a) we can look at the next bit (MS bit of mn- 3). If it is 0, µ(0)
is closer to µ than µ(1), so an approximation with an error at most 1 is provided by
µ(1)+1 = µ = µ(0). If the MS bit of mn- 3 is 1, µ(1) is closer to µ, then µ(1) = µ = µ(0)-1
provides an error of at most 1.

Note T Dropping some LS bits, the truncated µ(1) is never too large and has an error at
most 1 in the LS bit kept. This approximation of the reciprocal can be calculated with
only a small constant number of digit operations. Adding 1 in the last bit-position of
the truncated reciprocal yields another approximate reciprocal, which is never too
small and has an error of at most one in this bit-position.

Algorithm LRL4

- Calculate an- 1 bn- 1, padded with n -1 zeros to the right. Subtract a multiple of the
modulus m, such that the result becomes n digits long (it was at most n +1 digits
long): Multiply the MS digit with the pre-computed µ = [d n+2/m] to get the ratio
qn- 1. (A few extra guard bits ensure an error of at most 1.)

- Calculate the next MS digit from the product: an- 1 bn- 2 +
 an- 2 bn- 1, pad, and add to

the n-digit partial remainder calculated before, giving at most n +1 digits. A mu l-
tiplication with µ of the MS digit(s) gives qn- 2, such that subtracting qn- 2 m re-
duces the partial result again to n digits. Multiplication the digits of m (taken
from right-to-left) with the single digit qn- 2 and their subtraction from the partial
remainder is done in parallel (pipelined).

- Continue this way until the new digit-products summed in columns do not increase
the length of the partial product (the LS n -2 digits of the product). The rest is cal-
culated from right-to-left and added normally to the product, with a possible final
reduction step.

The reduction step is bet-
ter delayed until the MS 3
digits of the product are
calculated. This way adding
the next product-digit can
cause a carry at the MS bit at
most 1: the possible maxi-
mum is n (d - 1)

2 << d
3. The

overflowed digit need not
be stored, the situation can
be fixed immediately by
subtracting m. This overflow happens if the new digit is large, and the first digit of the
partial result is larger than d - n. This digit is the result of the modular reduction, so it
is very close to uniformly distributed random. The probability of an overflow is less
than n / d, about 1 in 1,000 at 16-bit digits, practically 0 for 32-bit digits.

This way we need not store 2n-digit-
products, the partial remainders only grow to n
digits (plus an occasional over/under-flow bit).
Although the used column -sums of digit-
products add only to the 3 MS digits of the
partial product (no long carry propagation), the
subtraction of qi m still needs n-digit arithmetic
(the LS digits further to the right are implicit
0's). All together a handful (t) steps are needed
to calculate an approximate quotient qi, which makes n2 + t n clock cycles for the
modular reduction.

Rn-1 … n-3 = ana-1bnb-1d + ana-1bnb-2 + ana-2bnb-1
for k = na+nb-4 … n-3 // products downward
 Rn … n-4 += Si+j==k aibj
 if (overflow) R -= m
 q =(Rn-1µ1d2 + Rn-1µ0d + Rn-2µ1d + Rn-2µ0)/d3·2

 R =(R–q·m)d
for k = 0 … n-4 // LS product-digits
 Rn … k += Si+j==k aibj
while(Rn > 0) R -= m // overflow

Fig. 8. The LRL4 modular multiplication algorithm

c = 0 // 1 digit temp store
Q = 0 // 33-bit accumulator
for k = 0 … n-1
 Q = MS(Q) + c – q·mk
 c = rk
 rk = D0(Q)

Fig. 9. Inner loop of modular
reduction R =(R–q·m)d

{µ1, µ0} is a 2-digit pre-computed
reciprocal of m. The implementa-
tion details are shown in Fig. 9
and Fig. 10. If the quotient [a b / m]
is needed, too, we store the se-
quence of qi's. There is a minor
difficulty with the occasional
q ← q +1 correction steps, which
might cause repeated carry propa-
gation. Since it happens rarely, it
does not slow down the process
noticeably, but we could store the
locations of the correction steps (a few bytes storage) and do a final right-to-left scan
of the quotient, to add one to the digits where the correction occurred.

Time complexity µ = [d
n+2/2m] the 2-digit re ciprocal is at most 1 smaller than the

true ratio d
n+2/2m. The quotient q is calculated from the 2 MS digits of the dividend x

and the reciprocal µ:

 q = [2(µ1xnd
2 + (µ1xn- 1+µ0 xn) d + µ0 xn- 1) / d

3]. (LRL4q)

Proposition: q is equal to or at most 1 less than the integer part of the true quotient.
Proof: At the reduction steps the true ratio was q' = [(xn d

n
 + xn- 1 d

n- 1
 + ?

 d
n- 1) / m]

with some 0 = ? < 1, representing the rest of the digits of x. The approximate recipro-
cal µ has an error ?, at most 1 from the rational d

n+2/2m, so our estimated ratio

q = [2(xn d + xn- 1)·(d
n+2/2m - ?) / d

3]
= [(xn d

n + xn- 1 d
n- 1 + ? d

n- 1) / m - ? d
n- 1/m - 2(xnd + xn- 1) ? /d

3]

The subtracted error term, ? d
n- 1/m + 2(xn d + xn- 1) ? /d

3 is increased if we put ? = 1,
? = 1, xn , xn- 1 = d - 1, and m to its smallest possible value, ½ d

n. The error is smaller
than the resulting 2d

n- 1/d
n + 2(d

2 - 1)/d
3 = (4d

2 -2) /d
3, which is less than 1 if d = 4. []

If the reciprocal was calculated from the 2 MS digits of m (error - 2 < ? < 1), the
partial remainder could become negative, having an error of at most roughly ±4/d.
Most of the time the added new digit -products fix the partial results, but sometimes an
add-back correction step is necessary. The running time of the modular reduction in
SW is less than 1.0001n2 + 4n , in the average; n2 + 4n with extra HW.

LRL3 From the calculation of q we can drop µ0 xn- 1. It causes an additional error of at
most 2(d - 1)2/d

3 < 2/d. The approximate quotient digit is calculated with

 q = [2(µ1xnd + µ1xn- 1+µ0 xn) / d
2]. (LRL3q)

It takes 3 clock cycles with our multiply-accumulate HW, with a 1 bit left-shift and
extracting the MS digit. In pure software implementation the occasional addition-
subtraction steps add 0.0001n

2 to the running time, in the average. Alternatively, the
overflow can be handled at the next reduction step, where the new quotient will be
larger, q = d + q', with q' < d. In the proposed HW the extra shifted additions of the
modulus digits can be done in parallel to the multiplications, so the worst case run-
ning time is n2 + 3n for the modular reduction, in SW we need 1.0001n2 + 3n steps.

Q = 0 // 40bit accumulator
for k = 0 … n-4
 Q = MS(Q) + rk
 for j = max(0,k+1-na)… min(k+1,nb)
 Q += ak-jbj
 rk = D0(Q)
for i = n-3 … n // storing digits
 Q = MS(Q) + ri
 ri = D0(d)

Fig. 10. Calculation the digits of a·b
for k = 0 … n-4: Rn…k += Si+j==k aibj

Note If the reduction step fails to reduce the length of the remainder, the second MS
digit is very small (0…±6). In this case, adding the subsequent digit of the product
(the next column -sum) cannot cause an overflow, so the reduction can be safely de-
layed after the next digit is calculated and added. It simplifies the algorithm but does
not change its running time.

LRL2 Another variant is shifting µ a few bits to the right, e.g. 8 bits give µ1 ˜ d ,
allowing us to drop the term µ1xn- 1 < d

3/2 from the calculation of q, resulting in

 q = [(µ1xnd + µ0xn) / d
3/2] (LRL2q)

This is very good for larger digit sizes. At 16-bit digits the probability of the correc-
tions is roughly 1/256, so the average running time of the SW version is
 1.004n 2 + 2n ; in HW n 2 + 2n .

LRL1 Without first shifting the modulus to make the reciprocal normalized we get
µ = [d 3/(dmn- 1+mn- 2)], with µ1 = 1, which reduces some multiplications to additions.
Unfortunately, the remaining accuracy is not enough. At least 1 more bit is needed to
the right of µ0. Its effects can be accommodated by a shift-addition with the content of
the accumulator. This leads to LRL1, the fastest variant of the LRL algorithms.

Keep the last results in the 50-bit accumulator Q = c d
3 + xn d

2 + xn- 1 d + xn- 2 (3 dig-
its + carry). Use 1 digit + 2 bits reciprocals in the form µ = ½ [2d

n+1/ m] = d + µ0 + d,
with d = 0, ½. The multiplication with d needs no action when manipulating the con-
tent of the accumulator. Multiplication with d > 0 is also done inside the accumulator
parallel to the multiplication with µ0: add the content of the accumulator to itself,
shifted right by 17 bits.

What remains is to calculate µ0(c d
2 + xn d + xn- 1). If c is 0 or 1 then µ0c d

2 is com-
puted by a shift/add, parallel to the µ0 xn multiplication. We drop the term µ0 xn- 1 / d

2
from the approximation of q. The LRL1 algorithm still works, using only one digit-
multiplication (µ0 xn) for the quotient estimate with two shift-adds, µ0 c d and the
accumulator times d /d . All aditions are done in the LS 32 bits of the accumulator.

 q = [((1 + d /d) (c d
3

 + xn d
2

 + xn- 1d + xn- 2)) / d
2

 + µ0 c + µ0 xn /d] (LRL1q)

Similar reasoning as at LRL4 assures that the conditions c = 0 or 1, and 0 = q < 3d
is maintained during the calculations. The probability of the corrections is ˜ ¼, giving
an average SW running time 1.25n 2 + n ; in the accumulator-shift HW n 2 + n .

Computer experiments A C program simulating the algorithm was tested against
the results of GMP (GNU Multi Precision library [6]). 55 million modular
multiplications of random 8192×8192 mod 8192 bits were tried, in addition to several
billion shorter ones. The digit n +1 of the partial results in the modular reduction was
always 0 or 1 and 0 = q < 3d remained true.

Note The last overflow correction (after the right-to-left multiplication phase) can be
omitted, if we are in an exponentiation chain. At overflow the MS digit is 1, the sec-
ond digit is small, and so at the beginning of the next modular multiplication there is
no more overflow (the MS digit stays as 1), and it can be handled the normal way.

Modulus Scaling

The last algorithm uses only one digit-multiplication to get the approximate quo-
tient for the modular reduction steps. We can get away with even fewer (0), but with a
cost in preprocessing. It increases the length of the modulus. To avoid increasing the
length of the result, the final modular reduction step in the modular multiplications is
done with the original modulus. Preprocessing the modulus is simple and fast, so the
algorithms below are competitive to the standard division based algorithms even for a
single call. If a chain of calculations is performed with the same modulus (exponentia-
tion) the preprocessing becomes negligible compared to the overall computation time.

The main idea is that the calculation of q becomes easier if the MS digit is 1 and
the next digit is 0. Almost the same good is if all the bits of the MS digit are 1. In
these cases no multiplication is needed for finding the approximate q [5], [15].

We can convert the modulus to this form by multiplying it with an appropriate 1-
digit scaling factor. This causes one-time extra costs at converting the modulus in the
beginning of the calculation chain, but the last modular reduction is done with the
original modulus, and so the results are correct at the end of the algorithms (no post-
processing). The modified modulus is one digit longer, which could require extra
multiply-accumulate steps at each reduction sweep, unless SW or HW changes take
advantage of the special MS digits. These modified longer reduction sweeps are per-
formed 1 fewer times than the original modulus would require. The final reduction
with the original modulus makes the numb er of reduction sweeps the same as before.

There are two choices for the scaled modulus, {mn+1, mn} = {1, 0} and mn = d - 1.
The corresponding modular reduction algorithms are denoted by S10 and S0F. In both
cases q = rn+1 gives the estimate. Both algorithms need to store and process only the
LS n digits of the scaled modulus, the processing of the MS digits can be hardwired.

Algorithm S0F The initial conversion step changed the modulus, such that |m| = n +1
and mn = d -1. The current remainder R is shifted up (logically, that is only the index-
ing is changed) to make it n+2 digits long, such that R = {rn+1, rn…, r1, 0}.
Proposition: q = rn+1 is never too large, sometimes it is 1 too small.
Proof: (similar to the proof under S10 below) []

Correction steps q is often off by 1. It results in an overflow, i.e., the bit is not
cleared from above the MS digit of the partial results. We have to correct them imme-
diately (by subtracting m), otherwise the next q will be 17 bits long, and the error of
the ratio estimation is doubled, so there could be a still larger overflow next.

These frequent correction steps cannot be avoided with one digit scaling. It corre-
sponds to a division of single digits and they don't provide good quotient estimates.
The S10 algorithm below uses an extra bit, so it is better in this sense.

Algorithm S10: The initial conversion step changed the modulus, such that |m| = n +2
and mn+1 = 1, mn = 0. The current remainder R is shifted to the left (logically, that is
only the indexing is changed) to make it also n+2 digits long, such that
R = ±{rn+1, rn,…, r1, 0}. We use signed remainders and have to handle overflows, that
is, a sign and an overflow bit could temporarily precede the digits of R. The algorithm
will add/subtract m to fix the overflow if it occurs.

Now there are |d|2+1 bits of the modulus fixed, and the signed R is providing also
|d|2+1 bits of information for q. With them correction steps will rarely be needed.

Proposition: q = rn+1 for R = 0, and q = d- 1- rn+1 for R < 0 assignment gives an esti-
mate of the quotient, which is never too small, sometimes 1 too large.
Proof: When R = 0 the extreme cases are:

1. Minimum/maximum: R ={rn+1,0,…0}, and m ={1, 0, d - 1,…d - 1}=d n+1 + d n - 1.
The true quotient is [rn+1d

 n+1/(d n+1 + d n - 1)] = [rn+1 -
 rn+1(d n-1)/(d n+1 + d n - 1)]

= [rn+1 -
 (d -1)(d n-1)/(d n+1 + d n - 1)] = rn+1-1, because rn+1 is integer and the

subtracted term inside the integer part function is positive and less than 1:
(d n+1 - d n - d + 1)/(d n+1 + d n - 1) < 1.

2. Maximum/minimum: R = {rn+1, d - 1, d -1,…d - 1} = rn+1d n+1+ d n+1-1, and m =
{1, 0, 0,…0} = d n+1 give [(rn+1d n+1+ d n+1 -1)/d n+1] = [rn+1 + (d n+1 -1)/d n+1] = rn+1.
These show that the estimated q is never too small.

When R is negative, the modular reduction step is done with adding q·m to R. The
above calculations can be repeated with the absolute value of R. However, the esti-
mated (negative) quotient would be sometimes 1 too small, so we increase its value
by one. This is also necessary to keep q a single-digit number. []

Correction steps Over-
flow requiring extra correc-
tion steps, almost never
occurs. Computer experi-
ments showed that, during
over 10 million random
8192×8192 mod 8192-bit
modular multiplications
there were only 5 subtrac-
tive corrections step per-
formed, no underflow was
detected. During over 1010
random 1024×1024 mod
1024-bit modular multipli-
cations there were 2 over-
flows and no underflow.
Accordingly, the use of
only software corrections
does not slow down S10.

The remainder is rarely longer than n +1, because at the start, there is no overflow:
the MS digits of the products, even together with all the others don't give longer than
|A| + |B| -digit results. After a modular reduction
- if the estimated quotient q was correct, the remainder R is less than mS, that is,

either |R| = n +1, or R = {1, 0, rn- 1, …}, where the third digit is smaller than that
of mS. This last case is very unlikely (less than 1/(4d)).

- if the estimated quotient q was one too large, the remainder R changes sign. If the
correct quotient q -1 would reduce R to a number of smaller magnitude than
{0, 0, rn- 1, …}, with the third digit at most as large as that of mS, then the actual
q could cause an overflow. Again, it is a very unlikely combination of events.

Rn-1 … n-3
 = ana-1bnb-1d + ana-1bnb-2 + ana-2bnb-1

for k = na+nb-4 … n-3 // products down
 Rn … n-4 += Si+j==k aibj
 if (Rn > 0) R -= m // overflow
 if (Rn <-1) R += m // underflow
 if (Rn == 0) // positive rem
 q = Rn-1
 R =(R – q·m)d
 else // nagative rem
 q = d-1-Rn-1
 R =(R + q·m)d
for k = 0 … n-4 // LS digits
 Rn … k += Si+j==k aibj
while(Rn > 0) R -= m // overflow
while(Rn <-1) R += m // underflow

Fig. 11. Basic structure of the
S10 modular multiplication algorithm

Implementation The MS 3 digits and the sign/overflow bits of the partial results can
be kept in the accumulator. Because the multiplier is not used with the special MS
digits of the scaled modulus, they can be manipulated together in the accumulator.
Adding the next product-digit is done also in the accumulator in a single cycle.
Proposition: There is no need for longer than 50-bit accumulator.
Proof The added product-digit could cause a carry less than n to the n +1st digit. If
there was already an overflow, this digit is 0, so there will be no further carry propa-
gation. If the n + 1st digit was large, we know, the n + 2nd digit of R was zero. These
show that the MS digit of R can be -2, -1, 0, 1 ? exactly what can be represented by
the carry and sign, as a 2-bit 2's complement number. []
Computing the scaling factor S Let n, na, nb denote the length of m, A and B re-
spectively. Let us calculate S = [(d - 1) d/mn- 1] for S0F, and S = [d

2/mn- 1] for S10.
With normalized m: ½ d = mn- 1 < d, so we get S one bit and one digit long. If the short
division estimated the long one inaccurately, we may need to add or subtract m, but at
most a couple of times suffice, providing an O(n) process. Adding/subtracting m
changes the MS digit by at most 1, so it gets the desired value at the end.

Montgomery multiplication with multiply-accumulate structure

 We can generate the product-digits of
AB from right to left and keep updating R,
an n +1-digit partial remainder, initialized to
0. The final result will be also in R. When
the next digit of AB has been generated with
its carry (all necessary digit-products accu-
mulated), it is added to R, followed by add-
ing an appropriate multiple of the modulus
t·m, such that the last digit is cleared:
t = r0·m' with m' = - m0

- 1 mod d. It can be
done in a single sweep over R. The result
gets stored in R shifted by 1 digit to the right
(suppressing the trailing 0). The new prod-
uct-digit, when calculated in the next itera-
tion, is added again to the LS position of R.

Proposition after each reduction sweep (loop i) the remainder is R = m + n (d - 1).
This fact ensures, that the intermediate results do not grow larger than n+1 digits,

and a single final correction step is enough to reduce the result R into [0, m). If n = 3
and any of the MS digits mk < d -1, k = 2, 3, 4…, then R remains always n-digit long.
(The case where each but the 2 LS digits of m is d -1 is trivial to handle.)
Proof by induction. At start it is true. At a later iteration ci is the new product-digit,
R ← [(R + ci + t·m) /d] = [(m + n (d - 1) + (d - 1)2·n + (d - 1)·m) /d] = m + n (d - 1). []

We don't need correction steps or processing the accumulator, so some HW costs
can be saved. The final reduction step can be omitted during a calculation chain [5],
since the next modular reduction produces a result R = m + n (d -1) from n-digit in-
puts, anyway. Only the final result has to be fixed. Also, double-speed squaring can
be easily done in the loop (j,k).

R = 0n+1
for i = 0 … 2n-1
 Q = r0
 forj,k 0 = (j,k) < n, j+k == i
 Q += ajbk
 t = Q·m' mod d
 Q+= t·m0
 for j = 1 … n-1
 Q = MS(Q) + rj + t·mj
 rj-1 = D0(Q)
 rn,n-1 = MS(Q)
if(R = m)
 R = R – m
Fig. 12. Montgomery multiplication
with multiply-accumulate structure

Montgomery-T (Tail Tailoring) The Montgomery reduction needs one multiplication
to compute the reduction factor t. Using Quisquater's scaling, this time to transform
the LS, instead of the MS digit to a special value, we can get rid of this multiplication.
The last modular reduction step is performed with the original modulus m to reduce
the result below m.

If m' = 1, the calculation of t = LS(r0·m') becomes trivial: t = r0. It is the case if
m0 = d -1, what we want to achieve with scaling.

The first step in each modular reduction sweep, Q = r0 + t m0, has to be performed
even though we now the LS digit of the result (0), because the carry, the MS digit is
needed. If m0 = d -1, we know the result without calculation: Q = r0 + t m0 = r0 +
r0 (d

 -1) = r0 d. Accordingly, we can start the loop 1 digit to the left, saving one multi-
plication there, too. Therefore, the modular reduction step is not longer than what it
was with the sorter modulus.

To make m0 = d -1 we multiply (scale) m with an appropriate one-digit factor S,
which happens to be the familiar constant m' = - m0

- 1 mod d, because m0 S = m0 m' =
- m0 m0

- 1 mod d = d - 1. Multiplying m with S increases its length by 1 digit, but as we
have just seen, the extra trailing digit does not increase the number of digit-
multiplications during modular reduction.

The modular reduction performs n - 1 iterations with the modulus mS: n (n - 1)
digit-multiplications, and one iteration with the modulus m: n +1 digit-multiplications.
We saved n - 1 digit-multiplications during the modular reduction steps. The price is
the need to calculate S, mS and store both m and mS.

Proof of correctness: One Montgomery reduction step calculates A1 = (A+k·mS) /d,
with such a k , that ensures no remainder of the division. Taking this equation
modulo m, we get A1 = A·d - 1 mod mS. After n - 1 iterations the result is An- 1 =
A·d - (n- 1)mod mS. The final step is a reduction mod m: An = An- 1·d - 1mod m. In gen-
eral (a mod b·c) mod c = a mod c , (for integers a, b and c), so we get An =
A·d - n mod m, or m larger than that (the result is of the same length as m). This is the
result of the original Montgomery reduction. []

Summary

There is no single “best” modular multiplication algorithm, for all circumstances.
• In software for general purpose microprocessors

− For very long operands sub-quadratic multiplications are the best, like Ka r-
atsuba, Toom-Cook or FFT-based methods [6]

− For cryptographic applications
− If memory is limited (or auxiliary data do not fit to a memory cache): LRL2
− If memory is of no concern: S10 or Montgomery-T (needs pre/post-process)

• If some HW enhancements can be designed:
− If there is enough me mory: S10 (simpler)
− Otherwise: LRL1.

The table below summarizes the modular reduction phase of our modular multiplica-
tion algorithms (without the n2 steps of the multiplication phase).

Algorithm
Storage
beyond
operands

Pre-
processing

Post-
processing

#Digit-
products +
fixes in SW

Extra HW
#Digit-

products with
extra HW

Barrett 2n O(n2) - n2+5n - n2+5n
LRL4 - - - 1.0001n2+4n Shifter n2+4n
LRL3 - - - 1.0001n2+3n Shifter n2+3n
LRL2 - - - 1.004n2+2n Shifter n2+2n

LRL1 - - - 1.25n2 Shifter
Accu-adder n2+n

S0F n n - 1.25n2 Shifter,
Accu-adder n2

S10 n n - (1+e) n2
(signed)

Shifter
Accu-adder n2

S10-2 n n - (1+e) n2
(signed) Accu-adder n2

+e n2 adds
Montgomery - O(n2) O(n2) n2+n - n2+n
Montgomery-T n O(n2) O(n2) n2 - n2

References

1. ALTERA Literature: Stratix II Devices http://www.altera.com/literature/lit-stx2.jsp
2. P.D.Barrett, Implementing the Rivest Shamir Adleman public key encryption algorithm on stan-

dard digital signal processor, In Advances in Cryptology -Crypto'86, Springer, 1987, pp.311-323.
3. Bosselaers, R. Govaerts and J. Vandewalle, Comparison of three modular reduction functions,

In Advances in Cryptology -Crypto'93, LNCS 773, Springer-Verlag, 1994, pp.175-186.
4. E. F. Brickell. A Survey of Hardware Implementations of RSA. Proceedings of Crypto'89,

Lecture Notes in Computer Science, Springer-Verlag, 1990.
5. J.-F. Dhem, J.-J. Quisquater, Recent results on modular multiplications for smart cards,

Proceedings of CARDIS 1998, Volume 1820 of Lecture Notes in Computer Security, pp
350-366, Springer-Verlag, 2000

6. GNU Multiple Precision Arithmetic Library http://www.swox.com/gmp/gmp-man-4.1.2.pdf
7. K. Hensel, Theorie der algebraische Zahlen. Leipzig, 1908
8. J. Jedwab and C. J. Mitchell. Minimum weight modified signed-digit representations and

fast exponentiation. Electronics Letters, 25(17):1171-1172, 17. August 1989.
9. D. E. Knuth. The Art of Computer Programming. Volume 2. Seminumerical Algorithms.

Addison-Wesley, 1981. Algorithm 4.3.3R
10.W. Krandick, J. R. Johnson, Efficient Multiprecision Floating Point Multiplication with Exact

Rounding, Tech. Rep. 93-76, RISC-Linz, Johannes Kepler University, Linz, Austria, 1993.
11. A.Menezes, P.van Oorschot, S.Vanstone, Handbook of Applied Cryptography, CRC Press, 1996.
12.P.L. Montgomery, Modular Multiplication without Trial Division, Mathematics of Compu-

tation, Vol. 44, No. 170, 1985, pp. 519-521.
13.J.-J. Quisquater, Presentation at the rump session of Eurocrypt'90.
14.R. L. Rivest; A. Shamir, and L. Adleman. 1978. A method for obtaining digital signatures

and public key cryptosystems. Communications of the ACM 21(2):120--126
15.SNIA OSD Technical Work Group http://www.snia.org/tech_activities/workgroups/osd/
16.C. D. Walter, Faster modular multiplication by operand scaling, Advances in Cryptology,

Proc. Crypto'91, LNCS 576, J. Feigenbaum, Ed., Springer-Verlag, 1992, pp. 313—323
17.L. Hars, manuscript, 2003.

