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Abstract. In this article we present a low-cost coprocessor for smart-
cards which supports all necessary mathematical operations for a fast
calculation of the Elliptic Curve Digital Signature Algorithm (ECDSA)
based on the finite field GF(2m). These ECDSA operations are GF(2m)
addition, 4-bit digit-serial multiplication in GF(2m), inversion in GF(2m),
and inversion in GF(p). An efficient implementation of the multiplicative
inversion which breaks the 11:1 limit regarding multiplications makes it
possible to use affine instead of projective coordinates for point opera-
tions on elliptic curves. A bitslice architecture allows an easy adaptation
for different bit lengths. A small chip area is achieved by reusing the
hardware registers for different operations.

Keywords: Elliptic Curve Cryptography (ECC), digital signature, mul-
tiplicative inverse, hardware implementation.

1 Introduction

Smartcards offer a high-quality identification method by means of digital signa-
tures. This identification provides legally effective authenticity, confidentiality,
integrity, and non-repudiation of transactions in e-business, e-government, m-
commerce, and Internet applications.

The Digital Signature Algorithm based on elliptic curves (ECDSA) is com-
monly used for achieving authenticity. Elliptic curve cryptography allows to use
short key sizes compared to other cryptographic standards such as RSA. Short
keys are especially favourable for targeting smartcards because smartcards typ-
ically offer very limited resources. These limited resources also motivate usage
of a coprocessor to accelerate the time-consuming calculations of ECDSA and
other cryptographic operations.

This paper presents a coprocessor which can be integrated into the Infineon
SLE66CXxxxP family and allows a significant speed-up of ECDSA calculation.



This is achieved by a fast and compact implementation of the underlying arith-
metic operations. We identified mainly three operations that are crucial for per-
formance. These operations are multiplication in the finite field GF(2m) and the
computation of the multiplicative inverses in GF(p) and GF(2m).

In particular, accelerated GF(2m) inversion, presented in this paper, allows
to use affine coordinates instead of projective coordinates. Affine coordinates
become attractive when the calculation of the GF(2m) inversion requires less
time than about 11 multiplications. This relation origins from the additional
multiplications that become necessary when using projective coordinates. More
details can be found in Section 3. Affine coordinates use simpler formulas for
calculating EC operations. They consist of less finite field operations and require
a smaller number of auxiliary variables. Therefore, the usage of affine coordinates
saves memory, registers and reduces the number of bus transfers, all of which
are scarce resources on smartcards.

The remainder of this article is structured as follows: the next section gives an
overview over related work. Section 3 introduces the mathematical background of
elliptic curve cryptography, point operations on elliptic curves, and the ECDSA.
The target smartcard architecture and the coprocessor hardware is presented
in Section 4. Section 5 summarizes implementation results of the coprocessor.
Conclusions are drawn in Section 6.

2 Related Work

The recently published book Guide to Elliptic Curve Cryptography gives a com-
prehensive overview on the state-of-art of implementing elliptic-curve cryptosys-
tems in hardware and in software [2]. In this article we will narrow our view on re-
lated hardware implementations. Unfortunately, none of the published hardware
implementations is targeted towards an ECC coprocessor for 8-bit smartcards.
This is unpleasant because the intended application has an enormous impact on
the design of an optimized ECC hardware. The target application fixes many
parameters for which a circuit can be optimized. For instance the parameter
throughput : a server application might demand several thousand EC operations
per second, whereas a smartcard may be contented with ten operations per
second or even less. Other parameters influencing efficiency are scalability (the
ability to adopt to other operand sizes or other finite fields), energy efficiency, the
desired target technology (FPGA, ASIC, or ASSP), the amount of hardware re-
sources required (gate count), and last-but-not-least security aspects (robustness
against side channel attacks like timing attacks, SPA, and DPA).

Different design parameters will lead to different ECC implementations. The
range of possible ECC implementations is large: starting from pure software im-
plementations, instruction-set extensions (ISE) became popular for 16-bit and
32-bit platforms to accelerate ECC over GF(2m) [3]. ISE are not useful for 8-bit
platforms because slow data transport in 8-bit systems will deteriorate accel-
erated field operations. Alternatives are heavy-weight accelerators for complete
EC operations [4, 5, 7, 8] or hardware-software co-design approaches where com-



putational intensive tasks are done by an EC coprocessor [9]. These coprocessors
can either calculate all finite field operations [12] or support only multiplication
as the most demanding finite field operation [10, 11]. Circuits for calculating the
multiplicative inverse in the finite fields GF(p) and GF(2m) are rare [12, 13].

The most obvious operation to support in hardware is multiplication because
multiplication contributes most to the runtime of EC operations. Fast multipli-
cation even helps to speedup the calculation of the multiplicative inverse when
using Fermat’s theorem. Fermat’s theorem allows to calculate the inverse by
exponentiation. Exponentiation, in turn, can be calculated by repeated mul-
tiplications [1]. Even than, exponentiation takes more than 100 times longer
than multiplication which makes the use of affine coordinates for EC operations
unattractive. Useful multipliers which can operate both in GF(p) and GF(2m)
were presented by J. Großschädl [11] and E. Savaş et al. [10]. J. Großschädl’s ap-
proach uses a dual-field bit-serial multiplier utilizing interleaved modular reduc-
tion. The achieved GF(p) performance is slower than the GF(2m) performance.
E. Savaş et al. approach bases on a Montgomery multiplier for both fields and
allows to handle arbitrarily large operands due to a scalability feature which
is achieved by a pipelined array of processing elements. Both approaches use a
redundant representation for GF(p) results to circumvent critical-path problems
caused by carry propagation in the GF(p) mode of operation.

Hardware accelerators for modular inversion usually base on the extended Eu-
clidean algorithm or variants of it. The dual-field inversion circuit by A. Gutub
et al. is no exception [13]. Their circuit is scalable which means it can calculate
inverses of any length. This feature seems to come at a high price because perfor-
mance is lower than attainable and the architecture seems to have interconnect
penalties due to a large number of wide buses getting multiplexed. J. Wolker-
storfer manages to embed the inversion functionality for GF(p) and GF(2m) into
a dual-field arithmetic unit at negligible additional cost compared to the cost of
a mere dual-field multiplication unit [12]. Nevertheless, inversion takes 70 times
longer than multiplication.

Some implementations of EC processors have no hardware support for inver-
sion [9]. For other implementations it remains unclear whether they have or not
[6]. EC processors with very fast high-radix multipliers (which require substan-
tial hardware resources) often lack dedicated inversion circuitry. They calculate
inverses via Fermat’s theorem to reuse the multiplier. The EC processor of G.
Orlando et al. is an example for this [7]. A counter-example is the fastest known
EC processor by N. Gura et al. [8]. This EC processor for server applications has
a 256×64-bit multiplier and a separate inversion unit which calculates inverses
in 2m clock cycles by running a variant of the extended Euclidean algorithm.
In comparison, inversion calculated by exponentiation would take three times
longer in the worst case. EC processors trimmed for energy-efficient operation
have usually smaller multipliers with either bit-serial processing or a moderate
degree of parallelization. Hence, inversion calculated via exponentiation would
become slow too. Therefore, they often have hardware support for calculating the
modular inverse using the extended Euclidean algorithm. An example is the so-



called Domain-Specific Reconfigurable Cryptographic Processor by J. Goodman
et al. [4] and the GF(2178)-EC-processor by R. Schroeppel et al. [5]. The latter
can calculate inverses only in GF(2178). The calculation of the GF(p) inverses
for signature generation is avoided by using a modified signature scheme.

3 Mathematical Background

This section describes the point operations on elliptic curves and compares the
use of affine coordinates with projective coordinates for point representation. It
also gives an overview of the mathematical operations in the finite field GF(2m).
The section will end with a short description of the Elliptic Curve Digital Sig-
nature Algorithm (ECDSA).

The use of elliptic curves in cryptography was proposed first by Victor Miller
[15] and Neal Koblitz [16] in 1985. The mathematical basis for the security
of elliptic-curve cryptosystems is the computational intractability of the Ellip-
tic Curve Discrete Logarithm Problem (ECDLP) leading to smaller key-sizes
(compared to, e.g., RSA) which make elliptic curves attractive especially for
smartcards where a small hardware implementation is desired.

3.1 Point Operations on Elliptic Curves

The points on an elliptic curve E together with the point at infinity O form
an abelian group under an addition operation. Two distinct points P , Q ∈ E

can be added to R = P + Q. Performing this calculation involves several oper-
ations (addition, multiplication, and inversion) in the underlying field GF(2m).
In case P = Q, the addition turns into point doubling and uses slightly different
formulas.

The scalar multiplication of a point P ∈ E by an integer k is the sum

k times
︷ ︸︸ ︷

P + P + · · · + P =
∑

k

P = kP (1)

In cryptographic applications k can be very large (usually 163 or 191 bits)
which would lead to an enormous computing time using repeated point addition.
However, scalar multiplication can be performed more efficiently by the double-

and-add method [17].

3.2 Point Representation on Elliptic Curves

There are two commonly used representations of points on elliptic curves: affine

coordinates and projective coordinates . Various types of projective coordinates
exist. Within this paper, the main focus is on Jacobian projective coordinates
because they allow the fastest implementation of point doubling compared with
other types like standard projective coordinates or Chudnovsky projective coor-
dinates.



An affine point on an elliptic curve E is specified by a pair of finite field
elements (x, y) which are called the affine coordinates for the point. The point
at infinity O has no affine representation. It may be more efficient to compute
numerators and denominators separately if division is expensive to calculate. For
this reason, the affine coordinates are transformed into projective coordinates

which consist of three elements (X, Y, Z).
The number of operations in the underlying finite field GF(2m) for calculating

point operations strongly depends on the chosen coordinate representation. Table
1 shows the number of additions, multiplications, and inversions in the finite field
GF(2m) and the number of auxiliary variables needed for an implementation
according to [18].

#Add. #Mult. #Inv. #Var.

Point addition (affine) 9 3 1 2

Point doubling (affine) 6 3 1 2

Point addition (projective) 7 14 0 5

Point doubling (projective) 4 10 0 4

Table 1. Comparison of operations on elliptic curves over GF(2m)

Table 1 shows that, e.g., a point addition takes 3 multiplications and 1 inver-
sion in the underlying field with affine coordinates. It takes 14 multiplications
using projective coordinates. Additions are not considered because they are very
easy to calculate. Nearly all implementations of elliptic curves use projective
coordinates. This leads to more multiplications but the costly calculation of the
inverse can be avoided and calculation is still faster than using affine coordinates.
However, calculating the multiplicative inverse at least as fast as 14 − 3 = 11
multiplications makes it economical to use affine coordinates instead of pro-
jective coordinates with all advantages as described in the introduction. Affine
coordinates become a little bit less attractive when they are compared with
the projective version of Montgomery’s ladder. This approach was proposed by
Lopez and Dahab [14]. It uses only 11 multiplications for a combined point-
addition and point-doubling operation. Thus, inversion has to be faster than
8 multiplications to make affine coordinates competitive. When comparing the
affine version of Montgomery’s method against the projective variant, inversion
has to break a 5-to-1 limit.

3.3 Berlekamp’s Variant of the extended Euclidean algorithm

E. Berlekamp introduced a variant of the binary extended Euclidean algorithm
for calculating the multiplicative inverse in GF(2m) in [20] along with a proposal
for an efficient hardware implementation. A slight modification of this algorithm
makes it possible to calculate the multiplicative GF(2m) inverse in a constant
time of 2m + 1 clock cycles.



Using a bit-serial GF(2m) multiplier, a multiplication takes m clock cycles.
With a 4-bit digit-serial multiplier this value is reduced to

⌈
m

4

⌉
clock cycles.

Thus, it is possible to perform an inversion faster than 11 multiplications both,
with a bit-serial and a 4-bit digit-serial multiplier. This allows the use of affine
coordinates instead of projective coordinates which avoids the use of coordinate
transformations and reduces the number of auxiliary variables. Using the affine
version of Montgomery’s ladder is preferable when a bit-serial multiplier or a 2-
bit-digit serial multiplier is used. Otherwise, the projective version will be faster.

3.4 Elliptic Curve Digital Signature Algorithm

Algorithm 1 shows the creation of an elliptic-curve digital signature. The inputs
of the algorithm are the so called domain parameters (see [21]), a message m, and
the key pair (d, Q). Random number generation and the SHA-1 hash-function
are also needed but are usually calculated within a dedicated coprocessor and,
therefore, are not considered in the following.

Algorithm 1 Elliptic Curve Digital Signature Algorithm - generation

Require: Message m, domain parameters
Ensure: Signature (r, s) of m

1: Select a random integer k, 1 ≤ k ≤ n − 1.
2: Compute kP = (x1, y1).
3: Compute r = x1 mod n. If r = 0 go to step 1.
4: Compute k−1 mod n.
5: Compute e = SHA-1(m).
6: Compute s = k−1(e + dr) mod n. If s = 0 go to step 1.
7: return (r, s)

The remaining two main operations are the scalar multiplication (line 2 of
Algorithm 1) which is calculated by means of addition, multiplication, and in-
version in the finite field GF(2m) and GF(p) inversion (line 4 of Algorithm 1).
The coprocessor provides these functions and therefore allows a fast calculation
of the ECDSA.

4 Architecture

This section introduces the SLE66 smart card family of Infineon and shows how
we extended the existing architecture with our new elliptic-curve coprocessor.
We designed the elliptic-curve module to optimally fit into the given architecture
and to achieve maximum speed when calculating digital signatures. Very low area
requirements account for low cost.

Section 4.1 presents our target architecture, the SLE66XxxxP smartcard fam-
ily. Section 4.2 shows the new ECC coprocessor architecture in detail.



4.1 Target Smartcard Architecture

Figure 1 shows the block diagram of the Infineon SLE66XxxxP smartcard [19].
A multiplexed address and data bus connects various modules like memories
(ROM, XRAM, NVRAM), a Random Number Generator (RNG) or the UART
to the CPU. In the actual design also a RSA coprocessor called Advanced Crypto
Engine(ACE) is used to accelerate cryptographic operations. However, the ACE
requires much resources since it is designed to operate with key lengths of 1024
bits and beyond. With our design we target low-cost elliptic-curve applications
that rely on much smaller key lengths. Typical key lengths in such a scenario
are 163 or 191 bits.

Fig. 1. Block diagram of the Infineon SLE66XxxxP smartcard family

According to this overall architecture we designed the coprocessor to com-
municate via the bus with the ECO 2000 CPU. The 8-bit CPU bus uses time
multiplexing for address and data transport. It is able to deliver maximum 4
data bits within each clock cycle. To achieve maximum throughput we designed
our architecture to process 4 bits in each clock cycle to avoid any wait states. We
designed a 4-bit serial parallel multiplier to process 4 bits in each clock cycle.

To achieve low cost the new coprocessor needs to be small in terms of area.
Having our new coprocessor we are able to omit the actual RSA coprocessor that
can handle up to 1024 bit multiplication including registers of the same size.

The RSA coprocessor efficiently performs arithmetic operations in GF(p).
The calculation of an ECDSA as it was described in section 3.4 requires efficient
calculation of an inversion in GF(p). Therefore, we need to support inversion in
GF(p) in our new architecture to be able to omit the actual RSA architecture.
Section 4.2 shows the implementation of our architecture.

Our new architecture supports all operations required to build a low cost
smartcard system based on elliptic curve cryptography. The presented architec-
ture is very competitive in terms of area and performance.



4.2 Elliptic-Curve Coprocessor

The coprocessor integrates four basic operations: GF(2m) addition, 4-bit digit-
serial multiplication in GF(2m), and calculation of the multiplicative inverse in
GF(2m) and GF(p). Figure 2 shows the overall system structure. The coprocessor
consists of three major parts:

– Bus Decoder: The bus decoder is the interface between the multiplexed ad-
dress and data bus (X-bus) of the SLE66 CPU and the coprocessor.

– Data Path: The main part of the data path consists of leaf cells which inte-
grate the basic functionality of multiplication, addition, and calculation of
the inverse. It also contains an adder and an up/down counter which per-
forms GF(p) addition (adder) and is used for Berlekamp’s version of the
Euclidean Algorithm (counter).

– Control Logic: The control logic is a core component of the coprocessor. Its
state machine generates the control signals for the data path to implement
the two algorithms for GF(p) inversion and GF(2m) inversion and sets the
proper functions of the leaf cells.

Fig. 2. Overall structure

The leaf cell (shown in Figure 3) is the main part of the data path. It is in-
stantiated 192 times (24 slices of eight cells each, see Figure 4). The cell consists
of four registers (A to D), combinational logic for achieving the necessary func-
tionality (e.g. inversion, multiplication), and multiplexing. The grey box marks
the 4-bit digit-serial multiply and reduce part. The implemented functions are
as follows:

– Each register can perform a shift-left operation. This is essential for a fast
GF(2m) inversion.

– Register C can perform the shift-right operation necessary for the binary
extended Euclidean algorithm.

– C and D can both do an 8-bit shift left and an 8-bit shift right which is used
for loading register C (with bus values or addition result) and reading register
D.



Fig. 3. Leaf cell

– Since only register C can be loaded and do a shift right, register contents
must be distributed. So A can load the values of B or C, B can load the values
of A or D, C the value of A, and D the value of B. This allows each register
contents to be loaded to each other register.

– A and B store the calculation results of the GF(2m) inversion.
– B is used to store the GF(2m) addition result and
– D is used to store the GF(2m) multiplication result.
– Of course, each register can hold its actual value.

The presented architecture is fully scalable with regard to operand length.
The VHDL model of the coprocessor was carefully developed to support vari-
ous operand lengths. This can be achieved by inserting additional slices to the
architecture which is possible by simple parameter adjustment in the VHDL
model.

As a countermeasure against side channel attacks it is possible to implement
the leaf cells using a secure logic style. Such a full custom implementation of
the comparably small leaf cell together with a generator tool for placement and
routing of m leaf cells can be used to implement the whole architecture using a
secure logic style.



Fig. 4. Leaf cell array

5 Results

The coprocessor has been synthesized on a 0.13 µm CMOS process from Infineon.
The synthesis was done with worst-case speed parameters and clock constraints
of 10 MHz. The resulting chip area is 0.16 mm2. Table 2 gives a more detailed
overview of the area allocation. The values in the data path row include the leaf
cell array, the adder/counter, and the bus decoder. The total size corresponds to
a gate count of approximately 25,000 NAND gates. A leaf cell without support
for GF(2m) inversion would have a size of 496.0 µm2 which saves about 30%
area.

Part Area in µm2 %

(Leaf cell 692.8 0.4)

Control unit 10,649.6 6.7

Data path 148,784.2 93.3

Total 159,433.8 100.0

Table 2. Chip area of the coprocessor

All performance results are based on the finite field GF(2191) on a hardware
implementation of 192 leaf cells (24 slices of 8 cells each). To get a reasonable
performance estimation some assumptions must be made:

– The scalar multiplication has average-case characteristics (190 point dou-
bling and 95 point addition) using the double-and-add method.

– A software overhead of 30% for scalar multiplication is added
– GF(p) inversion cannot be calculated in constant time. Therefore, an average

value obtained from numerous simulations is taken.
– A software overhead of 5% for GF(p) inversion is added.



– Other operations needed for ECDSA calculation (besides GF(p) inversion
and scalar multiplication) are not considered because they denote only a
very small part of the whole algorithm.

The ‘software overhead’ results are based on Infineon-internal experiences.
The overhead covers operations like loading operands or storing intermediate
results which are necessary for an assembler implementation in the smartcard.

Operation clock cycles

Scalar Multiplication 341,430

30% overhead 102,429

GF(p) inversion 24,310

5% overhead 1,216

Total 469,385

Table 3. ECDSA performance for 191 bit

Table 3 summarizes the run time of the main parts of an ECDSA calculation.
A comparison with Infineon’s SLE66 smartcard family shows that the coproces-
sor can achieve a speed-up of 4.13 compared to smartcards with the Advanced
Crypto Engine (ACE) and 7.44 on smartcards without ACE.

6 Conclusion

In this article we presented a low-cost ECC smartcard coprocessor which allows a
fast calculation of the Elliptic Curve Digital Signature Algorithm (ECDSA) over
the finite field GF(2m). The coprocessor supports all basic operations needed for
the ECDSA. These operations are GF(2m) addition, 4-bit digit-serial multipli-
cation in GF(2m) and calculation of the multiplicative inverse in GF(p) and
GF(2m). Particularly, the fast GF(2m) inversion makes it possible to use affine
instead of projective coordinates for elliptic-curve point operations. This results
in a simplified control on the software level and smaller storage effort.
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