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Abstract. Instruction set extensions are a small number of custom in-
structions specifically designed to accelerate the processing of a given
kind of workload such as multimedia or cryptography. Enhancing a gen-
eral-purpose RISC processor with a few application-specific instructions
to facilitate the inner loop operations of public-key cryptosystems can
result in a significant performance gain. In this paper we introduce a set
of five custom instructions to accelerate arithmetic operations in finite
fields GF(p) and GF(2m). The custom instructions can be easily inte-
grated into a standard RISC architecture like MIPS32 and require only
little extra hardware. Our experimental results show that an extended
MIPS32 core is able to perform an elliptic curve scalar multiplication over
a 192-bit prime field in 36 msec, assuming a clock speed of 33 MHz. An
elliptic curve scalar multiplication over the binary field GF(2191) takes
only 21 msec, which is approximately six times faster than a software
implementation on a standard MIPS32 processor.

1 Introduction

The customization of processors is nowadays widely employed in the embed-
ded systems field. An embedded system consists of both hardware and software
components, and is generally designed for a given (pre-defined) application or
application domain. This makes a strong case for tweaking both the hardware
(i.e. processor) and the software with the goal to find the “best” interface be-
tween them. In recent years, multimedia instruction set extensions became very
popular because they enable increased performance on a range of applications
for the penalty of little extra silicon area [11]. Various micro-processor vendors
developed architectural enhancements for fast multimedia processing (e.g. In-
tel’s MMX and SSE, Hewlett-Packard’s MAX, MIPS Technologies’ MDMX, or
Altivec/VMX/Velocity Engine designed by Motorola, IBM and Apple).

Not only multimedia workloads, but also public-key cryptosystems are ame-
nable to processor specialization. Most software algorithms for multiple-precision
arithmetic spend the vast majority of their running time in a few performance-
critical sections, typically in inner loops that execute the same operation using



separate data in each iteration [14]. Speeding up these loops through dedicated
instruction set extensions can result in a tremendous performance gain.

In this paper, we explore the potential of instruction set extensions for fast
arithmetic in finite fields on an embedded RISC processor. The performance
of elliptic curve cryptosystems is primarily determined by the efficient implemen-
tation of arithmetic operations in the underlying finite field [8, 2]. Augmenting
a general-purpose processor with a few custom instructions for fast arithmetic
in finite fields has a number of benefits over using a hardware accelerator such
as a cryptographic co-processor. First, the concept of instruction set extensions
eliminates the communication overhead given in processor/co-processor systems.
Second, the area of a cryptographic co-processor is generally much larger than
the area of a functional unit that is tightly coupled to the processor core and
directly controlled by the instruction stream. Third, instruction set extensions
offer a degree of flexibility and scalability that goes far beyond of fixed-function
hardware like a co-processor.

Instruction set extensions offer a high degree of flexibility as they permit to
use the “best” algorithm for the miscellaneous arithmetic operations in finite
fields. For instance, squaring of a long integer can be done almost twice as fast
as multiplication of two different integers [14]. Hardware multipliers normally do
not take advantage of special squaring algorithms since this would greatly com-
plicate their architecture. Another example is modular reduction. Montgomery’s
algorithm [19] is very well suited for hardware and software implementation as
it replaces the trial division with simple shift operations. However, certain spe-
cial primes, like the so-called generalized Mersenne (GM) primes used in elliptic
curve cryptography, facilitate much faster reduction methods. For instance, the
reduction of a 384-bit integer modulo the GM prime p = 2192− 264− 1 can be
simply realized by additions modulo p [26]. A modular multiplier which performs
the reduction operation according to Montgomery’s method is not able to take
advantage from GM primes.

1.1 Related Work

Contrary to multimedia extensions, there exist only very few research papers
concerned with optimized instruction sets for public-key cryptography. Previous
work [5] and [23] focussed on the ARMv4 architecture and proposed architec-
tural enhancements to support long integer modular arithmetic. Our work [6]
presents two custom instructions to accelerate Montgomery multiplication on a
MIPS32 core. A 1024-bit modular exponentiation can be executed in 425 msec
when the processor is clocked at 33 MHz. This result confirms that instruction
set extensions allow fast yet flexible implementations of public-key cryptogra-
phy. The commercial products [17] and [27] primarily target the market for
multi-application smart cards. Both are able to execute a 1024-bit modular ex-
ponentiation in less than 350 msec (at 33 MHz). The product briefs claim that
these processors also feature instruction set extensions for elliptic curve cryp-
tography. However, no details about the custom instructions and the achieved
performance figures have been released to the public.



1.2 Contributions of this Work

In this paper, we introduce a set of five custom instructions to accelerate arith-
metic operations in prime fields GF(p) and binary extension fields GF(2m). The
custom instructions can be easily integrated into the MIPS32 instruction set
architecture [16]. We selected MIPS32 for our research because it is one of the
most popular architectures in the embedded systems area.

Designing instruction set extensions for arithmetic in finite fields requires to
select the proper algorithms for the diverse arithmetic operations and to select
the proper custom instructions (out of a huge number of candidate instructions)
so that the combination of both gives the best result. The selection of the proper
algorithms is necessary since most arithmetic operations can be implemented in
different ways. For instance, multiple-precision multiplication can be realized
according the pencil-and-paper method [14], Comba’s method [4], Karatsuba’s
method, etc. Our first contribution in this paper is a “guide” through the algo-
rithm selection process. We discuss several arithmetic algorithms and identify
those which are most suitable for the design of instruction set extensions.

A major problem when designing instruction set extensions is that a number
of (micro-)architectural constraints have to be considered, e.g. instruction size
and format, the number of source and destination addresses within an instruction
word, the number of general-purpose registers, etc. Our second contribution in
this paper is to demonstrate that it is possible to find custom instructions which
support the processing of arithmetic algorithms in an efficient manner, and, at
the same time, are simple to integrate into the MIPS32 architecture.

2 Arithmetic in Prime Fields

The elements of a prime field GF(p) are the residue classes modulo p, typically
represented by the set {0, 1, . . . , p− 1}. Arithmetic in GF(p) is nothing else than
conventional modular arithmetic, i.e. addition and multiplication modulo the
prime p. In this section we briefly review some basic algorithms for long integer
arithmetic and discuss minor modifications/adaptions to facilitate the processing
of these algorithms on an extended MIPS32 core.

2.1 Notation

Throughout this paper, we use uppercase letters to denote long integers whose
precision exceeds the word-size w of the processor. In software, the long integers
may be stored in multi-word data structures, e.g. arrays of single-precision in-
tegers. We can write a non-negative n-bit integer A as a sequence of d = ⌈n/w⌉
words, each consisting of w bits, i.e. A = (Ad−1, . . . , A1, A0). In the following, the
w-bit words are denoted by indexed uppercase letters, whereas indexed lowercase
letters represent the individual bits of an integer.

A =

n−1
∑

i=0

ai · 2
i =

d−1
∑

j=0

Aj · 2
j·w with Aj =

w−1
∑

k=0

aj·w+k · 2
k (1)



Algorithm 1. Comba’s method for multiple-precision multiplication

Input: Two n-bit integers, A = (Ad−1, . . . , A0) and B = (Bd−1, . . . , B0), represented
by d = ⌈n/w⌉ words each.

Output: Product Z = A ·B = (Z2d−1, . . . , Z0).
1: S ← 0
2: for i from 0 by 1 to d− 1 do

3: for j from 0 by 1 to i do

4: S ← S + Aj ·Bi−j

5: end for

6: Zi ← S mod 2w

7: S ← ⌊S/2w⌋ {w-bit right-shift of S}
8: end for

9: for i from d by 1 to 2d− 2 do

10: for j from i− d + 1 by 1 to d− 1 do

11: S ← S + Aj ·Bi−j

12: end for

13: Zi ← S mod 2w

14: S ← ⌊S/2w⌋ {w-bit right-shift of S}
15: end for

16: Z2d−1 ← S mod 2w

17: return Z = (Z2d−1, . . . , Z0)

2.2 Multiple-Precision Multiplication and Squaring

The elementary algorithm for multiplying two multiple-precision integers is the
so-called operand scanning method, which is nothing else than a reorganization
of the standard pencil-and-paper multiplication taught in grade school [14]. A
different technique for multiple-precision multiplication, commonly referred to
as Comba’s method [4], outperforms the operand scanning method on most pro-
cessors, especially when implemented in assembly language. Comba’s method
(Algorithm 1) accumulates the inner-product terms Aj ·Bi−j on a column-by-
column basis, as illustrated in Figure 1. The operation performed in the inner
loops of Algorithm 1 is multiply-and-accumulate, i.e. two w-bit words are multi-
plied and the 2w-bit product is added to a cumulative sum S. Note that S can be
up to 2w + ⌈log2(d)⌉ bits long, and thus we need three w-bit registers to accom-
modate the sum S. The operation at line 6 and 13 of Algorithm 1 assigns the w
least significant bits of S to the word Zi. Both the operand scanning technique
and Comba’s method require exactly d2 single-precision multiplications, but the
latter forms the product Z by computing each word Zi at a time, starting with
the least significant word Z0 (product scanning). Comba’s method reduces the
number of memory accesses (in particular STORE instructions) at the expense
of more costly address calculation and some extra loop overhead.

The square A2 of a long integer A can be computed almost twice as fast as
the product A ·B of two distinct integers. Due to a “symmetry” in the squaring
operation, the inner-product terms of the form Ax ·Ay appear once for x = y
and twice for x 6= y, which is easily observed from Figure 1. However, since all
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Fig. 1. Comparison of running times for Comba multiplication and Comba squaring

inner-products Ax ·Ay and Ay ·Ax are equivalent, they need only be computed
once and then left shifted in order to be doubled. Therefore, squaring a d-word
integer requires only (d2 + d)/2 single-precision multiplications.

2.3 Modular Reduction

One of the most most widely used generic algorithms for modular reduction was
introduced by Montgomery in 1985 [19]. Reference [10] describes several methods
for efficient software implementation of Montgomery multiplication. One of these
is the Finely Integrated Product Scanning (FIPS) method, which can be viewed
as Comba multiplication with “finely” integrated Montgomery reduction, i.e.
multiplication and reduction steps are carried out in the same inner loop.

Certain primes of a special (customized) form facilitate much faster reduc-
tion techniques. Of particular importance are the generalized Mersenne (GM)
primes [26] that have been proposed by the National Institute of Standards and
Technology (NIST) [21]. GM primes can be written as p = f(2k), where f is a
low-degree polynomial with small integer coefficients and k is a multiple of the
word-size w. The simplest example is the 192-bit GM prime P = 2192− 264− 1.
By using the relation 2192 ≡ 264 + 1 mod P , the reduction of a 384-bit integer
Z < P 2 modulo the prime P can be easily carried out by means of three 192-bit
modular additions [26]. These modular additions are typically realized through
conventional multiple-precision additions, followed by repeated conditional sub-
tractions of P until the result within the range of (0, P − 1).



Algorithm 2. Fast reduction modulo the GM prime P = 2192− 264− 1 (for w = 32)

Input: A 384-bit number Z = (Z11, . . . , Z0) with 0 ≤ Zi < 232.
Output: 192-bit number R ≡ Z mod P (R may not be fully reduced).

1: S ← Z5 + Z9 + Z11 ; T ← S mod 232 ; q ← ⌊S/232⌋
2: S ← Z0 + Z6 + Z10 + q ; R0 ← S mod 232 ; S ← ⌊S/232⌋
3: S ← S + Z1 + Z7 + Z11 ; R1 ← S mod 232 ; S ← ⌊S/232⌋
4: S ← S + Z2 + Z6 + Z8 + Z10 + q ; R2 ← S mod 232 ; S ← ⌊S/232⌋
5: S ← S + Z3 + Z7 + Z9 + Z11 ; R3 ← S mod 232 ; S ← ⌊S/232⌋
6: S ← S + Z4 + Z8 + Z10 ; R4 ← S mod 232 ; S ← ⌊S/232⌋
7: S ← S + T ; R5 ← S mod 232 ; q ← ⌊S/232⌋
8: R← (R5, R4, R3, R2, R1, R0)
9: if q > 0 then R←

(

R + 264 + 1
)

mod 2192 end if

10: return R

Algorithm 2 shows a concrete implementation of the fast reduction modulo
P = 2192− 264− 1. We assume that Z is a 384-bit integer represented by twelve
32-bit words Z11, . . . , Z0. The algorithm integrates the conditional subtractions
of P into the multiple-precision additions instead of performing them thereafter.
Moreover, the result R is computed one word at a time, starting with the least
significant word R0. The algorithm first estimates the quotient q that determines
the multiple of P to be subtracted. Note that the subtraction of q ·P is actually
realized by addition of the two’s complement q · (2192−P ) = q · 264 + q. In some
extremely rare cases, a final subtraction (i.e. two’s complement addition) of P
may be necessary to guarantee that the result is less than 2192 so that it can
be stored in an array of six 32-bit words. However, this final subtraction has no
impact on the execution time since it is virtually never performed.

3 Arithmetic in Binary Extension Fields

The finite field GF(2m) is isomorphic to GF(2)[t]/(p(t)) whereby p(t) is an irre-
ducible polynomial of degree m with coefficients from GF(2). We represent the
elements of GF(2m) as binary polynomials of degree up to m− 1. Addition is
the simple logical XOR operation, while the multiplication of field elements is
performed modulo the irreducible polynomial p(t).

3.1 Notation

Any binary polynomial a(t) of degree m− 1 can be associated with a bit-string
of length m. Splitting this bit-string into d = ⌈m/w⌉ chunks of w bits each leads
to a similar array-representation as for integers, i.e. a(t) = (Ad−1, . . . , A1, A0).
We use indexed uppercase letters to denote w-bit words and indexed lowercase
letters to denote the individual coefficients of a binary polynomial.

a(t) =

m−1
∑

i=0

ai · t
i =

d−1
∑

j=0

Aj · t
j·w with Aj =

w−1
∑

k=0

aj·w+k · t
k (2)



3.2 Multiplication and Squaring of Binary Polynomials

Multiplication in GF(2m) involves multiplying two binary polynomials and then
finding the residue modulo the irreducible polynomial p(t). The simplest way to
compute the product a(t) · b(t) is by scanning the coefficients of b(t) from bm−1

to b0 and adding the partial product a(t) · bi to a running sum. Several variants
of this classical shift-and-xor method have been published, see e.g. [13, 8] for a
detailed treatment. The most efficient of these variants is the comb method in
conjunction with a window technique to reduce the number of both shift and
XOR operations [13]. However, the major drawback of the shift-and-xor method
(and its variants) is that only a few bits of b(t) are processed at a time.

To overcome this drawback, Nahum et al. [20] (and independently Koç and
Acar [9]) proposed to equip general-purpose processors with a fast hardware
multiplier for (w×w)-bit multiplication of binary polynomials, giving a 2w-bit
result. The availability of an instruction for word-level multiplication of polyno-
mials over GF(2), which we call MULGF2 as in [9], greatly facilitates the arith-
metic in GF(2m). All standard algorithms for multiple-precision multiplication
of integers, such as the operand scanning technique or Comba’s method, can be
applied to binary polynomials as well [7]. In the polynomial case, the inner loop
operation of Algorithm 1 translates to S ← S ⊕Ai ⊗Bi−j , whereby ⊗ denotes
the MULGF2 operation and ⊕ is the logical XOR. The word-level algorithms uti-
lize the full precision of the processor’s registers and datapath, respectively, and
therefore they are more efficient than the shift-and-xor method.

The complexity of squaring a binary polynomial a(t) scales linearly with its
degree. A conventional software implementation employs a pre-computed look-
up table with 256 entries to convert 8-bit chunks of a(t) into their expanded
16-bit counterparts [8]. The availability of the MULGF2 instruction allows to realize
a more efficient word-level version of the squaring algorithm. Note that the sum
of two identical products vanishes over GF(2), i.e. Ax⊗Ay ⊕Ay ⊗Ax = 0, and
hence only d MULGF2 operations are necessary to square a d-word polynomial.

3.3 Reduction Modulo an Irreducible Polynomial

Once the product z(t) = a(t) · b(t) has been formed, it must be reduced modulo
the irreducible polynomial p(t) to get the final result. This reduction can be
efficiently performed when p(t) is a sparse polynomial such as a trinomial or
a pentanomial [25, 8]. As an example, let us consider the finite field GF(2191)
and the irreducible polynomial p(t) = t191 + t9 + 1, which is given in Appendix
J.2.1 of [1]. Furthermore, let z(t) be a binary polynomial represented by twelve
32-bit words. The simple relation t191 ≡ t9 + t mod p(t) leads to the word-level
reduction technique specified in Algorithm 3. This algorithm requires only shifts
of 32-bit words (indicated by the symbols ≪ and ≫) and logical XORs.

A generic reduction algorithm that works for any irreducible polynomial is the
adaption of Montgomery’s method for binary polynomials [9]. Both the operand
scanning and the product scanning technique require to carry out 2d2 + d MULGF2

operations for d-word operands. We refer to [9, 10] for further details.



Algorithm 3. Fast reduction modulo the trinomial p(t) = t191 + t9 + 1 (for w = 32)

Input: A binary polynomial z(t) = (Z11, . . . , Z0) of degree at most 383.
Output: Result r(t) ≡ z(t) mod p(t) of degree ≤ 191 (r(t) may not be fully reduced).
1: Z6 ← Z6 ⊕ (Z11≫ 22)⊕ (Z11≫ 31)
2: R5 ← Z5 ⊕ (Z11≪ 10)⊕ (Z11≪ 1)⊕ (Z10≫ 22)⊕ (Z10≫ 31)
3: R4 ← Z4 ⊕ (Z10≪ 10)⊕ (Z10≪ 1)⊕ (Z9≫ 22)⊕ (Z9≫ 31)
4: R3 ← Z3 ⊕ (Z9≪ 10)⊕ (Z9≪ 1)⊕ (Z8≫ 22)⊕ (Z8≫ 31)
5: R2 ← Z2 ⊕ (Z8≪ 10)⊕ (Z8≪ 1)⊕ (Z7≫ 22)⊕ (Z7≫ 31)
6: R1 ← Z1 ⊕ (Z7≪ 10)⊕ (Z7≪ 1)⊕ (Z6≫ 22)⊕ (Z6≫ 31)
7: R0 ← Z0 ⊕ (Z6≪ 10)⊕ (Z6≪ 1)
8: return r(t) = (R5, R4, R3, R2, R1, R0)

4 The MIPS32 Architecture and Proposed Extensions

The MIPS32 architecture is a superset of the previous MIPS I and MIPS II
instruction set architectures and incorporates new instructions for standardized
DSP operations like “multiply-and-add” (MADD) [16]. MIPS32 uses a load/store
data model with 32 general-purpose registers (GPRs) of 32 bits each. The fixed-
length, regularly encoded instruction set includes the usual arithmetic/logical
instructions. MIPS32 processors implement a delay slot for load instructions,
which means that the instruction immediately following a load cannot use the
value loaded from memory. The branch instructions’ effects are also delayed
by one instruction; the instruction following the branch instruction is always
executed, regardless of whether the branch is taken or not. Optimizing MIPS
compilers try to fill load and branch delay slots with useful instructions.

The 4Km processor core [15] is a high-performance implementation of the
MIPS32 instruction set architecture. Key features of the 4Km are a five-stage
pipeline with branch control, a fast multiply/divide unit (MDU) supporting
single-cycle (32× 16)-bit multiplications, and up to 16 kB of separate data and
instruction caches. Most instructions occupy the execute stage of the pipeline
only for a single clock cycle. The MDU works autonomously, which means that
the 4Km has a separate pipeline for all multiply, multiply-and-add, and divide
operations (see Figure 2). This pipeline operates in parallel with the integer
unit (IU) pipeline and does not necessarily stall when the IU pipeline stalls.
Long-running (multi-cycle) MDU operations, such as a (32× 32)-bit multiply or
a divide, can be partially masked by other IU instructions.

The MDU of the 4Km consists of a (32× 16)-bit Booth recoded multiplier,
two result/accumulation registers (referenced by the names HI and LO), a divide
state machine, and the necessary control logic. MIPS32 defines the result of a
multiply operation to be placed in the HI and LO registers. Using MFHI (move
from HI) and MFLO (move from LO) instructions, these values can be transferred
to general-purpose registers. As mentioned before, MIPS32 also has a “multiply-
and-add” (MADD) instruction, which multiplies two 32-bit words and adds the
product to the 64-bit concatenated values in the HI/LO register pair. Then, the
resulting value is written back to the HI and LO registers.
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Fig. 2. 4Km datapath with integer unit (IU) and multiply/divide unit (MDU)

4.1 Unified Multiply/Accumulate Unit

The MADDU instruction performs essentially the same operation as MADD, but
treats the 32-bit operands to be multiplied as unsigned integers. At a first glance,
it seems that MADDU implements exactly the operation carried out in the inner
loop of Comba multiplication (i.e. two unsigned 32-bit words are multiplied and
the product is added to a running sum, see line 4 and 11 of Algorithm 1). How-
ever, the problem is that the accumulator and HI/LO register pair of a standard
MIPS32 core is only 64 bits wide, and therefore the MDU is not able to sum
up 64-bit products without overflow and loss of precision. In this subsection, we
present two simple MDU enhancements to better support finite field arithmetic
on a MIPS32 processor.

Firstly, we propose to equip the MDU with a 72-bit accumulator and to
extend the precision of the HI register to 40 bits so that the HI/LO register
pair is able to accommodate 72 bits altogether. This little modification makes
Comba’s method (Algorithm 1) very efficient on MIPS32 processors. A “wide”
accumulator with eight guard bits means that we can accumulate up to 256
double-precision products without overflow, which is sufficient for cryptographic
applications. The extra hardware cost is negligible, and a slightly longer critical
path in the MDU’s final adder is irrelevant for smart cards.

Secondly, we argue that a so-called “unified” multiplier is essential for the
efficient implementation of elliptic curve cryptography over GF(2m). A unified
multiplier is a multiplier that uses the same datapath for both integers and
binary polynomials [24]. In its simplest form, a unified multiplier is composed
of dual-field adders, which are full adders with some extra logic to set the carry
output to zero. Therefore, a unified multiplier is an elegant way to implement the
MULGF2 instruction on a MIPS32 processor, the more so as the area of a unified
multiplier is only slightly larger than that of a conventional multiplier [24].

4.2 Instruction Set Extensions

In this subsection, we present five custom instructions to accelerate the process-
ing of arithmetic operations in finite fields GF(p) and GF(2m). We selected the
custom instructions with three goals in mind, namely to maximize performance
of applications within the given application domain, to minimize the required



Table 1. Useful instructions for finite field arithmetic on a MIPS32 processor

Format Description Operation

MULTU rs, rt Multiply Unsigned (HI/LO)← rs × rt

MADDU rs, rt Multiply and ADD Unsigned (HI/LO)← (HI/LO) + rs × rt

M2ADDU rs, rt Multiply, Double and ADD Unsigned (HI/LO)← (HI/LO) + 2rs × rt

ADDAU rs, rt ADD to Accumulator Unsigned (HI/LO)← (HI/LO) + rs + rt

SHA SHift Accumulator (HI/LO)← (HI/LO)≫ 32

MULGF2 rs, rt Multiply over GF(2) (HI/LO)← rs ⊗ rt

MADDGF2 rs, rt Multiply and ADD over GF(2) (HI/LO)← (HI/LO)⊕ rs ⊗ rt

hardware resources, and to allow for simple integration into the base architecture
(MIPS32 in our case). After careful analysis of a variety of candidate instruc-
tions and different hardware/software interfaces, we found that a set of only five
custom instructions represents the best trade-off between the goals mentioned
before. These instructions are summarized in Table 1, together with the native
MIPS32 instructions MULTU and MADDU.

The MADDU instruction computes rs × rt , treating both operands as unsigned
integers, and accumulates the 64-bit product to the concatenated values in the
HI/LO register pair. This is exactly the operation carried out in the inner loop
of both Comba’s method and FIPS Montgomery multiplication. The wide accu-
mulator and the extended precision of the HI register help to avoid overflows.

Our first custom instruction, M2ADDU, multiplies two 32-bit integers rs × rt ,
doubles the product, and accumulates it to HI/LO. This instruction is very useful
for multiple-precision squaring of integers. The multiplication by 2 can be simply
realized via a hard-wired left shift and requires essentially no additional hardware
(except for a few multiplexors).

MIPS32 has no “add-with-carry” instruction. The instruction ADDAU (“add
to accumulator unsigned”) was designed to support multiple-precision addition
and reduction modulo a GM prime (see Algorithm 2). ADDAU computes the
sum rs + rt of two unsigned integers and accumulates it to the HI/LO regis-
ters. Multiple-precision subtraction also profits from ADDAU since a subtraction
can be easily accomplished through addition of the two’s complement.

The instruction SHA shifts the concatenated values in the HI/LO register pair
32 bits to the right (with zeroes shifted in), i.e. the contents of HI is copied to
LO and the eight guard bits are copied to HI. Thus, SHA implements exactly the
operation at line 7 and 14 of Algorithm 1 and is also useful for Algorithm 2.

The MULGF2 instruction is similar to the MULTU, but treats the operands as
binary polynomials of degree ≤ 31 and performs a multiplication over GF(2).
The product rs ⊗ rt is written to the HI/LO register pair. MULGF2 facilitates
diverse algorithms for multiplication and squaring of binary polynomials.

Finally, the instruction MADDGF2, which is similar to MADDU, multiplies two
binary polynomials and adds (i.e. XORs) the product rs ⊗ rt to HI/LO. The
availability of MADDGF2 allows for an efficient implementation of both Comba’s
method and FIPS Montgomery multiplication for binary polynomials.



label: LW $t0, 0($t1) # load A[j] into $t0

LW $t2, 0($t3) # load B[i-j] into $t2

ADDIU $t1, $t1, 4 # increment pointer $t1 by 4

MADDU $t0, $t2 # (HI|LO)=(HI|LO)+($t0*$t2)

BNE $t3, $t4, label # branch if $t3 != $t4

ADDIU $t3, $t3, -4 # decrement pointer $t3 by 4

Fig. 3. MIPS32 assembly code for the inner loop of Comba multiplication

5 Performance Evaluation

SystemC is a system-level design and modelling platform consisting of a collec-
tion of C++ libraries and a simulation kernel [22]. It allows accurate modelling
of mixed hardware/software designs at different levels of abstraction.

We developed a functional, cycle-accurate SystemC model of a MIPS32 core
in order to verify the correctness of the arithmetic algorithms and to estimate
their execution times. Our model implements a subset of the MIPS32 instruction
set architecture, along with the five custom instructions introduced in Subsec-
tion 4.2. While load and branch delays are considered in our model, we did not
simulate the impact of cache misses, i.e. we assume a perfect cache system. Our
MIPS32 has a single-issue pipeline and executes the IU instructions in one cycle.
The two custom instructions MADDAU and SHA are very simple, and therefore we
define that they also execute in one cycle. The number of clock cycles for the
diverse multiply and multiply-and-add instructions depends on the dimension
of the unified multiplier. For instance, performing a (32× 32)-bit multiplication
on a (32× 16)-bit multiplier requires two passes through the multiplier. However,
we will demonstrate in the following subsection that the inner loop operation
of Comba’s method allows to mask the latency of a multi-cycle multiplier.

5.1 Inner Loop Operation

We developed hand-optimized assembly routines for the arithmetic algorithms
presented in Section 2 and 3, respectively, and simulated their execution on
our extended MIPS32 core. Figure 3 depicts an assembly implementation of the
inner loop of Comba’s method (see line 4 of Algorithm 1). Before entering the
loop, registers $t1 and $t3 are initialized with the current address of A0 and
Bi−j , respectively. Register $t4 holds the address of B0. Our assembly routine
starts with two LW instructions to load the operands Aj and Bi−j into general-
purpose registers. The MADDU instruction computes the product Aj ·Bi−j and
accumulates it to a running sum stored in the HI/LO register pair. Note that the
extended precision of the accumulator and the HI register guarantee that there
is no overflow or loss of precision.

Two ADDIU (“add immediate unsigned”) instructions, which perform simple
pointer arithmetic, are used to fill the load and branch delay slot, respectively.
Register $t3 holds the address of Bi−j and is decremented by 4 each time the



Table 2. Simulated execution times (in clock cycles) of arithmetic operations. Some
operations in GF(p) need a final subtraction of p; the according time is set in brackets

Arithmetic operation GF(p), |p| = 192 GF(2m), m = 191

Modular addition 74 (155) 62

Comba multiplication w/o red. 347 347

Comba squaring w/o red. 238 74

Fast reduction (loop unrolled) 65 75

Montgomery multiplication 594 (675) 594

Montgomery squaring 447 (528) 306

Scalar multiplication (generic) 1668 · 103 1040 · 103

Scalar multiplication (optimized) 1178 · 103 693 · 103

loop repeats, whereas the pointer to the word Aj (stored in register $t1) is
incremented by 4. The loop finishes when the pointer to Bi−j reaches the address
of B0, which is stored in $t4. Note that the loop termination condition of the
second inner loop (line 11 of Algorithm 1) differs slightly from the first one.

A MIPS32 core with a (32× 16)-bit multiplier and a 72-bit accumulator exe-
cutes the instruction sequence shown in Figure 3 in six clock cycles, provided
that no cache misses occur. The MADDU instruction writes its result to the HI/LO

register pair (see Figure 2) and does not occupy the register file’s write port
during the second clock cycle. Therefore, other arithmetic/logical instructions
can be executed during the latency period of the MADDU operation, i.e. the inner
loop of Comba’s method does not need a single-cycle multiplier to reach peak
performance. For example, a (32× 12)-bit multiplier, which requires three clock
cycles to complete a (32× 32)-bit multiplication, allows to achieve the same
performance as a fully parallel (32× 32)-bit multiplier [6].

5.2 Experimental Results

In the following, we briefly sketch how the arithmetic algorithms described in
Section 2 can be implemented efficiently on an extended MIPS32 core, taking
advantage of our custom instructions. Comba’s method (Algorithm 1) performs
d2 iterations of the inner loop, whereby one iteration takes six clock cycles. The
operation at line 7 and 14 of Algorithm 1 is easily accomplished with help of the
SHA instruction. Multiple-precision squaring according to Comba’s method (see
Figure 1) benefits from the M2ADDU instruction. The two custom instructions
ADDAU and SHA facilitate the implementation of multiple-precision addition as
well as reduction modulo a GM prime (Algorithm 2). Last but not least, the
inner loop of FIPS Montgomery multiplication and squaring is very similar to
the inner loop of Comba multiplication and squaring, respectively, and therefore
profits from the availability of MADDU, M2ADDU, as well as SHA. Table 2 shows the
simulated execution times of these algorithms for 192-bit operands.

The implementation of the arithmetic algorithms for binary fields GF(2m)
is also straightforward. Comba’s method can be applied to the multiplication



of binary polynomials as well, provided that the instruction set includes MULGF2
and MADDGF2 (see Section 3). The instructions executed in the inner loop are ex-
actly the same as shown in Figure 3, with the exception that MADDU is replaced
by MADDGF2. Polynomial squaring is supported by MULGF2, while the word-level
reduction modulo a sparse polynomial, such as performed by Algorithm 3, can
be done efficiently with native MIPS32 instructions (assuming that the proces-
sor is equipped with a fast barrel shifter). The inner loop of FIPS Montgomery
multiplication in GF(2m) is similar to the inner loop of Comba’s method. Ta-
ble 2 details the simulated running times of these algorithms. Unless denoted
otherwise, the timings were achieved without loop unrolling.

Besides the timings for the finite field arithmetic, Table 2 also includes the
execution times for a scalar multiplication over the specified prime and binary
field, respectively. We used projective coordinates and implemented the scalar
multiplication over GF(2191) as described in [12]. On the other hand, the scalar
multiplication over GF(p) was realized with help of the binary NAF method [2]
and the Jacobian coordinates presented in [3].

Table 2 shows the execution times for both a generic implementation and an
optimized implementation. The generic version uses Montgomery multiplication
and squaring, respectively, and can process operands of any length. There is
no restriction regarding the prime p or the irreducible polynomial p(t), i.e. the
generic implementation works for any field GF(p) and GF(2m). On the other
hand, the optimized version takes advantage of the fast reduction techniques
according to Algorithm 2 and 3, respectively. In both the prime field case and
the binary field case, the optimized implementation is more than 30% faster.

Comparison to Conventional Software Implementation. In our context,
the phrase “conventional software implementation” refers to an implementation
that uses only native MIPS32 instructions. A recent white paper by MIPS Tech-
nologies recommends to implement multiple-precision multiplication according
to the operand scanning method [18]. However, the inner loop of the operand
scanning method requires at least 11 MIPS32 instructions (see [18]), which is
almost twice as much as for the Comba inner loop on an extended MIPS32
core with a wide accumulator. Our simulations show that the operand scanning
method needs 620 cycles for a multiplication of 192-bit integers. An optimized
implementation of the fast reduction for GM primes is almost as slow as the
Montgomery reduction since MIPS32 lacks an add-with-carry instruction.

The situation is even worse for arithmetic in binary extension fields. If MULGF2
and MADDGF2 are not available, one is forced to use the shift-and-xor algorithm or
one of its optimized variants [8]. The most efficient of these variants is, according
to our experiments, more than ten times slower than Comba’s method with
MULGF2 and MADDGF2. Despite our best effort, we were not able to implement the
multiplication in GF(2191) in less than 3600 cycles, even when we fully unrolled
the loops. In summary, the presented instruction set extensions accelerate the
optimized scalar multiplication over GF(p) by a factor of almost two, and make
the scalar multiplication over GF(2m) about six times faster.



6 Discussion and Conclusions

The presented instruction set extensions allow to perform a scalar multiplication
over GF(2191) in 693k clock cycles, and a scalar multiplication over a 192-bit
prime field in 1178k cycles, respectively. Assuming a clock frequency of 33 MHz,
which is a typical frequency for multi-application smart cards, these cycle counts
correspond to an execution time of 21 msec and 36 msec, respectively. Note that
these timings were achieved without loop unrolling (except for the fast reduction
algorithms) and without pre-computation of points. The proposed instructions
accelerate both generic arithmetic algorithms (e.g. Montgomery multiplication)
as well as special algorithms for certain fields like GM prime fields or binary
extension fields with sparse irreducible polynomials. We verified the correctness
of the presented concepts (i.e. the extended MIPS32 processor and the software
routines running on it) with help of a cycle-accurate SystemC model.

A look “under the hood” of our instruction set extensions reveals further
advantages. MIPS32, like most other RISC architectures, requires that arith-
metic/logical instructions have a three-operand format (two source registers and
one destination register). The five custom instructions presented in this paper
fulfill this requirement, and thus they can be easily integrated into a MIPS32
core. Moreover, the extended core remains fully compatible to the base architec-
ture (MIPS32 in our case). All five custom instructions are executed in one and
the same functional unit, namely the MDU. Another advantage of our approach
is that a fully parallel (32× 32)-bit multiplier is not necessary to reach peak
performance. Therefore, the hardware cost of our extensions is marginal.
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