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Abstract. We present an implementation of elliptic curves and of hglhigtic
curves of genus 2 and 3 over prime fields. To achieve a fair eisgn between
the different types of groups, we developed an ad-hoc aetiartibrary, designed
to remove most of the overheads that penalize implemengtd curve-based
cryptography over prime fields. These overheads get worsanaller fields, and
thus for larger genera for a fixed group size. We also use iggbs for delaying
modular reductions to reduce the amount of modular redustio the formulae
for the group operations.

The result is that the performance of hyperelliptic curvegemus 2 over prime
fields is much closer to the performance of elliptic curvesthreviously thought.
For groups of 192 and 256 bits the difference is about 14% & respectively.

Keywords: Elliptic and hyperelliptic curves, cryptography, efficiemplemen-
tation, prime field arithmetic, lazy and incomplete moduksduction.

1 Introduction

In 1988 Koblitz [21] proposed to use hyperelliptic curve€E(E) as an alternative to
elliptic curves (EC) for designing cryptosystems basedheriscrete logarithm prob-
lem (DLP). EC are just the genus 1 HEC. Cryptosystems based onee@ a much
shorter key than RSA or systems based on the DLP in finite fi&lds60-bit EC key
is considered to offer security equivalent to that of a 10B/RSA key [25]. Since the
best known methods to solve the DLP on EC and on HEC of genuléesitiean 4 have
the same complexity, these curves offer the same secwigy; leut HEC of genus 4 or
higher offer less security [12, 38].

Until recently, HEC have been considered not practical [¥&3ause of the diffi-
culty of finding suitable curves and their poor performandth wespect to EC. In the
subsequent years the situation changed.

Firstly, it is now possible to efficiently construct genusi2i@ HEC whose Jacobian
has almost prime order of cryptographic relevance. Ovangfiields one can either
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count points in genus 2 [13], or use the complex multiplma{CM) method for genus
2[29,39] and 3 [39].

Secondly, the performance of the HEC group operations has tensiderably im-
proved. For genus 2 the first results were due to Harley [1f@& State of the art is
now represented by the explicit formulae of Lange: see [2BaRd further references
therein. For genus 3, see [32, 33] (and also [14]).

HEC are attractive to designers of embedded hardware diegeréquire smaller
fields than EC: The order of the Jacobian of a HEC of gemaser a field withq
elements isx 9. This means that a 160-bit group is given by an EC wgtly 2160,
by an HEC of genus 2 witly ~ 289, and genus 3 witly ~ 2°3. There has been also
research on securing implementations of HEC on embeddeckdeagainst differential
and Goubin-type power analysis [2].

The purpose of this paper is to present a thorough, fair ankiased comparison
of the relative performance merits génericEC and HEC of small genus 2 or 3 over
prime fields We arenotinterested in comparing againgery speciatlasses of curves
or in the use of prime moduli of special form.

There have been several software implementations of HEGmopal computers
and workstations. Most of those are in even characteriséie {35, 32], [33], and also
[40,41]), but some are over prime fields [22, 35]. It is nowkndhat ineven charac-
teristic, HEC can offer performance comparable to EC.

Until now there have been no concrete results showing the $anprime fields.
Traditional implementations such as [22] are based on géperrpose software li-
braries, such agmp [16]. These libraries introduce overheads which are quipeifs-
cant for small operands such as those occurring in curveéagyaphy, and get worse as
the fields get smaller. Moreovegip has no native support for fast modular reduction
technigues. In our modular arithmetic library, describe@ 2.1, we made every effort
to avoid such overheads. On a PC we get a speed-up from 2 tor gmydor opera-
tions in fields of cryptographic relevance (see Table 1). We axploit techniques for
reducing the number of modular reductions in the formulagtfe group operations.

We thus show that the performance of genus 2 HEC over prinds femuch closer
to the performance of EC than previously thought. For groap492 resp. 256 bits
the difference is approximately 14%, resp. 15%. The gap gétius 3 curves has been
significantly reduced too. See Section 3 for more precisdtges

While the only significant constraint in workstations ananeoodity PCs may be
processing power, the results of our work should also beiegige to other more con-
strained environments, such as Palm platforms, which acdalsed on general-purpose
processors. In fact, a port of our library to the ARM proce$ss been recently finished
and yields similar results.

In Section 2, we describe the implementation of the aritioriégtrary and of the
group operations. In Section 3, we give timings and draw ouachusions.
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2 Implementation

We use the following abbreviationsis the bit length of the characteristic of the prime
field. M, S andI denote a multiplication, a squaring and an inversion in #id fin ands
denote a multiplication and a squaring, respectively, afmbit integers with a &-bit
result.R denotes a modular (or Montgomery) reduction ofaldit integer with aw-bit
result.

2.1 PrimeField Library

We already said that standard long integer software libsaritroduce several types of
overheads. One is the fixed function call overhead. Othes arise from the process-
ing of operands of variable length in loops, such as branapradictions at the begin-
ning and end of the loops, and are negligible for very largerapds. For operands of
size relevant for curve cryptography the CPU will spend nmione performing jumps
and paying branch misprediction penalties than doingmetic. Memory management
overheads can be very costly, too.

Thus, the smaller the field becomes, the higher will be the tiasted in the over-
heads. Because of the larger number of field operations iflenféelds, HEC suffer
from a much larger performance loss than EC.

2.1.1 Design. Our software librarynuMONGO has been designed to allow efficient
reference implementations of EC and HEC over prime fieldsapiements arithmetic
operations in ringZ/NZ with N odd, with the elements stored in Montgomery’s rep-
resentation [31], and the reduction algorithm is MontgoyiseREDC function — see
§ 2.1.3 for some more details. Many optimization technicgraployed are similar to
those in [6].

nuMONGO is written in C++ to take advantage of inline functions, dewaded func-
tions statically resolved at compile time for clarity of &g, and operator overload-
ing for I/O only. All arithmetic operations are implementad imperative functions.
nuMONGO contains no classes. All data structures are minimaligticelements of
Z/NZ are stored in vectors of fixed length of 32-bit words. All testary memory
is allocated on the stack. No data structure is ever dyndiyiasized or relocated.
This eliminates memory management overheads.

The routines aim to be as simple as possible. The least p@ssimber of routines
are implemented which still allow to perform all desireddieperations: They are built
from elementary operations working on single words, abdélaas generic C macros
as well as assembler macros for x86-compatible CPUs. A CR&Jtatprocess 32-bit
operands is assumed, but not necessarily a 32-bit CPU —fayliin fact compiled
also on an Alpha. Inlining was used extensively, most loagsuarolled; there are



very few conditional branches, hence branch mispredistéoa rare. There are separate
arithmetic routines for all operand sizes, in steps of 32 fodm 32 to 256 bits, as well
as for 48—hit fields (80 and 112-bit fields have been implepgetmbo, but gave no
speed-up over the 96 and 128-bit routines).

2.1.2 Multiplication. We begin with two algorithms to multiply “smallish” multi-
precision operands: Schoolbook multiplication and Combazethod [10].

The next two algorithms take as input téavord integersi = (U1, ..., U1, Ug) and
V= (Ve_1,...,V0), and output th@¢-word integer = (ry_1,...,ro) such that = uv.

Schoolbook multiplication Comba'’s method
1. ro<—07...,l’zg,1<—0 1. 5<0,5+0,%«0
2. forifromOtol—1do{ 2. forkfromOto2¢—1)do{
3. c—0 3. for each pai(i, j) such thai + j =k
4, for j from 0 tof¢ —1 do{ and 0< i, j < ¢, do{
5. (Crjgi) —Uivj+rjzi+c} 4. (S2,81,%) « (S2,51,%) +Uivj }
6. liqe<C} 5. Mk<—S0,5<S1,S1—% %<0}
7. returr(r) 6. Iy 1+

7. returr(r)

The schoolbook method multiplies the first factor by eaclit dighe second factor,
and accumulates the results. Comba’s method instead, ¢brdigit of the result, say
thek" one, computes the partial produats; on thediagonals i+ j = k, adding these
double precision results to a triple precision accumuldtarequires fewer memory
writes and more reads than the schoolbook multiplicatidms s the method adopted
in [6]. For both methods, several optimizations have beered®hey can both be used
with Karatsuba’s trick [20].

In our experience, Comba’s method did not perform betten th& schoolbook
method (on the ARM the situation is different). This may be do the fact that the
Athlon CPU has a write-back level 1 cache [1], hence sevdwakonrites to the same
memory location cost little more than one generic write. irer 192 andn = 256 we
reduced ar-bit multiplication to threen/2-bit multiplications by means of Karatsuba’s
trick. For smaller sizes and for 224-bit operands, the slifomk method was still faster.

For the considered operand sizes, squaring routines didrima a significant im-
provement over the multiplication routines, hence theyewsst included.

2.1.3 Montgomery’sreduction without trial division. Montgomery [31] proposed
to speed up modular reduction by replacing the modhilbg a larger integeR coprime
to N for which division is faster. In practice, f§ is the machine radix (in our cae=
232) andN is an odd¢-word integer, theiR = B’. Division by R and taking remainder
are just shift and masking operations.

Let REDC(X) be a function which, for & x < NR, computexR~* modN.

The modular residueis represented by itssidu X = xR mod N. Addition, subtrac-
tion, negation and testing for equality are performed oidusas usual.

Note thatx = REDC(X). To get the r-sidu of an intege;, computeREDC(xR?),
henceR? modN should be computed during system initialization. Neoy= xRyR=



XyRmodN, soXy = REDC(xy) can be computed without any division by We imple-
mentedREDC by the following method [5], which requires the inverggof N modulo
the machine radig = 2°2.

FunctionREDC (x)
INPUT: A 2¢-word integerx = (Xg_1, ..., X1,%0), andN, nj andp as above.
OuTPUT: The/-word integely such thay = xR~ modN and 0< y < N.

1L y=a-1,---,Y1:Y0) < X
2. forifrom0Otol—1do{

3. t—yp-ngmodB, y—y+t-N, y—y=p}
4. ify>Ntheny—y—N
5.  returrly)

This algorithm is, essentially, Hensel's odd division fantputing inverses of 2-adic
numbers to a higher base: At each iteration of the loop, aiphellof N is added to

y such that the result is divisible i, and thery is divided byf3 (a one word shift).
After the loop,y = x/B‘ = xRt modN andy < 2N. If y > N, a subtraction corrects
the result. The cost fEDC is, at least in theory, that of a schoolbook multiplication
of ¢-word integers, some shifts and some additions; In pradtisesomewhat more
expensive, but still much faster than the naive reductienliring long divisions. We
did not use the interleaved multiplication with reducti@A[: It usually performs better
on DSPs [11], but not on general-purpose CPUs with few rexgist

2.1.4 Inversion. With the exception of 32-bit operands, inversion is basedhen
extended binary GCD, and uses an almost-inverse technid@}enjth final multipli-
cation from a table of precomputed powers of 2 ndThis was the fastest approach
up to about 192 bits. For 32-bit operands we got better perdoce with the extended
Euclidean algorithm and special treatment of small qutgiémavoid divisions. Inver-
sion was not sped up further for larger input sizes becauskeointended usage of
the library: For elliptic curves over prime fields, invensifree coordinate systems are
much faster than affine coordinates, so there is need, figsardy for one inversion at
the end of a scalar multiplication. For hyperelliptic cusyvields are quite small (32 to
128 bits in most cases), hence our inversion routines haalperformance anyway.
Therefore, Lehmer's method or the improvements by Jebélejror Lercier [26] have
not been included in the final version of the library.

2.1.5 Performance. In Table 1 we show some timings of basic operations with
version 4.1 an@duMONGO. The timings have been measured on a PC with a 1 GHz AMD
Athlon Model 4 processor, under the Linux operating systkenr(el version 2.4). Our
programs have been compiled with the GNU C Compiggrc] versions 2.95.3 and
3.3.1. For each test, we took the version that gave the besigs.nuMONGO always
performed best witlgcc 3.3.1, whereas somenp tests performed better witgcc
2.95.3. We describe the meaning of the entries. There are two grafupsvs, grouped

11n some casegcc 2.95.3 produced the fastest code when optimizimjONGO for size ¢0s),
not for speed! This seems to be a strange but known phenomgner.3.1 had a more
orthodox behavior and gave the best code wili3, i.e. when optimizing aggressively for
speed. In both cases, additional compiler flags were usdthéstuning.



Table 1. Timings of basic operations in psec (1 GHz AMD Athlon PC) aiibs

Lib/op/Bits]| 32 | 48 | 64 | 96 | 128 | 160 | 192 | 224 | 256

m 0.0079] 0.0201] 0.0267] 0.054] 0.11 | 0.146] 0.198] 0.361] 0.392
g| =R 0.0298| 0.0536| 0.0487| 0.097| 0.159| 0.241| 0.319| 0.416| 0.493
S| 1 061 | 1.85 | 1.987 | 4.457) 7.6 |112 |16.3 |22.3 |28.8
8| mm || 377 | 2667 | 1.824 | 1.796] 1.445| 1651 161 | 1.152| 1.258

I/(R+m) ([ 16.19 |25.102 [26.35 |29.52 |28.25 |28.94 [31.53 |28.7 |32.55

m 0.094 | 0.155 | 0.16 0.206| 0.238| 0.308| 0.354| 0.44 | 0.508
;! 0.234 | 0.419 | 0.423 | 0.65 | 0.81 | 0.986| 1.154| 1.264| 1.528
i I 2.53 4.74 6.41 9.77 |13.3 |17.2 |21.26 |25.84 |29.6
5) R/m 2489 | 2.703 | 2.644 | 3.155| 3.403| 3.201| 3.26 | 2.873| 3.008

I/(R+m) || 7.713 | 8.258 [10.99 |11.41 |12.69 |13.29 [14.1 |15.16 |14.54

under the name of library used to benchmark the followingaipens: multiplication
of two integers 1), modular or Montgomery reductio®), modular or Montgomery
inversion (). The ratios of a reduction to a multiplication and of an irsien to the
time of a multiplication together with a reduction are giveyo: The first ratio tells how
many “multiplications” we save each time we save a reductising the techniques
described in the next subsection; the second ratio is theafas field inversion in
field multiplications. The columns correspond to the bigtas of the operands. A few
remarks:

1. nuMONGO can perform better than a far more optimized, but generagiqae library.
In fact, the kernel ofgmp is entirely written in assembler for most architectures,
including the one considered here.

2. For larger operandsnp catches up witlhuMONGO, the modular reduction remaining
slower because it is not based on Montgomery'’s algorithm.

3. nuMONGO has a highet/ (m+R) ratio thangmp. This shows how big the overheads
in general purpose libraries are for such small inputs.

2.2 Lazy and Incomplete reduction

Lazy and incomplete modular reduction are described irH8te, we give a short treat-
ment. Letp < 2% be a prime, wherw is a fixed integer. We consider expressions of the
form zid:laabi mod p with 0 < &,b; < p. Such expressions occur in the explicit for-
mulae for HEC. To use most modular reduction algorithmduiiag Montgomery’s,
at theend of the summation, we have to make sure that all partial sunjagh; are
smaller thanp2". Some authors (for example [27]) suggested tosmall primes, to
guarantee that the conditidhajb; < p2" is always satisfied. Note that [27] exploited
the possibility of accumulating several partial resultiobereduction for the extension
field arithmetic, but not at the group operation level. The aésmall primes at the
group operation level has been considered also in [14] d#feepresent paper appeared
as a preprint. However, “just” using primes which are “snealbugh” would contradict
one of our design principles, which is to have no restrictiamp except its word length.
What we do, additionally, is to ensure that the number obthiny removing the
least significantv bits of any intermediate result remaizisp. We do this by adding the



productsa;b; in succession, and checking if there has been an overflowtbe imost
significant half of the intermediate sumJsp: if so we subtracip from the number
obtained ignoring thev least significant bits of the intermediate result. If theeime-
diate result is> 22, the additional bit can be stored in a carry. Since all intdiate
results are bounded by2"+1 < (p+2%)2%, upon subtraction op2" the carry will
always be zero. This requires as many operations as allowtagnediate results in
triple precision, but less memory accesses are neededadbtige this leads to a faster
approach, and at the end we have to reduce a numbeunded byp2%¥, making the
modular reduction easier.

This technique of course works wigmy classical modular reduction algorithm.
That it works with Montgomery’s r-sidus and wREDC is a consequence of the linearity
of the operatoREDC modulo p.

nuMONGO supports Lazy (i.e. delayed) and Incomplete (i.e. limitethe number ob-
tained by removing the least significambits) modular reduction. Thus, an expression
ofthe formzidz‘olaibi mod p can be evaluated liymultiplications but only one modular
reduction instead ad. A modular reduction is at least as expensive as a multijbica
and often much more, see Table 1.

Remark 1.We cannotadd a reduced element to an unreduced element in Montgasnery’
representation. In fact, Montgomery’s representatiaf the integerais aRmod p (R
asin §2.1.3 withN = p). Now, bt is congruent tdbcR modp, not tobc= bcRmod p.
Hencea andbc have been multiplied by different constants npot obtaina andbc,
anda+ bc bears no fixed relation ta+ bc.

2.3 Implementation of the Explicit Formulae

We assume that the reader is acquainted with elliptic anetaiiptic curves.

2.3.1 Elliptic Curves. We consider elliptic curves defined over a fid¢idof odd
characteristic greater than 3 given by a Weierstrass amuati

E:y?=xX+ax+ag 1)

where the polynomiak® + a;x + ag has no multiple roots. The set of points®fover
(any extension of) the fielB and the point at infinityO form a group.

There are 5 different coordinate systems [@fine(2), the finite points “being”
the pairs(x,y) that satisfy (1)projective(), also callechomogeneousvhere a point
[X,Y,Z] corresponds t¢X/Z,Y /Z) in affine coordinatesJacobian(J), where a point
(X,Y,Z) corresponds t6X /Z2,Y /Z3); and two variants of, namely,Chudnowski Ja-
cobian(7°), with coordinategX,Y,Z,Zz?,z3), andmodified Jacobiar{y™), with co-
ordinatesX,Y,Z,a4Z%). They are accurately described in [9], where the formulae fo
all group operations are given. It is possible to add two {saimany two different co-
ordinate systems and get a result in a third system. For eeanvhen doing a scalar
multiplication, it is a good idea to keep the base point ahgraicomputed points itt,
since adding those points will be less expensive than ughngy goordinate systems.



Table 2. Costs of Group Operations on EC and HEC

Doubling Addition
operation costs operation costs operation costs
24=249 I,2m,2s, &R|| A+4=24 I, 2m, 1s, 3R

2P =P Tm,5s, 1R || P+P=7P 12m, 2s,1R| A+P=P 9m, 2s,1R

EC|| 29=19 4m, 6s, 8R|| I+9=179 12m, 4s, 18R | A+9=7 | 8m, 3s,1IR
29¢=g¢ 5m, 6s, 9R| J°+79¢=7° 1lm, 3s,14R| A+ 9°=9° | 8m, 3s, 11R
29M=gm 4m,4s, 8R||I"+IM =9 13m, 65, 1R|A+I"=9" Om,5s, 14R
24=4 1,22,5s,2R| A+4=4 I,22,3s, 18

g=2|| 22=? 38,65, 3R|| P+P=P  45m, 55,4R| A+P=P  40m, 3s, 3R
2N =N 34m 7s,3R| N+ AN =N | 4%, 7s,5R | A+ A=A  36m, 5s, 3R
0=3|| 22=4 1I,71@s),5®R| A+A=4 | I,76@/s), 5%

For EC, only few savings iREDCs are possible.

Let us work out an example, namely, how m&BpCs can be saved in the addition
A+P="P.LetP = (X1,Y1),P,= [Xz,Yz,Zz] andP; = [)(3,Y3,Zg]. ThenP3=P.+ P
is computed as follows [9]:

U=Yo—Y1Zo V=Xo—X1Zo, A=UZr—V®—2°X1Z5,
Xs=VA, Yz3=U(\X1Zo—A)—VNiZs, Zs=V?Z .

For the computation ai andv no savings are possible. We cannot save any reductions
in the computation oA = u?Z, — v® — 2v?X1Z, because: We need reduced anyway

for Z3, A must be available also in reduced form to compxgeand fromv?X;Z, we
subtractA in the computation of3; It is then easy to see that here no gain is obtained
by delaying reduction. BuYs can be computed by first multiplying by v2X1Z, — A,
thenv® by Y175, adding these two products and reducing the sum. Henc&Entecan

be saved in the addition formula.

For affine coordinates, nREDCs can be saved. Additions 1A allow saving of 1
REDC, even if one of the two points is ifl. With no other addition formula we can
save reductions. For all doublings we can saR&RCs, except for the doubling if™,
where no savings can be done due to the differences in theifaendepending on the
introduction ofasZ*.

In Table 2, we write the operation counts of the implementesgtations. Results for
genus 2 and 3 curves are given, too. The shortliand > = (3 means that two points
in the coordinate systemd and(; are added and the result is givends, where any
of the G can be one of the applicable coordinate systems. Doubliraird im ¢; with
result in( is denoted by 21 = (»>. The number oREDCs is given separately from the
multiplications and squarings.

2.3.2 Hyperédliptic Curves. An excellent, low brow, introduction to hyperelliptic
curves is given in [28], including proofs of the facts usetbie

A hyperelliptic curveC of genusg over a finite fieldFq of odd characteristic is
defined by a Weierstrass equatigh= f(x), wheref is a monic, square-free polyno-
mial of degree 8+ 1. In general, the points od do not form a group. Instead, the



ideal class grougs used, which is isomorphic to the Jacobian varietyCofits ele-
ments are represented by pairs of polynomials and [7] shdwedto compute with
group elements in this form. A generic ideal class is repreegkeby a pair of poly-
nomialsU (x) =X + Y4 Uix, V(x) = 9 IVix € Fq[x] such that for each rod of

U(x), (§,V(£)) is a point onC (equivalently,U (x) dividesV (x)? — f(x)). The affine
coordinatesare the g-tuple[Ug_1,...,U1,Uo,Vg—1, ..., V1,V0).

2.3.2.1 Genus 2. For genus 2 there are two more coordinate systems besides affi
(4): in projective coordinate$?) [30]: a quintuple[Us,Uo,V1,Vo,Z] corresponds to
the ideal class represented by -+ U3 /Z x+Uo/Z,V1/Z X+ Vo/Z]; with Lange’'snew
coordinates4\) [24], the sextuplgU1,Uo,V1,Vo,Z1,Z5] corresponds to the ideal class
(X2 +U1/Z2x+VUo/Z3 N1/ Z3Z,x+ Vo / Z3Z5). The systend\( is importantin scalar mul-
tiplications since it has the fastest doubling. We refe2#) for the formulae.

Table 3. Addition in genu<, degu; = degu, = 2

INPUT:  [ug, V1], [Uz, V2], with degu; = degup = 2, andf = x® + fax® + f2x% + fix+ fg

OUTPUT: [uz,V3] = [ug, V1] + U2, V2]

NOTATION: U; = X% + Uj1 X+ Uig andvj = VigX+ Vip

Step| Expression Cost
1 |compute resultantof uy, u: 1s, 3M

7 = U11 — U1, 22 = Upp — U10, Z3 = U1121 + 22;

=273+ Z%Uloi

2 |compute almost inverse ap modulouy (I = 11X+ 19 = /uz mod uy):

l1=21,l0=123;

3 |computes’ =rs= (v — V)1 moduy: 5M

Wo = V10 — V20, W1 = V11 — V21, W2 = IgWp, W3 = 11W1;

Sy = (lo+11) (Wo+ W1 ) —wWa —Wa(1+Uy1), Sy = W2 — U1gWa;

If 53 = 0 handle exceptional case (e.g. with Cantor’s algorithm)

4 |computes’ = x+sp/s1 = X+ )/, ands;: I,2S,5M

wy = (1sp) (= 1/r2s1), wp = rwa (= 1/8)), wg = STw (= 1);

Wy = rwa(= 1/51), Ws = W3;

= SoWe;

5 |computd’ = s"up = X3+ 15X% +11x+1): 2
15 = Up1 +5q, |1 = U1y + Upo, Ig = Uzosy

6 |computeus = (S(I 4 2v>) —k)/uy: 3M

Ugo = (8§ — U11) (S — 21) — Uno+ 17 + (2va1)Wa + (2u21 + 21 ) Ws;
Us1 = 255 — 21 —Ws;

7 | computevs = —(I +v,) modus: aM
Wi =I5 — U1, W2 = UzaWi + Uzo— |7, V31 = Waw3 — Va1
Wa = U3y — |, V39 = WoWs — Voo;

total 1,38, 22

We now see in an example — the addition formula in affine coateis — how lazy
and incomplete reductions are used in practice. Table 3rigatkfrom results in [24],
but restricted to the odd characteristic case. The detailedkdown of th&EDCs we
can save follows:

1. In Step 1 we can save OREDC in the computation of, since we do not need the
reduced value af,z; andzZuyg anywhere else.



2. In Step 3 we do not redue® = IgWp, since it is used in the computationgjfand
sy, Which are sums of products of two elements. So onREBCs are required to
implement Step 3: fows and for the final results of, ands,. This is a saving of
two REDCS.

3. In Step 5, it would be desirable to leave the coefficiéhtndl| of I’ unreduced,
since they are used in the following two steps only in addgiwith other products
of two elements. But] = up1sj + Uzo is @ problem: we cannot add reduced and
unreduced quantities (see Remark 1). We circumvent thisshypating the unre-
duced productk; = up15; (in place off}) andLo = uzos;. TWo REDCS are saved.

4. In Step 6, it isuzg = (%’ —U11) (%’ —2z1) + L1 4 2vo1wa + (2u21 + 21)Ws + 2. We
need only on®EDC to compute the (reduced) sum of the first four products: Note
that, at this pointL; is already known and we already counted the saving of one
REDC associated to it. So, we save a total of REDCS.

Summarizing, for one addition in affine coordinates in theshooommmon case, we need
12 Muls, 13MulNoREDCS and GREDCS. Thus, we save REDCS.

We implemented addition and doubling in all coordinateeys. To speed up scalar
multiplication, we also implemented addition in the casé&ke one of the two group
elements to be added is given fhand the second summand and the result are both
given either in? or 4.

In Table 2 we write the operation counts of the implementeerations. The ta-
ble contains also the counts for EC and genus 3 curves (saegtig@aragraph). The
number of modular reductions is always significantly snrmalki@an the number of mul-
tiplications.

2.3.2.2 Genus 3. Affine coordinates are the only coordinate system curreatil-
able for genus 3 curves. The formulae in [32,33] contain semers in odd char-
acteristic. We took the formulae of [40] — which are for gexierurves of the form
y?+h(x)y = f(x), and have been implemented only in even characteristichith= 1
—and simplified them for the case of odd characteriktic) = 0, and vanishing second
most significant coefficient of (x). A pleasant aspect of these formulae is that a large
proportion of modular reductions can be saved: at least Bieiaddition and 14 in the
doubling (see Table 2).

2.4 Scalar Multiplication

There are many methods for computing a scalar multiplicati@ generic group, which
can be used for EC and HEC. See [15] for a survey.

A simple method for computing: D for an integess and a ideal clasb is based on
the binary representation eflf s= z{‘;&sZi where eacls = 0 or 1, them- D can be
computed as

SD=2(2(++-2(2(s1-1D) + 1-2D) +++-) + D) + oD . )

This requiresn— 1 doublings and on averagg?2 — 1 additions on the curve (the first
addition is replaced by an assignment).



On EC and HEC, adding and subtracting an element have theszsnélence one
can use thenon adjacent form{(NAF) [34], which is an expansioa= z{‘:oszi with
s € {0,£1} andss1 = 0. This leads to a method needindoublings and on average
n/3—1 additions or subtractions.

A generalization of the NAF uses “sliding windows™: TheNAF [37, 8] of the
integers is a representatioa= Z?:OSJ' 21 where the integers; satisfy the following
two conditions: (i) eithes; = 0 ors; is odd ands;j| < 2%; (ii) of any w+ 1 consecutive
coefficientssj v, ..., Sj at most one is nonzero. The 1NAF coincides with the NAF. The
WNAF has average density (w+ 2). To compute a scalar multiplication based on the
WNAF one first precomputes the ideal clasBe8D, ..., (2" — 1)D, and then performs
a double-and-add step like (2). A left-to-right recodinghwihe same density as the
WNAF can be found in [4].

3 Results, Comparisons and Conclusions

Table 4 reports the timings of our implementation. Sina®0NGO provides support
only for moduli up to 256 bits, EC are tested only on fields uthtt size. For genus 2
curves on a 256 bit field, a group up to 513 bits is possible: Wgose this group size
as a limit also for the genus 3 curves.

All benchmarks were performed on a 1 GHz AMD Athlon (Model 4},Rinder
the Linux operating system (kernel version 2.4). The coenpilised were the GNU C
Compiler gcc), versions 2.95.3 and 3.3.1 and all the performance coraidas made
in §2.1.5 apply.

All groups have prime or almost prime order. The ellipticvas up to 256 bits have
been found by point counting on random curves, the larges asavell as the genus 2
and 3 curves have been constructed with the CM method.

For each combination of curve type, coordinate system amgjgsize, we averaged
the timings of several thousands scalar multiplicatiorth wandom scalars, using three
different recodings of the scalar: the binary represemathe NAF, and the'NAF. For
thewNAF we report only the best timing and the correspondingealiw. We always
keep the base ideal clagadits multiples in affine coordinates, since adding an affine
point to a point inany coordinate system other than affine is faster than adding two
points in that coordinate system. The timings always ineltid precomputations.

In Table 5 we provide timings foscc andhec usinggmp and the double-and-add
scalar multiplication based on the unsigned binary remtesien. We also provide in
Table 6 timings withmuMONGO but without lazy and incomplete reduction. For compar-
ison with our timings, Lange [23] reported timings of 8.23®&1®.121 milliseconds for
genus 2 curves with group order 2160 and 280 respectively on gmp-based imple-
mentation of affine coordinates on a 1.5 GHz Pentium 4 PC.3htf# double-and-add
algorithm based on the unsigned binary representatioreid. us [35], a timing of 98
milliseconds for a genus 3 curve of about 180 bjis{2°°) on an Alpha 21164A CPU
running at 600MHz is reported. The speed of these two CPUb$e ¢o that of the
machine we used for our tests.

A summary of the results follows:



Table 4. Comparison of running times, in msec (1 GHz AMD Athlon PC)

scalar Bitlength of group order (approximate)
mult. || 128 | 144 [ 160 | 192 | 224 | 256 | 320 | 512

curve|coord|

binary|| 1.671| 2.521| 3.074| 5.385| 8.536|12.619
NAF 1.488| 2.252| 2.701| 4.809| 7.596|11.315

A
WNAE || 1.363| 2.205| 2.489| 4.335| 6.841(10.099
(w=4) (w=3) (w=4) (w=4) (w=4) (w=4)
binary|| 0.643| 0.94 | 1.152| 1.879| 3.22 | 4.243
P NAF 0.575| 0.841| 1.017| 1.685| 2.881| 3.747
0.551| 0.808| 0.982| 1.591| 2.711| 3.523
WNAF (w=3) (w=3) w=3) w=3) (w=4) (w=4)
binary|| 0.584| 0.856| 1.05 | 1.702| 2.912| 3.876
ec g NAF 0.517| 0.776| 0.907| 1.499| 2.558| 3.325
WNAE || 0-492| 0.713| 0.864| 1.397| 2.357| 3.086
(w=3) (w=3) (w=3) (w=3) (w=3) (w=4)
binary|| 0.614| 0.901| 1.109| 1.812| 3.081| 3.995
4¢ NAF 0.546| 0.802| 0.965| 1.6 2.727| 3.583
0.517| 0.756| 0.922| 1.499| 2.527| 3.275
WNAF (w=3) (w=3) (w=3) (w=3) (w=3) (w=3)
binary|| 0.607| 0.872| 1.076| 1.782| 3.005| 3.945
gm NAF 0.512| 0.748| 0.906| 1.515| 2.592| 3.35
0.474| 0.684| 0.838| 1.395| 2.296| 3.048
WNAF (w=3) (w=3) (w=3) (w=3) (w=3) (w=3)
binary|| 0.888| 1.614| 1.899| 2.546| 4.612| 5.514|10.409| 39.673
a NAF 0.797| 1.449| 1.706| 2.265| 4.139| 4.952| 9.298|35.430

WNAE || 0-73 | 1.421) 1.558| 2.053| 3.73 | 4.464| 8.343)31.246

(w=4) (w=4) w=4) w=4) w=4) (w=4) (w=4) (w=5)
binary|| 0.839| 1.473| 1.642| 2.102| 3.996| 4.712| 8.653|30.564
hec | 5 NAF 0.755| 1.325| 1.48 | 1.901| 3.588| 4.203| 7.758|27.359

=2 WNAE 0.703| 1.211| 1.352| 1.742| 3.256| 3.842| 6.998|24.451
w=a | w=4 | w=9 | w=4 | w=49 | w=29 | w=4 | w=y

binary|| 0.844| 1.395| 1.564| 2.038| 3.777| 4.413| 8.265|29.11
A NAF | 0.746| 1.247| 1.391| 1.778| 3.357| 4.002| 7.329|25.816
wNAE || 0-675 1.14 | 1.262| 1.623| 3.02 | 3.575 6.53 |22.73

w=a | w=4 | w=9 | w=3 | w=9 | w=9 | w=4 | w=9

binary|| 1.896| 1.984| 2.992| 3.597| 5.39 | 6.001|12.66 |42.907
hec | 4 NAF 1.64 | 1.744| 2.538| 3.085| 4.82 | 5.39 |11.24 |38.326
WNAE || 1-424) 1.528) 2.077| 2.584| 4.33 | 4.86 | 9.92 |34.117

(w=4) (w=4) (w=5) (w=5) (w=4) (w=15) (w=4) (w=4)

Table 5. Timings withgmp, in msec (1 GHz AMD Athlon PC)

ec]l 160 | 192 | 256 hec || 160 | 192 | 256 | 320 | 512

A || 5.468| 8.305| 15.354

2 || 9.292|12.082[ 18.87329.5 | 72.09
? ‘3"332 2'245 ZéSs g=2| P || 12.15 | 14.961] 23.442| 32.212 81.586
J ST75 54 | 887 AC|[11.349) 13.278/ 20.4 | 28.93 | 74.389
jjm e | oaval aoms 9=3| 4 || 19.799] 22.452] 40.39 | 59.691| 129.541

Table 6. Timings withnuMONGO without lazy and
incomplete reduction, in msec (1 GHz AMD Athlon PC)

ec| 160 | 192 | 256

hec 160 192 256 320 512

ﬁ ig;‘ ggii 12'21? 4 || 2.234] 2.708| 5.788[11.112] 41.691

: : : g=2| 7 || 2.02 | 2.352| 4.804| 9.415| 33.23
]{ ﬁgg i-ggg j-ggg AC|| 1.831] 2.113| 4.494| 8.731| 30.653
il Lo7e| 1782 3.945 9=3| 2 || 4.469| 5.184| 6.52 [13.54 | 47.372




1. Using a specialized software library one can get a sppdula factor of 3 to 4.5
for EC with respect to a traditional implementation. Theespep for genus 2 and 3
curves is up to 8.

2. Lazy and incomplete reduction bring a speed-up from 3%09%6.1

3. For EC, the performance of the systefnand ™ is almost identical. The reason
lies in the fact that witty™ no modular reductions can be saved.

4. HEC are still slower than EC, but the gap has been narrowed.

(a) Affine coordinates for genus 2 HEC are significantly fattan those for EC.
Those for genus 3 are faster from 144 bits upwards.

(b) Comparing the best coordinate systems and scalar ricatipn algorithms for
genus 2 HEC and EC, we see that:

(i) For 192 bit, resp. 256 bit groups, EC is only 14%, resp. fa%ter than
HEC. In fact, consider the best timings for EC and HEC withuge2 with
192 bits:(1.623— 1.395)/1.623= 0.1405~ 14%.

(i) For other group sizes the difference is often around 50%

(c) Genus 3 curves are slower than genus 2 ones. gdjilihe difference is 80% to
100% for 160 to 512 bit groups, but usingMONGO the gap is often as small as
50%.

5. UsingnuMONGO we can successfully eliminate most of the overheads, thoamy
the soundness of our approach.

(&) Inthegmp-based implementation, the timings with different cooadesystems
are closer to each other than withMONGO because of the big amount of time
lost in the overheads. For HEC we have the paradoxical résat? and A are
slower than4, because they require more function calls for each groupaspe
tion than4. Therefore, with standard libraries the overheads can datmithe
running time.

(b) For affine coordinates the most expensive part of theatioer is the field in-
version, hence the speed-up givendmIONGO is not big, and is close to that in
Table 1 for the inversion alone.

6. If the field size for a given group is not close to a multiple of the machimed
sizeb, there is a relative drop in performance with respect toragheups where the
field size is almost a multiple df. For example, a 160-bit group can be given by a
genus 2 curve over a 80-bit field, but then 96-bit arithmetistibe used on a 32-bit
CPU. Similarly, with 224-bit groups, a genus 2 HEC is peraliby the 112-bit field
arithmetic. For 144-bit groups, genus 3 curves can exp®ibi arithmetic, which
has been made faster by suitable implementation tricksgfproach which did not
work for 80 and 112 bit fields), hence the gap to genus 2 is obg.5

We conclude that the performance of hyperelliptic curves gvime fields is satisfac-
tory enough to be considered as a valid alternative to etliptirves, especially when
large point groups are desired, and the bit length of the eleteristic is close to (but
smaller than) a multiple of the machine word length.

In software implementations not only should we employ acoastoftware library, as
done for elliptic curves in [6], but for a further speed-upethise of lazy and incom-
plete reduction is recommended. Development of new exjliniulae should take into
account the possibility of delaying modular reductions.
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