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Abstract. We present an implementation of elliptic curves and of hyperelliptic
curves of genus 2 and 3 over prime fields. To achieve a fair comparison between
the different types of groups, we developed an ad-hoc arithmetic library, designed
to remove most of the overheads that penalize implementations of curve-based
cryptography over prime fields. These overheads get worse for smaller fields, and
thus for larger genera for a fixed group size. We also use techniques for delaying
modular reductions to reduce the amount of modular reductions in the formulae
for the group operations.

The result is that the performance of hyperelliptic curves of genus 2 over prime
fields is much closer to the performance of elliptic curves than previously thought.
For groups of 192 and 256 bits the difference is about 14% and 15% respectively.
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1 Introduction

In 1988 Koblitz [21] proposed to use hyperelliptic curves (HEC) as an alternative to
elliptic curves (EC) for designing cryptosystems based on thediscrete logarithm prob-
lem (DLP). EC are just the genus 1 HEC. Cryptosystems based on EC need a much
shorter key than RSA or systems based on the DLP in finite fields: A 160-bit EC key
is considered to offer security equivalent to that of a 1024-bit RSA key [25]. Since the
best known methods to solve the DLP on EC and on HEC of genus smaller than 4 have
the same complexity, these curves offer the same security level, but HEC of genus 4 or
higher offer less security [12, 38].

Until recently, HEC have been considered not practical [36]because of the diffi-
culty of finding suitable curves and their poor performance with respect to EC. In the
subsequent years the situation changed.

Firstly, it is now possible to efficiently construct genus 2 and 3 HEC whose Jacobian
has almost prime order of cryptographic relevance. Over prime fields one can either
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count points in genus 2 [13], or use the complex multiplication (CM) method for genus
2 [29, 39] and 3 [39].

Secondly, the performance of the HEC group operations has been considerably im-
proved. For genus 2 the first results were due to Harley [17]. The state of the art is
now represented by the explicit formulae of Lange: see [23, 24] and further references
therein. For genus 3, see [32, 33] (and also [14]).

HEC are attractive to designers of embedded hardware since they require smaller
fields than EC: The order of the Jacobian of a HEC of genusg over a field withq
elements is≈ qg. This means that a 160-bit group is given by an EC withq≈ 2160,
by an HEC of genus 2 withq≈ 280, and genus 3 withq≈ 253. There has been also
research on securing implementations of HEC on embedded devices against differential
and Goubin-type power analysis [2].

The purpose of this paper is to present a thorough, fair and unbiased comparison
of the relative performance merits ofgenericEC and HEC of small genus 2 or 3 over
prime fields. We arenot interested in comparing againstvery specialclasses of curves
or in the use of prime moduli of special form.

There have been several software implementations of HEC on personal computers
and workstations. Most of those are in even characteristic (see [35, 32], [33], and also
[40, 41]), but some are over prime fields [22, 35]. It is now known that ineven charac-
teristic, HEC can offer performance comparable to EC.

Until now there have been no concrete results showing the same for prime fields.
Traditional implementations such as [22] are based on general purpose software li-
braries, such asgmp [16]. These libraries introduce overheads which are quite signifi-
cant for small operands such as those occurring in curve cryptography, and get worse as
the fields get smaller. Moreover,gmp has no native support for fast modular reduction
techniques. In our modular arithmetic library, described in § 2.1, we made every effort
to avoid such overheads. On a PC we get a speed-up from 2 to 5 over gmp for opera-
tions in fields of cryptographic relevance (see Table 1). We also exploit techniques for
reducing the number of modular reductions in the formulae for the group operations.

We thus show that the performance of genus 2 HEC over prime fields is much closer
to the performance of EC than previously thought. For groupsof 192 resp. 256 bits
the difference is approximately 14%, resp. 15%. The gap withgenus 3 curves has been
significantly reduced too. See Section 3 for more precise results.

While the only significant constraint in workstations and commodity PCs may be
processing power, the results of our work should also be applicable to other more con-
strained environments, such as Palm platforms, which are also based on general-purpose
processors. In fact, a port of our library to the ARM processor has been recently finished
and yields similar results.

In Section 2, we describe the implementation of the arithmetic library and of the
group operations. In Section 3, we give timings and draw our conclusions.
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2 Implementation

We use the following abbreviations:w is the bit length of the characteristic of the prime
field.M, S andI denote a multiplication, a squaring and an inversion in the field.m ands
denote a multiplication and a squaring, respectively, of two w-bit integers with a 2w-bit
result.R denotes a modular (or Montgomery) reduction of a 2w-bit integer with aw-bit
result.

2.1 Prime Field Library

We already said that standard long integer software libraries introduce several types of
overheads. One is the fixed function call overhead. Other ones arise from the process-
ing of operands of variable length in loops, such as branch mispredictions at the begin-
ning and end of the loops, and are negligible for very large operands. For operands of
size relevant for curve cryptography the CPU will spend moretime performing jumps
and paying branch misprediction penalties than doing arithmetic. Memory management
overheads can be very costly, too.

Thus, the smaller the field becomes, the higher will be the time wasted in the over-
heads. Because of the larger number of field operations in smaller fields, HEC suffer
from a much larger performance loss than EC.

2.1.1 Design. Our software librarynuMONGO has been designed to allow efficient
reference implementations of EC and HEC over prime fields. Itimplements arithmetic
operations in ringsZ/NZ with N odd, with the elements stored in Montgomery’s rep-
resentation [31], and the reduction algorithm is Montgomery’s REDC function – see
§ 2.1.3 for some more details. Many optimization techniquesemployed are similar to
those in [6].

nuMONGO is written in C++ to take advantage of inline functions, overloaded func-
tions statically resolved at compile time for clarity of coding, and operator overload-
ing for I/O only. All arithmetic operations are implementedas imperative functions.
nuMONGO contains no classes. All data structures are minimalistic.All elements of
Z/NZ are stored in vectors of fixed length of 32-bit words. All temporary memory
is allocated on the stack. No data structure is ever dynamically resized or relocated.
This eliminates memory management overheads.

The routines aim to be as simple as possible. The least possible number of routines
are implemented which still allow to perform all desired field operations: They are built
from elementary operations working on single words, available as generic C macros
as well as assembler macros for x86-compatible CPUs. A CPU able to process 32-bit
operands is assumed, but not necessarily a 32-bit CPU – the library in fact compiled
also on an Alpha. Inlining was used extensively, most loops are unrolled; there are



very few conditional branches, hence branch mispredictions are rare. There are separate
arithmetic routines for all operand sizes, in steps of 32 bits from 32 to 256 bits, as well
as for 48–bit fields (80 and 112-bit fields have been implemented too, but gave no
speed-up over the 96 and 128-bit routines).

2.1.2 Multiplication. We begin with two algorithms to multiply “smallish” multi-
precision operands: Schoolbook multiplication and Comba’s method [10].

The next two algorithms take as input twoℓ-word integersu= (uℓ−1, . . . , u1,u0) and
v = (vℓ−1, . . . ,v0), and output the2ℓ-word integerr = (r2ℓ−1, . . . , r0) such thatr = uv.

Schoolbook multiplication
1. r0← 0, . . . , r2ℓ−1← 0
2. for i from 0 toℓ−1 do{
3. c← 0
4. for j from 0 toℓ−1 do{
5. (c, r j+i)← uiv j + r j+i +c }
6. r i+ℓ← c }
7. return(r)

Comba’s method
1. s0← 0, s1← 0, s2← 0
2. for k from 0 to 2(ℓ−1) do {
3. for each pair(i, j) such thati + j = k

and 06 i, j < ℓ, do{
4. (s2,s1,s0)← (s2,s1,s0)+uiv j }
5. rk← s0, s0← s1, s1← s2, s2← 0 }
6. r2ℓ−1← s0
7. return(r)

The schoolbook method multiplies the first factor by each digit of the second factor,
and accumulates the results. Comba’s method instead, for each digit of the result, say
thekth one, computes the partial productsuiv j on thediagonals i+ j = k, adding these
double precision results to a triple precision accumulator. It requires fewer memory
writes and more reads than the schoolbook multiplication. This is the method adopted
in [6]. For both methods, several optimizations have been done. They can both be used
with Karatsuba’s trick [20].

In our experience, Comba’s method did not perform better than the schoolbook
method (on the ARM the situation is different). This may be due to the fact that the
Athlon CPU has a write-back level 1 cache [1], hence several close writes to the same
memory location cost little more than one generic write. Forn = 192 andn = 256 we
reduced an-bit multiplication to threen/2-bit multiplications by means of Karatsuba’s
trick. For smaller sizes and for 224-bit operands, the schoolbook method was still faster.

For the considered operand sizes, squaring routines did notbring a significant im-
provement over the multiplication routines, hence they were not included.

2.1.3 Montgomery’s reduction without trial division. Montgomery [31] proposed
to speed up modular reduction by replacing the modulusN by a larger integerRcoprime
to N for which division is faster. In practice, ifβ is the machine radix (in our caseβ =
232) andN is an oddℓ-word integer, thenR= βℓ. Division byR and taking remainder
are just shift and masking operations.

Let REDC(x) be a function which, for 06 x < NR, computesxR−1 modN.
The modular residuex is represented by itsr-sidux̄= xRmodN. Addition, subtrac-

tion, negation and testing for equality are performed on r-sidus as usual.
Note thatx = REDC(x). To get the r-sidu of an integerx, computeREDC(xR2),

henceR2 modN should be computed during system initialization. Now ¯xȳ≡ xRyR≡



xyRmodN, soxy= REDC(xy) can be computed without any division byN. We imple-
mentedREDC by the following method [5], which requires the inversen′0 of N modulo
the machine radixβ = 232.

FunctionREDC(x)
INPUT: A 2ℓ-word integerx = (x2ℓ−1, . . . ,x1,x0), andN, n′0 andβ as above.
OUTPUT: Theℓ-word integery such thaty = xR−1 modN and 06 y < N.
1. y = (y2ℓ−1, . . . ,y1,y0)← x
2. for i from 0 toℓ−1 do{
3. t← y0 ·n′0 modβ, y← y+ t ·N, y← y÷β }
4. if y > N theny← y−N
5. return(y)

This algorithm is, essentially, Hensel’s odd division for computing inverses of 2-adic
numbers to a higher base: At each iteration of the loop, a multiple of N is added to
y such that the result is divisible byβ, and theny is divided byβ (a one word shift).
After the loop,y≡ x/βℓ ≡ xR−1 modN andy < 2N. If y > N, a subtraction corrects
the result. The cost ofREDC is, at least in theory, that of a schoolbook multiplication
of ℓ-word integers, some shifts and some additions; In practiceit is somewhat more
expensive, but still much faster than the naive reduction involving long divisions. We
did not use the interleaved multiplication with reduction [31]: It usually performs better
on DSPs [11], but not on general-purpose CPUs with few registers.

2.1.4 Inversion. With the exception of 32-bit operands, inversion is based onthe
extended binary GCD, and uses an almost-inverse technique [19] with final multipli-
cation from a table of precomputed powers of 2 modN. This was the fastest approach
up to about 192 bits. For 32-bit operands we got better performance with the extended
Euclidean algorithm and special treatment of small quotients to avoid divisions. Inver-
sion was not sped up further for larger input sizes because ofthe intended usage of
the library: For elliptic curves over prime fields, inversion-free coordinate systems are
much faster than affine coordinates, so there is need, basically, only for one inversion at
the end of a scalar multiplication. For hyperelliptic curves, fields are quite small (32 to
128 bits in most cases), hence our inversion routines have optimal performance anyway.
Therefore, Lehmer’s method or the improvements by Jebelean[18] or Lercier [26] have
not been included in the final version of the library.

2.1.5 Performance. In Table 1 we show some timings of basic operations withgmp

version 4.1 andnuMONGO. The timings have been measured on a PC with a 1 GHz AMD
Athlon Model 4 processor, under the Linux operating system (kernel version 2.4). Our
programs have been compiled with the GNU C Compiler (gcc) versions 2.95.3 and
3.3.1. For each test, we took the version that gave the best timings.nuMONGO always
performed best withgcc 3.3.1, whereas somegmp tests performed better withgcc
2.95.31. We describe the meaning of the entries. There are two groupsof rows, grouped

1 In some casesgcc 2.95.3 produced the fastest code when optimizingnuMONGO for size (-Os),
not for speed! This seems to be a strange but known phenomenon. gcc 3.3.1 had a more
orthodox behavior and gave the best code with-O3, i.e. when optimizing aggressively for
speed. In both cases, additional compiler flags were used forfine-tuning.



Table 1. Timings of basic operations in µsec (1 GHz AMD Athlon PC) and ratios

Lib / Op / Bits 32 48 64 96 128 160 192 224 256

n
u
M
O
N
G
O

m 0.0079 0.0201 0.0267 0.054 0.11 0.146 0.198 0.361 0.392
R 0.0298 0.0536 0.0487 0.097 0.159 0.241 0.319 0.416 0.493
I 0.61 1.85 1.987 4.457 7.6 11.2 16.3 22.3 28.8
R/m 3.77 2.667 1.824 1.796 1.445 1.651 1.61 1.152 1.258

I/(R+m) 16.19 25.102 26.35 29.52 28.25 28.94 31.53 28.7 32.55

g
m
p

v.
4.

1
m 0.094 0.155 0.16 0.206 0.238 0.308 0.354 0.44 0.508
R 0.234 0.419 0.423 0.65 0.81 0.986 1.154 1.264 1.528
I 2.53 4.74 6.41 9.77 13.3 17.2 21.26 25.84 29.6
R/m 2.489 2.703 2.644 3.155 3.403 3.201 3.26 2.873 3.008

I/(R+m) 7.713 8.258 10.99 11.41 12.69 13.29 14.1 15.16 14.54

under the name of library used to benchmark the following operations: multiplication
of two integers (m), modular or Montgomery reduction (R), modular or Montgomery
inversion (I). The ratios of a reduction to a multiplication and of an inversion to the
time of a multiplication together with a reduction are given, too: The first ratio tells how
many “multiplications” we save each time we save a reductionusing the techniques
described in the next subsection; the second ratio is the cost of a field inversion in
field multiplications. The columns correspond to the bit lengths of the operands. A few
remarks:

1. nuMONGO can perform better than a far more optimized, but general purpose library.
In fact, the kernel ofgmp is entirely written in assembler for most architectures,
including the one considered here.

2. For larger operandsgmp catches up withnuMONGO, the modular reduction remaining
slower because it is not based on Montgomery’s algorithm.

3. nuMONGO has a higherI/(m+R) ratio thangmp. This shows how big the overheads
in general purpose libraries are for such small inputs.

2.2 Lazy and Incomplete reduction

Lazy and incomplete modular reduction are described in [3].Here, we give a short treat-
ment. Letp < 2w be a prime, wherew is a fixed integer. We consider expressions of the
form ∑d

i=1aibi mod p with 0 6 ai ,bi < p. Such expressions occur in the explicit for-
mulae for HEC. To use most modular reduction algorithms, including Montgomery’s,
at theendof the summation, we have to make sure that all partial sums of∑aibi are
smaller thanp2w. Some authors (for example [27]) suggested to usesmallprimes, to
guarantee that the condition∑aibi < p2w is always satisfied. Note that [27] exploited
the possibility of accumulating several partial results before reduction for the extension
field arithmetic, but not at the group operation level. The use of small primes at the
group operation level has been considered also in [14] afterthe present paper appeared
as a preprint. However, “just” using primes which are “smallenough” would contradict
one of our design principles, which is to have no restrictionon p except its word length.

What we do, additionally, is to ensure that the number obtained by removing the
least significantw bits of any intermediate result remains< p. We do this by adding the



productsaibi in succession, and checking if there has been an overflow or ifthe most
significant half of the intermediate sum is> p : if so we subtractp from the number
obtained ignoring thew least significant bits of the intermediate result. If the interme-
diate result is> 22w, the additional bit can be stored in a carry. Since all intermediate
results are bounded byp2w+1 < (p+ 2w)2w, upon subtraction ofp2w the carry will
always be zero. This requires as many operations as allowingintermediate results in
triple precision, but less memory accesses are needed: In practice this leads to a faster
approach, and at the end we have to reduce a numberx bounded byp2w, making the
modular reduction easier.

This technique of course works withany classical modular reduction algorithm.
That it works with Montgomery’s r-sidus and withREDC is a consequence of the linearity
of the operatorREDC modulo p.

nuMONGO supports Lazy (i.e. delayed) and Incomplete (i.e. limited to the number ob-
tained by removing the least significantw bits) modular reduction. Thus, an expression
of the form∑d−1

i=0 aibi mod p can be evaluated byd multiplications but only one modular
reduction instead ofd. A modular reduction is at least as expensive as a multiplication,
and often much more, see Table 1.

Remark 1.Wecannotadd a reduced element to an unreduced element in Montgomery’s
representation. In fact, Montgomery’s representationa of the integera is aRmod p (R
as in § 2.1.3 withN = p). Now,bc is congruent tobcR2 modp, not tobc= bcRmod p.
Hence,a andbc have been multiplied by different constants modp to obtaina andbc,
anda+bc bears no fixed relation toa+bc.

2.3 Implementation of the Explicit Formulae

We assume that the reader is acquainted with elliptic and hyperelliptic curves.

2.3.1 Elliptic Curves. We consider elliptic curves defined over a fieldF of odd
characteristic greater than 3 given by a Weierstrass equation

E : y2 = x3 +a4x+a6 (1)

where the polynomialx3 + a4x+ a6 has no multiple roots. The set of points ofE over
(any extension of) the fieldF and the point at infinityO form a group.

There are 5 different coordinate systems [9]:affine (A), the finite points “being”
the pairs(x,y) that satisfy (1);projective(P ), also calledhomogeneous, where a point
[X,Y,Z] corresponds to(X/Z,Y/Z) in affine coordinates;Jacobian(J ), where a point
(X,Y,Z) corresponds to(X/Z2,Y/Z3); and two variants ofJ , namely,Chudnowski Ja-
cobian (J c), with coordinates(X,Y,Z,Z2,Z3), andmodified Jacobian(Jm), with co-
ordinates(X,Y,Z,a4Z4). They are accurately described in [9], where the formulae for
all group operations are given. It is possible to add two points in any two different co-
ordinate systems and get a result in a third system. For example, when doing a scalar
multiplication, it is a good idea to keep the base point and all precomputed points inA ,
since adding those points will be less expensive than using other coordinate systems.



Table 2. Costs of Group Operations on EC and HEC

Doubling Addition
operation costs operation costs operation costs

2A = A I, 2m, 2s, 4R A +A = A I, 2m, 1s, 3R
2P = P 7m, 5s, 10R P +P = P 12m, 2s, 13R A +P = P 9m, 2s, 10R

EC 2J = J 4m, 6s, 8R J +J = J 12m, 4s, 16R A +J = J 8m, 3s, 11R
2J c = J c 5m, 6s, 9R J c +J c = J c 11m, 3s, 14R A +J c = J c 8m, 3s, 11R
2Jm = Jm 4m, 4s, 8R Jm+Jm = Jm 13m, 6s, 19R A +Jm = Jm 9m, 5s, 14R

2A = A I, 22m, 5s, 22R A +A = A I, 22m, 3s, 18R
g=2 2P = P 38m, 6s, 38R P +P = P 45m, 5s, 42R A +P = P 40m, 3s, 33R

2N = N 34m, 7s, 37R N +N =N 47m, 7s, 50R A +N = N 36m, 5s, 37R

g=3 2A = A I, 71(m/s), 57R A +A = A I, 76(m/s), 55R

For EC, only few savings inREDCs are possible.
Let us work out an example, namely, how manyREDCs can be saved in the addition

A+P = P . Let P1 = (X1,Y1), P2 = [X2,Y2,Z2] andP3 = [X3,Y3,Z3]. Then,P3 = P1+P2

is computed as follows [9]:

u = Y2−Y1Z2 v = X2−X1Z2 , A = u2Z2−v3−2v2X1Z2 ,

X3 = vA, Y3 = u(v2X1Z2−A)−v3Y1Z2 , Z3 = v3Z2 .

For the computation ofu andv no savings are possible. We cannot save any reductions
in the computation ofA = u2Z2− v3−2v2X1Z2 because: We needv3 reduced anyway
for Z3, A must be available also in reduced form to computeX3, and fromv2X1Z2 we
subtractA in the computation ofY3; It is then easy to see that here no gain is obtained
by delaying reduction. ButY3 can be computed by first multiplyingu by v2X1Z2−A,
thenv3 byY1Z2, adding these two products and reducing the sum. Hence, oneREDC can
be saved in the addition formula.

For affine coordinates, noREDCs can be saved. Additions inP allow saving of 1
REDC, even if one of the two points is inA . With no other addition formula we can
save reductions. For all doublings we can save 2REDCs, except for the doubling inJm,
where no savings can be done due to the differences in the formulae depending on the
introduction ofa4Z4.

In Table 2, we write the operation counts of the implemented operations. Results for
genus 2 and 3 curves are given, too. The shorthandC1+C2 = C3 means that two points
in the coordinate systemsC1 andC2 are added and the result is given inC3, where any
of theCi can be one of the applicable coordinate systems. Doubling a point in C1 with
result inC2 is denoted by 2C1 = C2. The number ofREDCs is given separately from the
multiplications and squarings.

2.3.2 Hyperelliptic Curves. An excellent, low brow, introduction to hyperelliptic
curves is given in [28], including proofs of the facts used below.

A hyperelliptic curveC of genusg over a finite fieldFq of odd characteristic is
defined by a Weierstrass equationy2 = f (x), where f is a monic, square-free polyno-
mial of degree 2g+ 1. In general, the points onC do not form a group. Instead, the



ideal class groupis used, which is isomorphic to the Jacobian variety ofC . Its ele-
ments are represented by pairs of polynomials and [7] showedhow to compute with
group elements in this form. A generic ideal class is represented by a pair of poly-
nomialsU(x) = xg + ∑d−1

i=0 Uixi , V(x) = ∑d−1
i=0 Vixi ∈ Fq[x] such that for each rootξ of

U(x), (ξ,V(ξ)) is a point onC (equivalently,U(x) dividesV(x)2− f (x)). The affine
coordinatesare the 2g-tuple[Ug−1, . . . ,U1,U0,Vg−1, . . . ,V1,V0].

2.3.2.1 Genus 2. For genus 2 there are two more coordinate systems besides affine
(A): in projective coordinates(P ) [30]: a quintuple[U1,U0,V1,V0,Z] corresponds to
the ideal class represented by[x2 +U1/Z x+U0/Z,V1/Z x+V0/Z]; with Lange’snew
coordinates (N ) [24], the sextuple[U1,U0,V1,V0,Z1,Z2] corresponds to the ideal class
[x2+U1/Z2

1 x+U0/Z2
1,V1/Z3

1Z2x+V0/Z3
1Z2]. The systemN is important in scalar mul-

tiplications since it has the fastest doubling. We refer to [24] for the formulae.

Table 3. Addition in genus2, degu1 = degu2 = 2

INPUT: [u1,v1], [u2,v2], with degu1 = degu2 = 2, and f = x5 + f3x3 + f2x2 + f1x+ f0
OUTPUT: [u3,v3] = [u1,v1]+ [u2,v2]
NOTATION: ui = x2 +ui1x+ui0 andvi = vi1x+vi0

Step Expression Cost
1 compute resultantr of u1,u2: 1S, 3M

z1 = u11−u21, z2 = u20−u10, z3 = u11z1 +z2;
r = z2z3 +z2

1u10;
2 compute almost inverse ofu2 modulou1 (ı = ı1x+ ı0 = r/u2 modu1): -

ı1 = z1, ı0 = z3;
3 computes′ = rs≡ (v1−v2)ı modu1: 5M

w0 = v10−v20, w1 = v11−v21, w2 = ı0w0, w3 = ı1w1;
s′1 = (ı0 + ı1)(w0 +w1)−w2−w3(1+u11), s′0 = w2−u10w3;
If s1 = 0 handle exceptional case (e.g. with Cantor’s algorithm)

4 computes′′ = x+s0/s1 = x+s′0/s′1 ands1: I, 2S, 5M

w1 = (rs′1)
−1(= 1/r2s1), w2 = rw1(= 1/s′1), w3 = s′21w1(= s1);

w4 = rw2(= 1/s1), w5 = w2
4;

s′′0 = s′0w2;
5 computel ′ = s′′u2 = x3 + l ′2x2 + l ′1x+ l ′0: 2M

l ′2 = u21+s′′0, l ′1 = u21s′′0 +u20, l ′0 = u20s′′0
6 computeu3 = (s(l +2v2)−k)/u1: 3M

u30 = (s′′0−u11)(s′′0−z1)−u10+ l ′1 +(2v21)w4 +(2u21+z1)w5;
u31 = 2s′′0−z1−w5;

7 computev3≡−(l +v2) modu3: 4M
w1 = l ′2−u31, w2 = u31w1 +u30− l ′1, v31 = w2w3−v21;
w2 = u30w1− l ′0, v30 = w2w3−v20;

total I, 3S, 22M

We now see in an example – the addition formula in affine coordinates – how lazy
and incomplete reductions are used in practice. Table 3 is derived from results in [24],
but restricted to the odd characteristic case. The detailedbreakdown of theREDCs we
can save follows:

1. In Step 1 we can save oneREDC in the computation ofr, since we do not need the
reduced value ofz2z3 andz2

1u10 anywhere else.



2. In Step 3 we do not reducew2 = ı0w0, since it is used in the computation ofs′1 and
s′0, which are sums of products of two elements. So only 3REDCs are required to
implement Step 3: forw3 and for the final results ofs′1 ands′0. This is a saving of
two REDCs.

3. In Step 5, it would be desirable to leave the coefficientsl ′1 andl ′0 of l ′ unreduced,
since they are used in the following two steps only in additions with other products
of two elements. Butl ′1 = u21s′′0 + u20 is a problem: we cannot add reduced and
unreduced quantities (see Remark 1). We circumvent this by computing the unre-
duced productsL1 = u21s′′0 (in place ofℓ′1) andL0 = u20s′′0. Two REDCs are saved.

4. In Step 6, it isu30 = (s′′0−u11)(s′′0− z1) + L1 + 2v21w4 +(2u21+ z1)w5 + z2. We
need only oneREDC to compute the (reduced) sum of the first four products: Note
that, at this point,L1 is already known and we already counted the saving of one
REDC associated to it. So, we save a total of twoREDCs.

Summarizing, for one addition in affine coordinates in the most common case, we need
12Muls, 13MulNoREDCs and 6REDCs. Thus, we save 7REDCs.

We implemented addition and doubling in all coordinate systems. To speed up scalar
multiplication, we also implemented addition in the cases where one of the two group
elements to be added is given inA and the second summand and the result are both
given either inP orN .

In Table 2 we write the operation counts of the implemented operations. The ta-
ble contains also the counts for EC and genus 3 curves (see thenext paragraph). The
number of modular reductions is always significantly smaller than the number of mul-
tiplications.

2.3.2.2 Genus 3. Affine coordinates are the only coordinate system currentlyavail-
able for genus 3 curves. The formulae in [32, 33] contain someerrors in odd char-
acteristic. We took the formulae of [40] – which are for general curves of the form
y2+h(x)y= f (x), and have been implemented only in even characteristic withh(x) = 1
– and simplified them for the case of odd characteristic,h(x) = 0, and vanishing second
most significant coefficient off (x). A pleasant aspect of these formulae is that a large
proportion of modular reductions can be saved: at least 21 inthe addition and 14 in the
doubling (see Table 2).

2.4 Scalar Multiplication

There are many methods for computing a scalar multiplication in a generic group, which
can be used for EC and HEC. See [15] for a survey.

A simple method for computings·D for an integersand a ideal classD is based on
the binary representation ofs. If s= ∑n−1

i=0 si2i where eachsi = 0 or 1, thenn ·D can be
computed as

sD= 2(2(· · ·2(2(sn−1D)+sn−2D)+ · · ·)+s1D)+s0D . (2)

This requiresn−1 doublings and on averagen/2−1 additions on the curve (the first
addition is replaced by an assignment).



On EC and HEC, adding and subtracting an element have the samecost. Hence one
can use thenon adjacent form(NAF) [34], which is an expansions = ∑n

i=0si2i with
si ∈ {0,±1} andsisi+1 = 0. This leads to a method needingn doublings and on average
n/3−1 additions or subtractions.

A generalization of the NAF uses “sliding windows”: ThewNAF [37, 8] of the
integers is a representations = ∑n

j=0sj 2 j where the integerssj satisfy the following
two conditions: (i) eithersj = 0 orsj is odd and|sj |6 2w; (ii) of any w+1 consecutive
coefficientssj+w, . . . ,sj at most one is nonzero. The 1NAF coincides with the NAF. The
wNAF has average density 1/(w+2). To compute a scalar multiplication based on the
wNAF one first precomputes the ideal classesD, 3D, . . . ,(2w−1)D, and then performs
a double-and-add step like (2). A left-to-right recoding with the same density as the
wNAF can be found in [4].

3 Results, Comparisons and Conclusions

Table 4 reports the timings of our implementation. SincenuMONGO provides support
only for moduli up to 256 bits, EC are tested only on fields up tothat size. For genus 2
curves on a 256 bit field, a group up to 513 bits is possible: We choose this group size
as a limit also for the genus 3 curves.

All benchmarks were performed on a 1 GHz AMD Athlon (Model 4) PC, under
the Linux operating system (kernel version 2.4). The compilers used were the GNU C
Compiler (gcc), versions 2.95.3 and 3.3.1 and all the performance considerations made
in § 2.1.5 apply.

All groups have prime or almost prime order. The elliptic curves up to 256 bits have
been found by point counting on random curves, the larger ones as well as the genus 2
and 3 curves have been constructed with the CM method.

For each combination of curve type, coordinate system and group size, we averaged
the timings of several thousands scalar multiplications with random scalars, using three
different recodings of the scalar: the binary representation, the NAF, and thewNAF. For
thewNAF we report only the best timing and the corresponding value ofw. We always
keep the base ideal classand its multiples in affine coordinates, since adding an affine
point to a point inany coordinate system other than affine is faster than adding two
points in that coordinate system. The timings always include the precomputations.

In Table 5 we provide timings forecc andhec usinggmp and the double-and-add
scalar multiplication based on the unsigned binary representation. We also provide in
Table 6 timings withnuMONGO but without lazy and incomplete reduction. For compar-
ison with our timings, Lange [23] reported timings of 8.232 and 9.121 milliseconds for
genus 2 curves with group order≈ 2160 and 2180 respectively on agmp-based imple-
mentation of affine coordinates on a 1.5 GHz Pentium 4 PC. In [23] the double-and-add
algorithm based on the unsigned binary representation is used. In [35], a timing of 98
milliseconds for a genus 3 curve of about 180 bits (p≈ 260) on an Alpha 21164A CPU
running at 600MHz is reported. The speed of these two CPUs is close to that of the
machine we used for our tests.

A summary of the results follows:



Table 4. Comparison of running times, in msec (1 GHz AMD Athlon PC)

scalar Bitlength of group order (approximate)
curve coord.

mult. 128 144 160 192 224 256 320 512

binary 1.671 2.521 3.074 5.385 8.536 12.619

A NAF 1.488 2.252 2.701 4.809 7.596 11.315

wNAF 1.363 2.205 2.489 4.335 6.841 10.099
(w= 4) (w= 3) (w= 4) (w= 4) (w = 4) (w = 4)

binary 0.643 0.94 1.152 1.879 3.22 4.243

P NAF 0.575 0.841 1.017 1.685 2.881 3.747

wNAF 0.551 0.808 0.982 1.591 2.711 3.523
(w= 3) (w= 3) (w= 3) (w= 3) (w = 4) (w = 4)

binary 0.584 0.856 1.05 1.702 2.912 3.876

ec J NAF 0.517 0.776 0.907 1.499 2.558 3.325

wNAF 0.492 0.713 0.864 1.397 2.357 3.086
(w= 3) (w= 3) (w= 3) (w= 3) (w = 3) (w = 4)

binary 0.614 0.901 1.109 1.812 3.081 3.995

J c NAF 0.546 0.802 0.965 1.6 2.727 3.583

wNAF 0.517 0.756 0.922 1.499 2.527 3.275
(w= 3) (w= 3) (w= 3) (w= 3) (w = 3) (w = 3)

binary 0.607 0.872 1.076 1.782 3.005 3.945

Jm NAF 0.512 0.748 0.906 1.515 2.592 3.35

wNAF 0.474 0.684 0.838 1.395 2.296 3.048
(w= 3) (w= 3) (w= 3) (w= 3) (w = 3) (w = 3)

binary 0.888 1.614 1.899 2.546 4.612 5.514 10.409 39.673

A NAF 0.797 1.449 1.706 2.265 4.139 4.952 9.298 35.430

wNAF 0.73 1.421 1.558 2.053 3.73 4.464 8.343 31.246
(w= 4) (w= 4) (w= 4) (w= 4) (w = 4) (w = 4) (w = 4) (w = 5)

binary 0.839 1.473 1.642 2.102 3.996 4.712 8.653 30.564
hec P NAF 0.755 1.325 1.48 1.901 3.588 4.203 7.758 27.359
g=2

wNAF 0.703 1.211 1.352 1.742 3.256 3.842 6.998 24.451
(w= 4) (w= 4) (w= 4) (w= 4) (w = 4) (w = 4) (w = 4) (w = 5)

binary 0.844 1.395 1.564 2.038 3.777 4.413 8.265 29.11

N NAF 0.746 1.247 1.391 1.778 3.357 4.002 7.329 25.816

wNAF 0.675 1.14 1.262 1.623 3.02 3.575 6.53 22.73
(w= 4) (w= 4) (w= 4) (w= 3) (w = 4) (w = 4) (w = 4) (w = 5)

binary 1.896 1.984 2.992 3.597 5.39 6.001 12.66 42.907
hec A NAF 1.64 1.744 2.538 3.085 4.82 5.39 11.24 38.326
g=3

wNAF 1.424 1.528 2.077 2.584 4.33 4.86 9.92 34.117
(w= 4) (w= 4) (w= 5) (w= 5) (w = 4) (w = 5) (w = 4) (w = 4)

Table 5. Timings withgmp, in msec (1 GHz AMD Athlon PC)

ec 160 192 256

A 5.468 8.305 15.354
P 4.306 5.845 9.16
J 3.775 5.4 8.878
J c 4.029 5.75 9.67
Jm 3.75 5.182 9.075

hec 160 192 256 320 512

A 9.292 12.082 18.873 29.5 72.09
g=2 P 12.15 14.961 23.442 32.212 81.586

N 11.349 13.278 20.4 28.93 74.389

g=3 A 19.799 22.452 40.39 59.691 129.541

Table 6. Timings withnuMONGO without lazy and
incomplete reduction, in msec (1 GHz AMD Athlon PC)

ec 160 192 256

A 3.074 5.385 12.619
P 1.227 2.041 4.541
J 1.109 1.829 4.069
J c 1.176 1.939 4.292
Jm 1.076 1.782 3.945

hec 160 192 256 320 512

A 2.234 2.708 5.788 11.112 41.691
g=2 P 2.02 2.352 4.894 9.415 33.23

N 1.831 2.113 4.494 8.731 30.653

g=3 A 4.469 5.184 6.52 13.54 47.372



1. Using a specialized software library one can get a speed-up by a factor of 3 to 4.5
for EC with respect to a traditional implementation. The speed-up for genus 2 and 3
curves is up to 8.

2. Lazy and incomplete reduction bring a speed-up from 3% to 10%.
3. For EC, the performance of the systemsJ andJm is almost identical. The reason

lies in the fact that withJm no modular reductions can be saved.
4. HEC are still slower than EC, but the gap has been narrowed.

(a) Affine coordinates for genus 2 HEC are significantly faster than those for EC.
Those for genus 3 are faster from 144 bits upwards.

(b) Comparing the best coordinate systems and scalar multiplication algorithms for
genus 2 HEC and EC, we see that:

(i) For 192 bit, resp. 256 bit groups, EC is only 14%, resp. 15%faster than
HEC. In fact, consider the best timings for EC and HEC with genus 2 with
192 bits:(1.623−1.395)/1.623= 0.1405≈ 14%.

(ii) For other group sizes the difference is often around 50%.
(c) Genus 3 curves are slower than genus 2 ones. Withgmp the difference is 80% to

100% for 160 to 512 bit groups, but usingnuMONGO the gap is often as small as
50%.

5. UsingnuMONGO we can successfully eliminate most of the overheads, thus proving
the soundness of our approach.
(a) In thegmp-based implementation, the timings with different coordinate systems

are closer to each other than withnuMONGO because of the big amount of time
lost in the overheads. For HEC we have the paradoxical resultthatP andN are
slower thanA , because they require more function calls for each group opera-
tion thanA . Therefore, with standard libraries the overheads can dominate the
running time.

(b) For affine coordinates the most expensive part of the operation is the field in-
version, hence the speed-up given bynuMONGO is not big, and is close to that in
Table 1 for the inversion alone.

6. If the field size for a given group is not close to a multiple of the machineword
sizeb, there is a relative drop in performance with respect to other groups where the
field size is almost a multiple ofb. For example, a 160-bit group can be given by a
genus 2 curve over a 80-bit field, but then 96-bit arithmetic must be used on a 32-bit
CPU. Similarly, with 224-bit groups, a genus 2 HEC is penalized by the 112-bit field
arithmetic. For 144-bit groups, genus 3 curves can exploit 48-bit arithmetic, which
has been made faster by suitable implementation tricks (an approach which did not
work for 80 and 112 bit fields), hence the gap to genus 2 is only 50%.

We conclude that the performance of hyperelliptic curves over prime fields is satisfac-
tory enough to be considered as a valid alternative to elliptic curves, especially when
large point groups are desired, and the bit length of the characteristic is close to (but
smaller than) a multiple of the machine word length.

In software implementations not only should we employ a custom software library, as
done for elliptic curves in [6], but for a further speed-up the use of lazy and incom-
plete reduction is recommended. Development of new explicit formulae should take into
account the possibility of delaying modular reductions.
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perelliptic Curves on Embedded µP. Special issue on Embedded Systems and Security of the
ACM Transactions in Embedded Computing Systems.

41. T. Wollinger.Engineering Aspects of Hyperelliptic Curves. Ph.D. Thesis. Dept. of Elec. Eng.
and Infor. Sci., Ruhr-University of Bochum. July 2004.


