
A Collision-Attack on AES

Combining Side Channel- and Differential-Attack

Kai Schramm, Gregor Leander, Patrick Felke, and Christof Paar

Horst Görtz Institute for IT Security
Ruhr-Universität Bochum, Germany

Universitätsstrasse 150
44780 Bochum, Germany

{schramm, cpaar}@crypto.rub.de,
{leander, felke}@itsc.rub.de,

WWW homepage: www.crypto.rub.de

Abstract. Recently a new class of collision attacks which was origi-
nally suggested by Hans Dobbertin has been introduced. These attacks
use side channel analysis to detect internal collisions and are generally
not restricted to a particular cryptographic algorithm. As an example, a
collision attack against DES was proposed which combines internal col-
lisions with side channel information leakage. It had not been obvious,
however, how this attack applies to non-Feistel ciphers with bijective
S-boxes such as the Advanced Encryption Standard (AES). This contri-
bution takes the same basic ideas and develops new optimized attacks
against AES. Our major finding is that the new combined analytical and
side channel approach reduces the attack effort compared to all other
known side channel attacks. We develop several versions and refinements
of the attack. First we show that key dependent collisions can be caused
in the output bytes of the mix column transformation in the first round.
By taking advantage of the birthday paradox, it is possible to cause a
collision in an output with as little as 20 measurements. If a SPA leak is
present from which collisions can be determined with certainty, then each
collision will reveal at least 8 bits of the secret key. Furthermore, in an
optimized attack, it is possible to cause collisions in all four output bytes
of the mix column transformation with an average of only 31 measure-
ments, which results in knowledge of all 32 key bits. Finally, if collisions
are caused in all four columns of the AES in parallel, it is possible to
determine the entire 128-bit key with only 40 measurements, which a is a
distinct improvement compared to DPA and other side channel attacks.

Keywords: AES, side channel attacks, internal collisions, birthday
paradox.

1 Introduction

An internal collision occurs, if a function within a cryptographic algorithm pro-
cesses different input arguments, but returns an equal output argument. A typi-
cal example of subfunctions where internal collisions may occur are non-injective



mappings, e.g., the S-boxes of DES, which map 6 to 4 bits. Moreover, partial
collisions may also appear at the output of injective and non-injective transfor-
mations, e.g. in 3 bytes (24 bits) of a 4 byte (32 bit) output value. In the case of
AES we will show that key dependent collisions can occur in one of the output
bytes of the mix column transformation. We show that these internal collisions
can be detected by power analysis techniques, therefore collision attacks should
be regarded as a sub-category of Simple Power Analysis (SPA). The term inter-
nal collision implies itself that the collision cannot be detected at the output of
the algorithm. In cooperation with Hans Dobbertin it was shown in [SWP03],
that cross-correlation of power traces (or possibly EM radiation traces) makes it
possible to detect internal collisions which provide information about the secret
key. Furthermore, in [Nov03, Cla04] it is even claimed that internal collisions
can be used to reverse-engineer substitution blocks of secret ciphers, such as un-
known implementations of the A3/A8 GSM algorithm. Implementations which
solely use countermeasures such as random wait states or dummy cycles will
most probably succumb to internal collision attacks, since cross-correlation of
power traces with variable time offsets will defeat these countermeasures. Also,
in [Wie03] it was shown that the software countermeasure known as the duplica-
tion method [GP99] may not succeed against internal collisions. Another advan-
tage of collision attacks over side channel attacks such as Simple Power Analysis
(SPA) and Differential Power Analysis (DPA) [KJJ99,KJJ98] is the fact that
an internal collision will usually affect a sequence of instructions whereas SPA
and DPA usually evaluate the power trace at a particular instance of time. For
example, in the case of DES a collision in the output of the non-linear function
fk in round one will affect almost the entire second round. Detecting collisions
by examining a sequence of instructions may be advantageous in terms of mea-
surement costs. On the other hand, it must be noted that DPA based attacks
against AES have the advantage of being known plaintext attacks whereas our
proposed collision attack is a chosen plaintext attack.

The rest of this publication is organized as follows: in Section 2 the collision
attack originally proposed in [SWP03] is applied against the AES. It is shown
that partial collisions can occur in a single output byte of the mix column trans-
formation and that these collisions depend on the secret key. In Section 3, an
optimization of this attack is presented. It uses precomputed tables of a total
size of 540 MB and on average yields 32 key bits with 31 encryptions (mea-
surements). If the attack is applied in parallel to all four columns, 128 key bits
can be determined with only 40 encryptions (measurements). In Section 4, we
give information about our PC simulated attacks and practical attacks against
a 8051 based microcontroller running AES in assembly. Finally, in Section 5, we
summarize our results and give some conclusions.



2 Collisions in AES

2.1 Collisions in the Mix Column Transformation

In this section, we first briefly review the mix column transformation in AES.
Then, we show how key dependent collisions can be caused in a single output
byte of the mix column transformation.
The mix column transformation is linear and bijective. It maps a four-byte col-
umn to a four-byte column. Its main purpose is diffusion. Throughout this paper
we follow the notation used in [DR02]. The mathematical background of the mix
column transformation is as follows: all computations take place in GF (28), rep-
resented by polynomials over GF (2) modulo m(x) = x8 + x4 + x3 + x + 1.
Columns are interpreted as polynomials over GF (28) and multiplied modulo
m(y) = y4 + 1. The input polynomial is multiplied with the fixed polynomial

c(y) = 03 · y3 + 01 · y2 + 01 · y + 02

where 01, 02 and 03 refer to the GF (28) elements 1, x and x+ 1, respectively. If
we refer to the input column as a(y) and to the output column as b(y), the mix
column transformation can be stated as

b(y) = a(y) × c(y) mod y4 + 1

This specific multiplication with the fixed polynomial c(y) can also be written
as a matrix multiplication









b00

b10

b20

b30









=









02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02









×









a00

a10

a20

a30









If we look at the first output byte b00, it is given by1

b00 = 02 · a00 + 03 · a10 + 01 · a20 + 01 · a30

If we focus on the first round, we can substitute a00, a10, a20 and a30 with S(p00+
k00), S(p11 + k11), S(p22 + k22) and S(p33 + k33)

2. The output byte b00 can then
be written as

b00 = 02 · S(p00 + k00) + 03 · S(p11 + k11) + 01 · S(p22 + k22) + 01 · S(p33 + k33)

The main idea of this attack is to find two different plaintext pairs with the
same output byte b00. We are only considering plaintexts with p00 = p11 = 0
and p22 = p33. If two plaintexts with p22 = p33 = δ and p′22 = p′33 = ǫ 6= δ result
in an equal output byte b00, the following equation is satisfied:

S(δ + k22) + S(δ + k33) = S(ǫ + k22) + S(ǫ + k33)

1 The symbol + denotes an addition modulo 2, i.e. the binary exclusive-or operation.
2 These are the diagonal elements of the plaintext and initial round key matrix due

to the prior shift row transformation.



Suppose that an adversary has the necessary experience and measurement in-
strumentation to detect this collision in b00 (or any other output byte of the
mix column transformation) with side channel analysis. First, he sets the two
plaintext bytes p22 and p33 to a random value δ = p22 = p33. As next, he en-
crypts the corresponding plaintext, measures the power trace and stores it on his
computer. He then keeps generating new random values ǫ = p′22 = p′33 unequal
to previously generated values of δ,ǫ, and so on. He encrypt each new plaintext,
measures and stores the corresponding power trace and cross-correlates it with
all previously stored power traces until he detects a collision in output byte b00.
Once a collision has been found the task is to deduce information about k22 and
k33.

2.2 An Analysis of the Collision Function

To simplify the notation, we denote k00 (or k11, k22, k33) simply by k0 (or
k1, k2, k3) and output byte b00 by b0. As described above, we are interested in
values (δ, ǫ), such that for an unknown key the following equation is satisfied:

S(k2 + δ) + S(k3 + δ) + S(k2 + ǫ) + S(k3 + ǫ) = 0

Set

L(a,b) = {(x, y) ∈ F28 × F28 | S(a + x) + S(b + x) + S(a + y) + S(b + y) = 0}

The interpretation of this set is twofold. Given a key pair (k2, k3), the set L(k2,k3)

is the set of all pairs (δ, ǫ), which will lead to a collision in b0. On the other hand,
due to symmetry, the set L(δ,ǫ) contains all possible key pairs, for which (δ, ǫ)
will lead to a collision in byte b0.
Note that if we measure a collision for δ and ǫ, the key (k2, k3) cannot be uniquely
determined. This is due to the following properties of the set L(a,b):

∀ x ∈ F28 (x, x) ∈ L(a,b)

(x, y) ∈ L(a,b) ⇒ (y, x) ∈ L(a,b)

(x, y), (y, c) ∈ L(a,b) ⇒ (x, c) ∈ L(a,b)

(x, y) ∈ L(a,b) ⇒ (x, y + a + b) ∈ L(a,b)

Equations (1) to (3) establish an equivalence relation on F28 .
More explicitly, if (k2, k3) ∈ L(δ,ǫ), it follows that

(k2 + δ + ǫ, k3) ∈ L(δ,ǫ) (1)

(k2, k3 + δ + ǫ) ∈ L(δ,ǫ) (2)

(k2 + δ + ǫ, k3 + δ + ǫ) ∈ L(δ,ǫ) (3)

(k3, k2) ∈ L(δ,ǫ) (4)

(k3 + δ + ǫ, k2) ∈ L(δ,ǫ) (5)

(k3, k2 + δ + ǫ) ∈ L(δ,ǫ) (6)

(k3 + δ + ǫ, k2 + δ + ǫ) ∈ L(δ,ǫ) (7)



and thus, we cannot hope to determine k2 and k3 completely given one collision.
Let (δ, ǫ) ∈ L(k2,k3) where we always assume that ǫ 6= δ. We have to discuss
several cases:

case 1: If k2 = k3 then L(k2,k3) = F28 × F28 , every choice of (δ, ǫ), i.e., every
measurement will lead to a collision.

case 2: If k2 6= k3 and if we furthermore assume that δ, ǫ /∈ {k2, k3} we obtain

0 = S(k2 + δ) + S(k3 + δ) + S(k2 + ǫ) + S(k3 + ǫ).

By expressing S(x) as L(x−1) and applying L−1 (where L is the affine trans-
formation of the S-box) we conclude

0 =
1

k2 + δ
+

1

k3 + δ
+

1

k2 + ǫ
+

1

k3 + ǫ

which finally yields
k2 + k3 = δ + ǫ.

case 3: If k2 = δ and k3 = ǫ or k3 = δ and k2 = ǫ, we also conclude that
k2 + k3 = δ + ǫ.

case 4: This case occurs if either k2 ∈ {δ, ǫ} or k3 ∈ {δ, ǫ}. If k2 ∈ {δ, ǫ}, we
compute

p(k3) =
k2
3

(δ + ǫ)2
+

k3

δ + ǫ
+

δǫ

(δ + ǫ)2
+ 1 = 0 (8)

This can be further simplified to

p(k3) =

(

k3 + δ

δ + ǫ

)2

+
k3 + δ

δ + ǫ
+ 1 = 0 (9)

which shows that

α =
k3 + δ

δ + ǫ
∈ F

∗

4\{1}

An analysis of the case k3 ∈ {δ, ǫ} yields a similar result. Combining both
cases, we deduce the following possibilities for (k2, k3)

k2 = δ and k3 = α(δ + ǫ) + δ (10)

k2 = ǫ and k3 = α(δ + ǫ) + δ (11)

k2 = δ and k3 = α(δ + ǫ) + ǫ (12)

k2 = ǫ and k3 = α(δ + ǫ) + ǫ (13)

k3 = δ and k2 = α(δ + ǫ) + δ (14)

k3 = ǫ and k2 = α(δ + ǫ) + δ (15)

k3 = δ and k2 = α(δ + ǫ) + ǫ (16)

k3 = ǫ and k2 = α(δ + ǫ) + ǫ (17)

where α ∈ F
∗

4\{1}. In the case of the AES S-box, α can be chosen as α(x) =
BC = x7 + x5 + x4 + x3 + x2. Note that solutions (10) to (16) correspond
exactly to the seven additional possibilities (1) to (7).



Let us assume we detect a collision for a particular (δ, ǫ) ∈ L(k2,k3). In order to
deduce information about k2 and k3 we have to decide which case we deal with.
We do not have to distinguish case two and case three, as the information we
deduce about k2 and k3 is the same in both cases.
To distinguish case one, two or three from case four we use the following idea.
Given a collision (δ, ǫ), we construct a new pair (δ′, ǫ′), which will not lead to a
collision if and only if (δ, ǫ) corresponds to case four. For this we need

Lemma 1. Let

L4 = {(k2, α(k2 + k3) + k2), (k2, α(k2 + k3) + k3),

(k3, α(k2 + k3) + k2), (k3, α(k2 + k3) + k3)

(α(k2 + k3) + k2, k2), (α(k2 + k3) + k3, k2),

(α(k2 + k3) + k2, k3), (α(k2 + k3) + k3, k3)}.

Given an element (δ, ǫ) ∈ L(k2,k3) the pair (δ′, ǫ′) with

δ′ ∈ F28\{δ, ǫ, α(δ + ǫ) + δ, α(δ + ǫ) + ǫ}

and

ǫ′ = δ′ + δ + ǫ

is in L(k2,k3) if and only if

k2 = k3

or

(δ, ǫ) /∈ L4

i.e. if and only if (δ, ǫ) does not correspond to case four.

Proof.

”⇐:”. If k2 = k3, the set L(k2,k3) = F28 × F28 , so in particular (δ′, ǫ′) ∈
L(k2,k3). If on the other hand (δ, ǫ) /∈ L4, we see that ∀δ′ ∈ F28 , the pair (δ′, δ′ +
δ + ǫ) ∈ L(k2,k3).

”⇒:”Assume k2 6= k3 and (δ, ǫ) ∈ L4. W.l.o.g. let δ = k2 and ǫ = α(k2 +
k3) + k2). If (δ′, ǫ′) ∈ L(k2,k3) we get

1

k2 + δ′
+

1

k2 + ǫ′
+

1

k3 + δ′
+

1

k3 + ǫ′
= 0

If we substitute k3 = α(δ + ǫ) + ǫ and ǫ′ = δ + ǫ + δ′, we conclude

1

δ + δ′
+

1

δ + ǫ′
+

1

α(δ + ǫ) + ǫ + δ′
+

1

α(δ + ǫ) + ǫ + ǫ′
= 0

and due to the choice of δ′ we finally get

δ + ǫ = α(δ + ǫ)

a contradiction. 2



Thus, with the pair (δ′, ǫ′) as constructed in the theorem, we can decide, if (δ, ǫ)
corresponds to case four or not.
Now we are in a situation where we have to distinguish case one from cases two
and three. If k2 6= k3 we see that

Dk2,k3
:= {a + b | (a, b) ∈ L(k2,k3)}

contains only the values k2 + k3 in cases two and three and α(k2 + k3) and
(α + 1)(k2 + k3) in case four. As a conclusion, we are able to exactly determine
in which case we are in order to determine information about (k2, k3). In case
one if k2 = k3 then Dk2,k3

= F28 . Thus if we are given a collision (δ, ǫ), we choose
new values δ′′ such that δ′′+ǫ /∈ {δ+ǫ, α(δ+ǫ), (α+1)(δ+ǫ)}. As argued above,
such a pair (δ′′, ǫ) will lead to a collision iff k1 = k2.

2.3 Probability Analysis of Collisions in a Single Output Byte

The probability that a collision occurs after n measurements is given by

P (n) = 1 −

n−1
∏

i=0

(

1 −
i

256

)

Table 1 lists various probabilities of a collision for a different number of mea-
surements.

n P (n)

1 0
10 0.1631
20 0.5332
30 0.8294
40 0.9599
50 0.9941

Table 1. Probability of a collision after n measurements

As a result, due to the birthday paradox an average of only 20 measurements
are required in order to detect a collision in a single output byte of the mix
column transformation.

3 Optimization of the Attack

In the last section, we described collisions which occur in a single output byte of
the mix column transformation. This attack can be optimized by equally varying
all four plaintext bytes which enter the mix column transformation while still
focussing on collisions in one of the four output bytes, i.e., we now try to cause



collisions with two pairs of plaintexts of the form δ = p00 = p10 = p20 = p30 and
ǫ = p′00 = p′10 = p′20 = p′30. Moreover, we still look for collisions in a single output
byte of the mix column transformation, however we observe all four outputs for
collisions.
For example, a collision occurs in the first output byte of the mix column trans-
formation whenever the following equation is fulfilled

C(δ, ǫ, k0, k1, k2, k3) = 02S(k0 + δ) + 03S(k1 + δ) + S(k2 + δ) + S(k3 + δ)

+ 02S(k0 + ǫ) + 03S(k1 + ǫ) + S(k2 + ǫ) + S(k3 + ǫ)

= 0

We denote, for a known pair (δ, ǫ), the set of all solutions by

Cδ,ǫ := {(k0, k1, k2, k3)|C(δ, ǫ, k0, k1, k2, k3) = 0}

Again, suppose that an adversary has the necessary equipment to detect a
collision in any of the output bytes b00, . . . , b30 with side channel analysis. In
order to cause collisions in the outputs of the first mix column transforma-
tion, he sets the four plaintext bytes p00, p11, p22 and p33 to a random value
δ = p00 = p11 = p22 = p33. As next, he encrypts the corresponding plaintext,
measures the power trace and stores it on his computer. He then keeps gen-
erating new random values ǫ = p′00 = p′11 = p′22 = p′33 unequal to previously
generated values of δ,ǫ, and so on. He encrypts each new plaintext, measures
and stores the corresponding power trace and cross-correlates it with all previ-
ously stored power traces until he detects a collision in the observed output byte
b00, . . . , b30. Once a collision has been found the task is to deduce information
about (k0, k1, k2, k3).
This equation can be solved by analysis or by using precomputed look-up tables
which contain the solutions (k0, k1, k2, k3) for particular (δ, ǫ). However, this
equation is much more complex than the one introduced in the previous section
and an analog description is not trivial. An alternative solution to this problem
is to create the sets Cδ,ǫ for every pair (δ, ǫ) by generating all possible values for
(k0, k1, k2, k3) and checking C(δ, ǫ, k0, k1, k2, k3) = 0 for all pairs (δ, ǫ).
In our simulations we found that the resulting sets are approximately equal in
size and on average contain 16, 776, 889 ≈ 224 keys, which corresponds to a
size of 67 megabytes (≈ 226 bytes) per set. Multiplying this with the number of
possible (δ, ǫ) sets, all sets together would require about 2, 000 gigabytes which is
only possible with major efforts and distributed storage available. Reducing the
amount of required disk space and still being able to compute all the necessary
information is the purpose of the next section.
Moreover, it must be pointed out that there exist certain keys (k0, k1, k2, k3)
for which no pair (δ, ǫ) will result in a collision. To our knowledge, there only
exist three classes of keys (x, x, x, x), (x, x, x, y) and (x, x, y, y) which will not
result in collisions for any pair (δ, ǫ). If the key (k0, k1, k2, k3) is an element of
the key class (x, x, x, x), i.e. all four key bytes are equal, no collisions will occur
in any of the four Mix Column output bytes for any pair (δ, ǫ) due to the overall



required bijectivity of the Mix Column transform. The probability that this case
occurs is P = 28/232 = 2−24. If the key (k0, k1, k2, k3) is an element of the key
class (x, x, y, x) or (x, x, x, y), no collision will occur in the Mix Column output
byte b0. If the key (k0, k1, k2, k3) is an element of the key class (x, y, x, x) or
(x, x, y, x), no collision will occur in the Mix Column output byte b1. If the key
(k0, k1, k2, k3) is an element of the key class (y, x, x, x) or (x, y, x, x), no collision
will occur in the Mix Column output byte b2. If the key (k0, k1, k2, k3) is an
element of the key class (x, x, x, x) or (y, x, x, x), no collision will occur in the
Mix Column output byte b3. The probability that any of these cases occurs is
P = 1

256 · 1
256 · 1

256 · 255
256 ≈ 2−24. Our simulations showed that these are the only

exceptional keys which will not result in collisions b0, b1, b2 or b3.

3.1 Reducing the Storage Requirements

First, note that the sets Cδ,ǫ also contain all the keys which will cause collisions
in the output bytes b1, b2 and b3. Since the entries in the mix column matrix
are bytewise rotated to the right in each row, the stored 32-bit keys in the sets
Cδ,ǫ must be cyclically shifted to the right by one, two or three bytes, as well, in
order to cause collisions in b1, b2 and b3.
Moreover, the amount of space can be further reduced by taking advantage of
two different observations. First, we find some dependencies among the elements
in a given set Cδ,ǫ and second we derive a relationship between two sets Cδ,ǫ and
Cδ′,ǫ′ .
The first approach uses an argument similar to an argument used in Section 2.
If for a fixed pair (δ, ǫ) a key (k0, k1, k2, k3) is in Cδ,ǫ, then the following elements
are also in Cδ,ǫ:

(k0, k1, k2, k3) ∈ Cδ,ǫ

⇒

(k0, k1, k3, k2) ∈ Cδ,ǫ (18)

(k0 + δ + ǫ, k1, k2, k3) ∈ Cδ,ǫ (19)

(k0, k1 + δ + ǫ, k2, k3) ∈ Cδ,ǫ (20)

(k0, k1, k2 + δ + ǫ, k3) ∈ Cδ,ǫ (21)

(k0, k1, k2, k3 + δ + ǫ) ∈ Cδ,ǫ (22)

Combining these changes, we find 32 different elements in Cδ,ǫ, given that k2 6= k3

and δ + ǫ 6= 0. The case δ + ǫ = 0 is à priori excluded. If k2 = k3, we still find
16 different elements in Cδ,ǫ. For the purpose of storing the sets Cδ,ǫ, this shows
that it is enough to save one out of 32 (resp. 16) elements in the Cδ,ǫ tables. This
results in a reduction of required disk space by a factor of (16+255∗32)/256≈ 32.
The second approach to save storage space is based on the following observation:
an element (k0, k1, k2, k3) is in Cδ,ǫ, if and only if (k0 + a, k1 + a, k2 + a, k3 + a) ∈
Cδ+a,ǫ+a. Thus, every set Cδ,ǫ can be easily computed from the set Cδ+ǫ,0. This
shows that it is enough to store for all δ0 ∈ F28 the set Cδ0,0.



Combining these two approaches reduces the required disk space by a factor of
approx. 128 ∗ 32 = 212, and hence we only need approximately 540 megabytes
which is no problem on today’s PC. As a matter of fact, the sets Cδ+ǫ,0 will fit
on a regular CD-ROM.

3.2 Probability Analysis of the Optimized Attack

We analyze the functions, which map a value δ to an output bi for a fixed key
(k0, k1, k2, k3) as independent random functions from F28 to F28 in rows one to
four. We want to determine the expected number of measurements until at least
one collision has occurred in every output byte b0, · · · , b3.
As stated in Section 2.3, the probability that after n measurements at least one
collision occurs in a single output byte b0, · · · , b3 is given by

P (n) = 1 −

n−1
∏

i=0

(

1 −
i

256

)

For n = 20, P (20) = 0.5332 ≥ 1/2, which means that on average 20 measure-
ments are required in order to detect a collision. In the optimized attack, we
want to determine the number of required measurements such that at least one
collision occurs in all the values b0, · · · , b3 with a probability greater than 1/2.
Therefore, we have to compute the minimum value n such that P (n) ≥ (1/2)1/4.
As a result, we obtain n = 31, thus after an average of 31 measurements collisions
will be detected in all four rows of the mix column transformation.
Every collision (δ, ǫ) will yield possible key candidates (k0, k1, k2, k3), which
can be looked up in the stored tables Cδ+ǫ,0. Our thorough simulations show
that every new collision will decrease the intersection of all key candidates by
approximately 8 bit. As a result, we are able to determine the entire 32-bit
key (k0, k1, k2, k3) after collisions have been detected in all four output bytes
b0, · · · , b3.
Furthermore, it is possible to apply the optimized attack in parallel against all
four columns. If we do not only consider the values b0, · · · , b3, but also the output
bytes b4, · · · , b15 of the remaining columns, we have to compute the minimal
value n such that P (n) ≥ (1/2)1/16. As a result, we get n = 40, thus after an
average of 40 measurements at least one collision will be detected in each of the
16 outputs b0, · · · , b15. These values are verified by our simulations. Thus, on
average we only need 40 measurements to determine the whole 128-bit key.

4 Simulation and Practical Attack

As a proof of concept, the AES collision attack was simulated on a Pentium 2.4
GHz PC and results were averaged over 10,000 random keys. As stated above,
whenever a collision occurs, all possible key candidates can be derived from
the sets Cδ+ǫ,0 and every further collision will provide an additional set of key
candidates. The intersection of all sets of key candidates must then contain the



real key. As shown in table 2, our simulations made clear that the number of key
candidates in the intersection decreases by approximately 8 bit with each new
collision.

no. of collisions in 0 1 2 3 4
b0, b1, b2 and b3

no. of key candidates 232 16,777,114 65492 256.6 1.065
Table 2. Average no. of key candidates after one or more collisions have occured.

In order to check the practicability of the attack, an 8051 based microcontroller
running an assembly implementation of AES without countermeasures was suc-
cessfully compromised using the proposed collision attack. In our experiments,
the microcontroller was running at a clock frequency of 12 MHz. At this fre-
quency it takes about 3.017 ms to encrypt a 128-bit plaintext with a 128-bit key3.
A host PC sends chosen plaintexts to the microcontroller and thus triggers new
encryptions. In order to measure the power consumption of the microcontroller
a small shunt resistance (Rs = 39Ω) was put in series between the ground pad
of the microcontroller and the ground connection of the power supply. Moreover,
we replaced the original voltage source of the microcontroller with a low-noise
voltage source to minimize noise superimposed by the source.
A digital oscilloscope was used to sample the voltage over the shunt resistance.
We focused on collisions S(k22)+S(k33) = S(δ+k22)+S(δ+k33) in output byte
b00 of the mix column transformation in the first round. Our main interest was
to find out which measurement costs (sampling frequency and no. of averagings
per encryption) are required to detect such a collision. Within the 8051 AES
implementation the following assembly instructions in round two are directly
affected by a collision in byte b00:

mov a, 30h ;(1) Read round 1 mix column output byte b_00

xrl a, 40h ;(1) X-Or b_00 with round 2 key byte k_00

movc a, @a+dptr ;(2) S-box lookup

mov 30h, a ;(1) Write back the S-box output value

The number of machine cycles per instruction is given in parentheses in the
remarks following the assembly instructions. Since the microcontroller is clocked
at 12 MHz which corresponds to a machine cycle length of 1 µs, this instruction
sequence lasts about 5 µs. We began our experiments at a sampling rate of 500
MHz and one single measurement per encyption, i.e. no averaging of power traces
was applied. In order to examine collisions, plaintext bytes p22 = p33 = δ were
varied from δ = 1...255 and compared with the reference trace at p22 = p33 = 0
by applying the least-squares method:

3 using on-the-fly key scheduling



R[δ] =

(

t0+N−1
∑

t=t0

(p[t, 0] − p[t, δ])
2

)−1

(23)

At a sampling rate of 500 MHz the number of sampling points N is 2500. Figure 1
shows the deviation R[δ] of power traces with δ = 1...255 from the reference trace
with δ = 0. Our AES implementation used the key bytes k22 = 21 and k33 = 60,
therefore we expected a distinct peak at δ = k22⊕k33 = 41 as shown in Figure 1.
It is interesting to note that no averaging of power traces was applied, therefore,
it would be possible to break the entire 128-bit key with only 40 measurements4.

1 32 41 64 96 128 160 192 224 255
0

1

2

3

4

5

6

7

8

9
x 10

−3

delta

R[
de

lta
]

Fig. 1. Deviation of power traces with δ = 1...255 from the reference trace with δ = 0.

We also investigated other signal analysis methods such as computation of the
normalized Pearson correlation factor [MS00] and continous wavelet analysis
in order to detect internal collisions. As a result, we concluded that compu-
tation of the Pearson correlation factor does only seem to be an approriate
method when focussing on very particular instances of time within a machine
cycle, e.g. when bits on the data or address bus are switched. We achieved very
good collision detection using wavelet analysis, however, when compared with
the least-squares method, its computational costs are much higher. We will fur-
ther introduce wavelet analysis in the field of simple power analysis and related
reverse-engineering in the future, since it is far beyond the scope of this paper.

4 provided that the attacker knows the instances of time when mix column outputs
are processed in round two



5 Results and Conclusions

We proposed two new variants of the collision attack which use side channel
analysis to detect internal collisions in AES. Typical methods to recognize inter-
nal collisions are computation of square differences, cross-correlation of power
consumption curves or application of more advanced methods used in signal
analysis theory, such as wavelet analysis. We showed that partial collisions can
be detected in the output bytes of the mix column transformation in the first
round of AES and each collision typically provides 8 bits of the secret key.
When compared with Differential Power Analysis (DPA) our proposed collision
attack has the advantage of requiring less power trace measurements. However,
DPA has the advantage of being a known plaintext attack whereas the colli-
sion attack is a chosen plaintext attack. A DPA against AES which yields the
correct key hypothesis typically requires between 100 and 1,000 measurements
depending on the presence of superimposed noise. Our collision attack on the
other hand takes advantage of the birthday paradox. As a result, we are able to
determine the entire 128-bit key with only 40 measurements.

6 Acknowledgements

We would like to thank Markus Bockes for pointing out that there exist certain
keys which will not result in a collision in a particular Mix Column single output
byte when the optimzed collision attack is applied.

References

[Cla04] C. Clavier. Side Channel Analysis for Reverse Engineering (SCARE).
http://eprint.iacr.org/2004/049/, 2004. Cryptology ePrint Archive: Report
2004/049.

[DR02] J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag, Berlin,
Germany, 2002.

[GP99] L. Goubin and J. Patarin. DES and differential power analysis: the dupli-
cation method. In Ç. K. Koç and C. Paar, editors, Cryptographic Hardware

and Embedded Systems — CHES 1999, volume LNCS 1717, pages 158–172.
Springer-Verlag, 1999.

[KJJ98] P. Kocher, J. Jaffe, and B. Jun. Introduction to Differential Power Analy-
sis and Related Attacks. http://www.cryptography.com/dpa/technical, 1998.
Manuscript, Cryptography Research, Inc.

[KJJ99] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Advances in

Cryptology — CRYPTO ’99, volume LNCS 1666, pages 388–397. Springer-
Verlag, 1999.

[MS00] R. Mayer-Sommer. Smartly Analyzing the Simplicity and the Power of Simple
Power Analysis on Smart Cards. In Ç. K. Koç and C. Paar, editors, Crypto-

graphic Hardware and Embedded Systems — CHES 2000, volume LNCS 1965,
pages 78 – 92. Springer-Verlag, 2000.

[Nov03] R. Novak. Side-Channel Attack on Substitution Blocks. In ACNS 2003,
volume LNCS 2846, pages 307–318. Springer-Verlag, 2003.



[SWP03] K. Schramm, T. Wollinger, and C. Paar. A New Class of Collision Attacks
and its Application to DES. In Thomas Johansson, editor, Fast Software

Encryption — FSE ’03, volume LNCS 2887, pages 206 – 222. Springer-Verlag,
February 2003.

[Wie03] A. Wiemers. Partial Collision Search by Side Channel Analysis. Presentation
at the Workshop: Smartcards and Side Channel Attacks, January 2003. Horst
Goertz Institute, Bochum, Germany.


