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Abstract. Previously proposed differential fault analysis (DFA) tech-
niques against iterated block ciphers mostly exploit computational er-
rors in the last few rounds of the cipher to extract the secret key. In this
paper we describe a DFA attack that exploits computational errors in
early rounds of a Feistel cipher. The principle of the attack is to force
collisions by inducing faults in intermediate results of the cipher. We put
this attack into practice against DES implemented on a smart card and
extracted the full round key of the first round within a few hours by
inducing one bit errors in the second and third round, respectively.

1 Introduction

In 1997 Biham and Shamir [4] proposed the so called Differential Fault Analysis
(DFA) and applied it to secret key cryptosystems such as DES. Their attack
exploits computational errors induced during the last few rounds of DES to
extract the secret key of the last round. At least since the results of Anderson
and Skorobogatov [2] the application of this attack to tamper resistant devices
such as smart cards is a real threat: By exposing a chip to a laser beam or even
the focused light from a flash lamp it is possible to induce the kinds of errors that
are needed by the attack to succeed. Therefore in addition to possibly existing
hardware countermeasures it is advisable to implement also adequate software
countermeasures like verifying the correctness of an encryption by a subsequent
encryption or decryption. To optimize performance, one might think of reducing
these countermeasures to the critical last few rounds or, in case of Triple-DES,
for example, to the last DES operation. This, however, can lead to a lack of
security, as we will show in this paper. We will present a DFA attack against
early rounds of a Feistel cipher and show that it is not sufficient to protect
only the last few rounds against inducing computational errors. Since the attack
targets at the first few rounds of the cipher (more exactly rounds 2,3,...) it is
advisable to protect also these rounds.

The attack requires a chosen plaintext situation. The attacker must be able to
choose various plaintexts and to encrypt them with the secret key that he wants
to compromise. Associated with smart cards this might be a realistic scenario.
By inducing a fault during the encryption of a plaintext P the attacker tries



to get a collision with another plaintext P̃ , meaning that the faulty ciphertext
belonging to P equals the correct ciphertext belonging to P̃ . This is in some
sense a reversion of the original DFA attack of Biham and Shamir [4]. The
problem, however, is to find the pairs of colliding plaintexts in an efficient way.
To solve this problem we make use of the concept of characteristics introduced
by Biham and Shamir [3]. Once having found a pair of colliding plaintexts one
can apply methods of differential cryptanalysis to gain some information about
the first round key. Other pairs will provide further information until at last the
full round key of the first round will be recovered.

In the following we will first provide some notations and definitions and then
describe in detail the principle of the attack against a Feistel cipher. Finally we
will describe the application of the attack on DES and Triple-DES, respectively.

2 Notations and Definitions

Definition 1. A Feistel cipher of block length 2n with r rounds (n, r ∈ IN) is
a function FK : GF(2)2n −→ GF(2)2n with a key K = (K1, . . . ,Kr) consisting
of r round keys Ki ∈ GF(2)m of length m ∈ IN, which maps a plaintext P =
(PL, PR) ∈ GF(2)n × GF(2)n to the corresponding ciphertext C = (CL, CR) =
FK(P ) in the following way:

1. L0 := PL, R0 := PR

2. For i = 1, . . . , r
(Li, Ri) := (Ri−1, Li−1 ⊕ f(Ri−1,Ki)),
where the round function f : GF(2)n ×GF(2)m −→ GF(2)n is any mapping
and ⊕ is the ordinary componentwise addition over GF(2).

3. CL := Rr, C
R := Lr

Traditionally, the round keys (K1,K2, . . . ,Kr) are computed by a key sched-
ule algorithm on input a master key, but in Definition 1 also the case of indepen-
dent round keys is included. Figure 1 shows the Feistel scheme as a flowchart.

The attack described in Sect. 3 deals with inducing errors during the en-
cryption of plaintexts. Hence we introduce a notation for the faulty encryption
of a plaintext P . Let FK be a Feistel cipher of block length 2n with r rounds

and let k ∈ {1, . . . , r}, ε ∈ GF(2)n. Then F
(k,ε)
K : GF(2)2n → GF(2)2n denotes

the mapping which maps P to F
(k,ε)
K (P ) by applying the encryption algorithm

FK to P , whereby the output Yk of the round function f in the k-th round is
replaced with Yk ⊕ ε.

In the following we will have to deal with pairs of plaintexts, ciphertexts
and intermediate results and with their differences with regard to ⊕, the so
called XOR-differences. So for a pair of plaintexts (P, P̃ ) and a Feistel cipher
FK we denote the XOR-differences occurring during the calculation of FK(P )

and FK(P̃ ) in the following way:

∆P := P ⊕ P̃ plaintext difference
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Fig. 1. Feistel scheme
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Fig. 2. A k-round ε-characteristic

∆C := C ⊕ C̃ ciphertext difference

∆Li := Li ⊕ L̃i,

∆Ri := Ri ⊕ R̃i differences of the intermediate results in the i-th round

Besides we denote the inputs of the round function f in the i-th round by
Xi, X̃i, respectively, and its outputs by Yi, Ỹi, respectively (see Fig. 1). The
corresponding XOR-differences are denoted the same way as above:

∆Xi := Xi ⊕ X̃i input difference of the round function f in the i-th round

∆Yi := Yi ⊕ Ỹi output difference of the round function f in the i-th round

In this paper we will be mainly interested in differences between intermediate
results occurring during the faulty encryption of P and the correct encryption

of P̃ , more exactly during the calculation of F
(k,ε)
K (P ) and FK(P̃ ). For the sake

of simplicity we denote also these differences with the above defined symbols.
Though the exact meaning of the symbols should always be clear from the con-
text.

Definition 2. A k-round characteristic with respect to a Feistel cipher of block
length 2n with r rounds (k, n, r ∈ IN, k ≤ r) is a tuple Ω = (Ω0, Ω1, . . . , Ωk+1),
where the Ωi = (ΩL

i , ΩR
i ) ∈ GF(2)n × GF(2)n satisfy the following conditions:

i) ΩR
1 = ΩR

0 ,
ii) ΩR

2 = ΩL
0 ⊕ ΩL

1 ,
iii) ΩL

k+1 = ΩR
k ,

iv) ΩR
i+1 = ΩL

i ⊕ ΩR
i−1 ∀ i ∈ {2, 3, . . . , k}.



For ε ∈ GF(2)n a k-round characteristic Ω is called a k-round ε-characteristic if
(ΩL

k+1, Ω
R
k+1) = (ε, 0).

Definition 3. A right pair with respect to a k-round characteristic Ω =
(Ω0, Ω1, . . . , Ωk+1) and with respect to a key K of the associated Feistel cipher

FK is a pair of plaintexts (P, P̃ ) satisfying the following conditions:

i) ∆P = Ω0,
ii) (∆Yi,∆Xi) = (ΩL

i , ΩR
i ) ∀ i ∈ {1, . . . , k},

where ∆Yi,∆Xi are the above defined differences at the encryption by FK .

Definition 4. The probability pΩ,K of a characteristic Ω = (Ω0, Ω1, . . . , Ωk+1)
with respect to a key K of the associated Feistel cipher is the probability that a
random pair of plaintexts (P, P̃ ) satisfying ∆P = Ω0 is a right pair with respect
to Ω and K.

3 Description of the Attack against a Feistel Cipher

Let FK be a Feistel cipher of block length 2n with r rounds, where K is the secret
key that we would like to compromise. To carry out the attack the following
preconditions must be fulfilled:

i) Chosen plaintext scenario: It is possible to encrypt arbitrarily chosen plain-
texts with the secret key and to check the corresponding ciphertexts for
pairwise equality. In particular, if the computed ciphertexts are returned to
the attacker as result, this check is trivially possible.

ii) Fault model: It is possible to induce errors during computation of FK(P ),
more exactly to replace the output Yk of the round function f in the k-th
round (k ≥ 2) with Yk⊕ε, where ε ∈ E is a not necessarily known element of
the a priori chosen subset E ⊆ GF(2)n. In the notation of Sect. 2 this means

that it is possible to ‘compute’ F
(k,ε)
K (P ) for some ε ∈ E. Considering E as

a probability space we denote by prob(ε) the probability that the induced
error is ε.

By executing the following algorithm we will now try to get a pair of plain-
texts (P, P̃ ), where for the encryption by FK the difference ∆Y1 at the output of
the round function f in the first round is known. In the following we will call a
triple (P, P̃ ,∆Y1) consisting of a pair of plaintexts (P, P̃ ) and the corresponding
output difference ∆Y1 of the round function f ‘a useful pair’.

Algorithm 1

INPUT · error round k ≥ 2

· error set E ⊆ GF(2)n

· index set Ê ⊆ E

· for each ε ∈ Ê a (k − 1)-round ε-characteristic
Ωε = (Ωε,0, Ωε,1, . . . , Ωε,k)



1. Choose a random plaintext P ∈ GF (2)2n and ‘compute’ F
(k,ε)
K (P ) for some

random ε ∈ E;
2. For every ε̂ ∈ Ê

(a) Set P̃ := P ⊕ Ωε̂,0 and compute FK(P̃ );

(b) If FK(P̃ ) = F
(k,ε)
K (P ) then output the triple (P, P̃ ,ΩL

ε̂,1);

The following proposition shows why we may expect that Algorithm 1 will
output useful pairs after a certain number of runs.

Proposition 1. The probability that one pass of Algorithm 1 outputs at least one
useful pair is at least

∑
ε∈Ê

prob(ε)pΩε,K , where the pΩε,K are the probabilities
of the characteristics Ωε with respect to the secret key K.
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Fig. 3. (P, P̃ ) is a right pair with respect to Ωε and K

Proof. Let P ∈ GF(2)2n and ε ∈ GF(2)n be the plaintext and the induced fault,
respectively, from step 1 of Algorithm 1. Assume that ε ∈ Ê. So during one pass
of Algorithm 1, in one of the steps 2a the plaintext P̃ ∈ GF(2)2n is defined,

such that ∆P = Ωε,0. With probability pΩε,K the pair (P, P̃ ) is a right pair
with respect to Ωε and the secret key K. If this is the case (see Fig. 3), then
in particular ∆Y1 = ΩL

ε,1, ∆Lk−1 = ε and ∆Rk−1 = 0. In the k-th round of
the encryption of P the output Yk of the round function f is replaced by Y ′

k :=
Yk ⊕ ε. At the end of the k-th round we have ∆Lk = ∆Rk−1 = 0 and ∆Rk =



∆Lk−1⊕∆Yk ⊕ε = ε⊕ε = 0, since ∆Yk = f(Rk−1,K)⊕f(R̃k−1,K) = 0 due to

∆Rk−1 = 0. This implies that F
(k,ε)
K (P )⊕FK(P̃ ) = 0 and the triple (P, P̃ ,ΩL

ε,1),

which is a useful pair due to ∆Y1 = ΩL
ε,1, is output by Algorithm 1. Since in step 1

the error ε ∈ Ê occurs with probability prob(ε), the probability that one pass of
Algorithm 1 outputs at least one useful pair is at least

∑
ε∈Ê

prob(ε)pΩε,K . ⊓⊔

To get a high output rate of Algorithm 1 the probabilities of the used char-
acteristics should be as high as possible. The existence of a (k − 1)-round
ε-characteristic Ω = (Ω0, Ω1, . . . , Ωk) of probability pΩ,K > 0 for any ε ∈
GF(2)n is ensured by the following consideration: Due to the invertibility of

the Feistel structure there is a pair of plaintexts (P, P̃ ) such that Lk−1 = ε

and Rk−1 = L̃k−1 = R̃k−1 = 0 (for the encryption by FK). For the choice
Ω0 := ∆P , Ωk := (ε, 0) and Ωi := (∆Yi,∆Xi), i ∈ {1, . . . , k − 1}, the tuple

Ω = (Ω0, Ω1, . . . , Ωk) is a (k − 1)-round ε-characteristic and (P, P̃ ) is a right
pair with respect to Ω and K.

Although the existence of appropriate characteristics is ensured, it is a prob-
lem to find some without knowing the key K. However, depending on the round
function of the considered Feistel cipher, it may be possible to define a probability
of characteristics that is independent of the key K and still a good approxima-
tion for the probability of Definition 4. In case of DES, for example, we can use
a definition of Biham and Shamir [3] that helps us to calculate characteristics of
high probability.

Another problem we have to take into consideration is that Algorithm 1
might output pairs which are erroneously regarded as useful pairs. We denote
by perr the probability that a triple (P, P̃ ,ΩL

ε,1) output by Algorithm 1 is not
a useful pair. The following proposition says that we don’t have to worry if the
induced error occurs in the second round of the cipher.

Proposition 2. Let (P, P̃ ,ΩL
ε̂,1) be a triple output by Algorithm 1 with error

round k = 2. Then (P, P̃ ,ΩL
ε̂,1) is a useful pair.

Proof. Let ε be the error occurred in step 1 of Algorithm 1. Since (P, P̃ ,ΩL
ε̂,1)

was output by Algorithm 1, we have ∆C = F
(2,ε)
K (P ) ⊕ FK(P̃ ) = 0. Due to the

structure of the Feistel cipher this implies ∆R1 = 0. By the choice of P̃ we have
∆PL = PL⊕P̃L = ΩL

ε̂,0 = ΩR
ε̂,2⊕ΩL

ε̂,1 = ΩL
ε̂,1, where Ωε̂ = (Ωε̂,0, Ωε̂,1, Ωε̂,2) is the

characteristic used by Algorithm 1 to define P̃ . Thus the difference at the output
of the round function f in the first round is ∆Y1 = ∆R1⊕∆PL = 0⊕ΩL

ε̂,1 = ΩL
ε̂,1

and (P, P̃ ,ΩL
ε̂,1) is a useful pair. ⊓⊔

Once having found useful pairs we can exploit them by means of differential
cryptanalysis to get some information about the round key K1 of the first round.
So let (P, P̃ ,∆Y1) be a useful pair. Then we test for each candidate K̂1 ∈ GF(2)m

of the round key K1 if it satisfies

f(PR, K̂1) ⊕ f(P̃R, K̂1) = ∆Y1. (1)



If this is the case we increment a counter for this candidate. After having pro-
cessed several useful pairs, the candidate with the highest counter is taken to be
the value of K1. The success of this method depends on the signal to noise ratio
S/N which is the expected number of times the right key is counted over the
expected number of times a randomly picked wrong key is counted. For S/N > 1
the method succeeds and the number of needed pairs decreases with increasing
S/N . If S/N = 1 the method does not succeed.

In our case the pairs to be analysed are output by Algorithm 1. For every
useful pair the right key is counted and in addition several wrong keys, which
we suppose to be uniformly distributed. With probability perr an output pair is
not a useful pair. In this case there are counted several keys, which we suppose
again to be uniformly distributed. This time it is not guaranteed that the right
key is counted but it can happen. Let γ be the average number of counted keys
per pair and Q be the number of key candidates. Then the signal to noise ratio
is

S/N =
(1 − perr) + perr · γ/Q

γ/Q
=

(1 − perr) · Q

γ
+ perr. (2)

In the worst case we have perr = 1 and no output pair is a useful pair. The signal
to noise ratio is then S/N = 1 and the attack fails. If however perr is small, then
S/N ≈ Q/γ.

As a consequence of these considerations a characteristic Ω=(Ω0, Ω1, . . . ,Ωk)
used in Algorithm 1 should satisfy the condition ΩR

0 6= 0. Assume this is not
the case. Then every useful pair output by Algorithm 1 using Ω has the form
(P, P̃ , 0), where ∆PR = ΩR

0 = 0. Thus (1) is obviously satisfied for all key
candidates K̂1 ∈ GF(2)m and Ω does not contribute to compromise the key.

Before discussing the application of the attack on DES we give a slightly
generalised version of Algorithm 1 that provides higher flexibility and thus better
possibilities of optimizing the attack. In Algorithm 1 for each possible error
ε ∈ E there is used at most one characteristic. According to Proposition 1 the
probability of this characteristic should be as high as possible to ensure a high
output rate of useful pairs. In general, however, for some errors ε ∈ E there
might be only ε-characteristics of relatively low probability, whereas for some
other errors there are even several ε-characteristics of relatively high probability.
Algorithm 2 takes this situation into account. At least in the case of DES this
generalised algorithm yields slightly better results than Algorithm 1 as we will
see in Sect. 4.

Algorithm 2

INPUT · error round k ≥ 2

· error set E ⊆ GF(2)n

· for each ε ∈ E a set Cε of (k − 1)-round ε-characteristics

1. Choose a random plaintext P ∈ GF (2)2n and ‘compute’ F
(k,ε)
K (P ) for some

random ε ∈ E;



2. For every ε̂ ∈ E, for every Ω = (Ω0, Ω1, . . . , Ωk) ∈ Cε̂

(a) Set P̃ := P ⊕ Ω0 and compute FK(P̃ );

(b) If FK(P̃ ) = F
(k,ε)
K (P ) then output the triple (P, P̃ ,ΩL

1 );

A lower bound for the output probability of Algorithm 2 is given by Propo-
sition 3. The proof is in principle the same as for Proposition 1.

Proposition 3. The probability that one pass of Algorithm 2 outputs at least
one useful pair is at least

∑
ε∈E

∑
Ω∈Cε

prob(ε)pΩ,K , where the pΩ,K are the
probabilities of the characteristics Ω with respect to the secret key K.

Again we can be sure that an output triple is a useful pair, if the error is
induced in the second round.

Proposition 4. Let (P, P̃ ,ΩL
1 ) be a triple output by Algorithm 2 with error

round k = 2. Then (P, P̃ ,ΩL
1 ) is a useful pair.

The proof is exactly the same as for Proposition 2.

4 Application of the Attack on (Triple-)DES

Now we will show how the attack described above can be applied to the Data
Encryption Standard (DES) [7]. Here we refer to ‘DES’ as a Feistel cipher of
block length 64 with 16 rounds that has additional bit permutations at the
beginning and at the end. Throughout this section we ignore the existence of
these permutations. We can do this by the following convention. Whenever we use
the word ‘plaintext’ (‘ciphertext’) we imagine that this is the already permuted
actual plaintext (ciphertext). The round function f consists of the E-expansion,
the addition of the 48 bit round key, the S-box transformations and the P-
permutation. For details refer to [7].

From the principle of the attack it is clear that Triple-DES can be attacked
in exactly the same way as DES, meaning that the determination of the first
round key is equal for both ciphers. Thus, in the following, whenever we write
‘DES’ one may also read ‘Triple-DES’ instead.

To carry out Algorithm 1 and Algorithm 2, respectively, we first have to
choose an appropriate error set E ⊆ GF(2)n. Generally the choice depends on the
implementation of DES, on the hardware platform and on the equipment used
for inducing the faults. The more information an attacker has about the kind of
faults he is able to induce, the more selective he can choose the set E. For the be-
ginning we choose E to be the set Eonebit := {ε ∈ GF(2)32; hammingweight(ε) =
1} of all one bit faults. So our goal is to induce a one bit error in the output
of the round function f . This could be done, for example, by inducing a bit flip
in the register containing this intermediate result [2]. But this is not the only
way to reach the goal. Another possibility is to disturb the program flow dur-
ing the calculation of the P-permutation, the S-box transformations or even the
E-expansion or the addition of the round key [1]. Assume, for example, that at



one point of the DES calculation we are able to prevent the correct reading of
an S-box table entry, so that a random value instead of the correct 4 bit result is
returned. Then with probability 1/4 there will be a one bit error in the output of
the S-box transformations and thus in the output of the round function f . Such
a ‘random’ S-box output can also be forced indirectly, for example by inducing
an appropriate error during the E-expansion or the addition of the round key.

Once having chosen the set E, we have to choose the error round number
k ≥ 2 and to calculate (k−1)-round ε-characteristics Ω of high probability pΩ,K .
Unfortunately we cannot calculate pΩ,K of a given characteristic Ω because we
do not know the secret key K. Though for the case of DES, Biham and Shamir
[3] defined a probability pΩ of a characteristic Ω that is independent of the secret
key K and a good approximation for the probability pΩ,K of Definition 4.

Definition 5. Let Ω = (Ω0, Ω1, . . . , Ωk+1) be a k-round characteristic with re-
spect to DES.

The probability p
(i)
Ω of round i of Ω is the fraction

p
(i)
Ω := 2−32·48 · |{(x, y) ∈ GF(2)32 × GF(2)48 ; f(x, y) ⊕ f(x ⊕ ΩR

i , y) = ΩL
i }|

of all input pairs x, x ⊕ ΩR
i of f , ‘encrypted’ by all round keys y, for which the

output difference equals ΩL
i .

The probability pΩ of the characteristic Ω is the product

pΩ :=
k∏

i=1

p
(i)
Ω

of the probabilities of all rounds.

With this definition it is possible to calculate the best (k − 1)-round ε-char-
acteristics Ωε = (Ωε,0, Ωε,1, . . . , Ωε,k) for all ε ∈ E. Here ‘the best’ means those
with the highest probability pΩε

. For the calculation we implemented the search
algorithm of Matsui [6], slightly modified due to the side condition for Ωε. The
results of the calculation for the one bit fault model E = Eonebit are listed in
the appendix, where tables 4 to 6 show the best (k − 1)-round ε-characteristics
for all ε ∈ Eonebit and for k = 2, 3, 4. Note that all these ε-characteristics satisfy
ΩR

ε,1 6= 0 and thus can be used to recover the first round key. A brief overview
of the corresponding probabilities is given in Table 1.

We implemented Algorithm 1 and Algorithm 2 on a PC and simulated the
attack against DES for the following fault model. It is possible to flip a single
random bit (uniformly distributed) of the output of the round function f in the
k-th round. That means that the error set E is the set Eonebit of the 32 possible
one bit faults and prob(ε) = 1/32 for all ε ∈ E. For the analysis of the found
pairs we use a counting scheme that counts over 6 bit subkeys (corresponding to
the 6 bit S-box inputs) of the first round key. Let us assume that the probability
perr of an output triple being not a useful pair is negligible. For error round k = 2



Table 1. Probabilities of the best (k − 1)-round ε-characteristics for ε ∈ Eonebit

k − 1
1

32

∑

ε∈Eonebit

pΩε
max

ε∈Eonebit

pΩε
min

ε∈Eonebit

pΩε

1 0.111 0.250 0.016

2 1.78 · 10−3 7.32 · 10−3 3.13 · 10−6

3 1.38 · 10−6 4.89 · 10−6 1.43 · 10−9

this is guaranteed by Proposition 2 and Proposition 4, respectively. According
to (2) for the signal to noise ratio of this counting scheme we have

S/N ≈
Q

γ
≥

26

16
= 4,

where the upper bound 16 for the counted keys per pair is given by the difference
distribution tables of DES [3]. The ratio S/N is high enough for the attack to
succeed with a reasonable amount of useful pairs. Table 2 shows some results
of the simulation using Algorithm 1 for the error rounds k = 2, 3, 4. For various
numbers of runs of Algorithm 1 and various numbers |Ê| of used characteristics
it is stated how many faulty and how many correct encryptions were calculated,
how many useful pairs were found and how many bits of information about
the key were extracted. The numbers of found pairs and key bits are averaged
over the number of performed simulations, which can be found in the last col-
umn. Note that for each single simulation the secret key to be compromised was
randomly chosen. Finally Table 2 shows for each case the expected minimum
number of useful pairs, calculated using Proposition 1. The characteristics used
for the simulation were chosen in the following way. Assume the number of used
characteristics given by Table 2 being N . Then the used characteristics are the
N most probable characteristics of the appropriate table in the appendix.

Table 3 shows some results of the simulation using Algorithm 2. The used
characteristics were chosen in the following way. For errors ε ∈ E, for which
there exist ε-characteristics Ωε of relatively high probability, we chose vari-
ous ε-characteristics, whereas for other errors ε ∈ E we did not choose any
ε-characteristic due to the low probabilities. Furthermore the choice was made
taking care that the number of different values of ΩR

ε,1 is as high as possible. The
reason for that is a better distribution of the wrong subkey values counted during
the differential analysis, resulting in a higher signal to noise ratio of the counting
scheme. The results in Table 3 show that the number of induced errors required
for extracting a certain amount of key bits is lower than for Algorithm 1. This
gain, however, is diminished by the higher amount of correct DES-calculations
resulting from the higher number of used characteristics. Apart from this one can
see that for error rounds k = 3, 4 the total amount of DES-calculations required
for extracting many key bits is slightly less than for using Algorithm 1.



Table 2. Simulation on PC (Algorithm 1, fault model E = Eonebit)

k faulty + correct charac- found expected extracted simu-

DES-calculations teristics pairs pairs key bits lations

2 100 + 1600 16 9.16 9.18 17.46 10000
500 + 8000 16 45.95 45.90 41.03 10000
500 + 16000 32 55.43 55.53 46.74 10000

1000 + 32000 32 110.92 111.05 47.94 10000
1500 + 48000 32 166.46 166.58 48.00 10000

3 5 · 103 + 4.0 · 104 8 6.20 6.26 17.65 1000
1 · 104 + 1.6 · 105 16 17.67 17.64 36.36 1000
5 · 104 + 8.0 · 105 16 88.88 88.19 45.59 1000
5 · 105 + 1.6 · 107 32 888.11 889.24 47.86 1000
1 · 106 + 3.2 · 107 32 1779.18 1778.48 48.00 1000

4 5 · 106 + 7.0 · 107 14 6.25 6.57 34.52 100
1 · 107 + 1.4 · 108 14 13.40 13.15 42.42 100
5 · 107 + 1.0 · 109 20 67.25 68.55 47.30 20

Table 3. Simulation on PC (Algorithm 2, fault model E = Eonebit)

k faulty + correct charac- found expected extracted simu-

DES-calculations teristics pairs pairs key bits lations

2 10 + 990 99 3.96 3.96 10.55 10000
200 + 12800 64 58.62 58.59 45.84 10000
400 + 40000 100 94.21 94.17 48.00 10000

3 100 + 28100 281 2.09 2.17 10.23 1000
500 + 140500 281 11.07 10.87 31.25 1000

1000 + 160000 160 12.67 12.62 36.18 1000
2000 + 278000 139 15.67 15.70 41.34 1000
5000 + 555000 111 26.42 26.57 46.83 1000

10000 + 1110000 111 53.42 53.14 47.95 1000

4 1 · 105 + 1.62 · 107 162 1.56 1.35 13.82 100
5 · 105 + 8.10 · 107 162 6.52 6.72 36.21 100
1 · 106 + 1.62 · 108 162 13.96 13.44 45.78 100
5 · 106 + 8.10 · 108 162 66.68 67.20 48.00 100

Now let us consider another fault model. Assume that during the DES calcu-
lation we are able to disturb the access to the S-box tables in a way that instead of
the correct S-box entry a random 4 bit value is read. Hence we consider the error
sets Ei := {π(x) ∈ GF(2)32;x = (x1, . . . , x8) ∈ GF(2)4·8∧xj = 0 for j 6= i} of all
the errors that arise from a random fault in the output of S-box Si (i = 1, . . . , 8),
where π denotes the P-Permutation of the DES round function. The calculation
of the best ε-characteristics for all ε ∈

⋃8
i=1 Ei showed that the probabilities for

ε ∈
⋃8

i=1 Ei\Eonebit are much smaller than for ε ∈ Eonebit. Hence it is reasonable
also for this fault model to use ε-characteristics for ε ∈ Eonebit only.



To test the attack in a real life situation, we implemented DES on a smart
card and induced computational errors during calculation of the S-boxes by
exposing the chip to a laser beam. For the determination of the correct timing we
exploited information obtained by measuring the power consumption of the chip.
The distribution of the induced 1-, 2-, 3- and 4-bit faults showed that we managed
it to approximately realise the just considered fault model. Of course not every
shot induced an error in the desired S-box output and finally we reached average
probabilities between 13% and 17% for generating a 1-bit error in the output
of a certain S-box by one shot. After these preliminary examinations we carried
out the attack against the smart card by applying Algorithm 1 for the inputs
k = 2, E = Ei and Ê = Ei∩Eonebit (i = 1, 5, 6, 7), using the characteristics from
Table 4. In other words we induced errors in the outputs of the S-boxes 1,5,6
and 7 in the second round and looked for useful pairs using four characteristics
in each of the four cases. In total we carried out 13000 passes of Algorithm 1,
i.e. 13000 faulty and 52000 correct DES calculations, and found 187 useful pairs
that revealed the full round key of the first round. As one DES calculation took
about 0.1 seconds, including the time for communication between smart card
and terminal, the attack took about two hours.

Next we attacked the third DES round on the same smart card by disturbing
the S-boxes 1,4 and 8 in the same manner as described above. This time we found
in total 263 pairs by 6.9 · 105 runs of Algorithm 1, meaning an effort of 6.9 · 105

faulty and 2.76 · 106 correct DES calculations or 96 hours runtime, respectively.
Again the found pairs compromised the full round key of the first round.

5 Conclusion

In this paper we introduced a DFA attack on early rounds of a Feistel cipher
showing that it is not sufficient to protect only the last few rounds of the cipher
against inducing computational errors. By carrying out the attack against DES
implemented on a smart card we proved that the attack is not only of theoretical
nature but a real threat in practice. An evident question is if the principle of
the attack can also be applied to a non-Feistel cipher, for example to the AES.
The answer is yes. In case of AES, for example, it is possible to combine the
attack of Dusart et al. [5] with our principle to force collisions by inducing
computational errors in early rounds of the cipher. The problem is that the
probabilities of characteristics or differentials, respectively, for AES are much
smaller than for DES. So even by using counting schemes over four key bytes,
as Piret and Quisquater [8] did to optimise the attack in [5], the amount of AES
calculations required to extract the secret key is quite large at the moment, but
our investigations are still in progress.
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A Tables of characteristics

The following tables show the best 1-, 2- and 3-round ε-characteristics Ωε of
DES for all ε ∈ Eonebit. The components of the characteristics are listed in
hexadecimal notation. Components not given in the tables can be calculated
according to Definition 2.

Table 4. Best 1-round ε-characteristics of DES for ε ∈ Eonebit

ε ΩL
ε,0 pΩε

ε ΩL
ε,0 pΩε

80 00 00 00 00 00 8A 22 0.0546875 00 00 80 00 A0 04 10 80 0.046875
40 00 00 00 00 00 02 02 0.1875 00 00 40 00 00 04 00 80 0.15625
20 00 00 00 00 00 80 02 0.15625 00 00 20 00 00 04 00 80 0.15625
10 00 00 00 00 88 80 10 0.041015625 00 00 10 00 30 24 00 08 0.0244140625
08 00 00 00 40 80 02 10 0.029296875 00 00 08 00 01 24 20 08 0.03515625
04 00 00 00 40 08 00 00 0.25 00 00 04 00 00 20 00 08 0.25
02 00 00 00 40 00 40 10 0.21875 00 00 02 00 10 20 20 00 0.15625
01 00 00 00 44 09 01 10 0.046875 00 00 01 00 02 00 24 08 0.0341796875
00 80 00 00 04 09 41 00 0.0478515625 00 00 00 80 12 00 24 09 0.0390625
00 40 00 00 04 00 00 04 0.15625 00 00 00 40 00 00 04 01 0.1875
00 20 00 00 04 00 01 00 0.1875 00 00 00 20 02 00 04 01 0.1875
00 10 00 00 80 40 11 04 0.03515625 00 00 00 10 02 12 0C 01 0.0546875
00 08 00 00 04 40 11 00 0.041015625 00 00 00 08 02 12 0C 20 0.041015625
00 04 00 00 80 00 10 00 0.125 00 00 00 04 08 02 08 20 0.1875
00 02 00 00 00 40 10 00 0.1875 00 00 00 02 00 02 08 20 0.1875
00 01 00 00 A0 40 00 80 0.015625 00 00 00 01 00 00 88 22 0.029296875



Table 5. Best 2-round ε-characteristics of DES for ε ∈ Eonebit

ε ΩL
ε,0 ΩR

ε,0 pΩε

80 00 00 00 10 02 38 A0 00 02 8A 02 1.760199666e− 5
40 00 00 00 50 22 28 20 00 00 02 02 5.493164063e− 3
20 00 00 00 30 22 28 20 00 00 02 02 2.746582031e− 3
10 00 00 00 02 36 2C 81 00 00 42 12 1.564621925e− 5
08 00 00 00 1A 32 2E 03 40 00 02 12 1.173466444e− 5
04 00 00 00 00 40 13 02 40 08 00 00 1.922607422e− 3
02 00 00 00 06 40 13 02 40 08 00 00 1.201629639e− 3
01 00 00 00 A2 54 0C A1 00 01 40 14 3.129243851e− 6
00 80 00 00 E5 CC 01 80 04 09 40 00 4.380941391e− 5
00 40 00 00 48 4A 08 20 04 00 00 04 7.32421875e− 3
00 20 00 00 48 2A 08 20 04 00 00 04 2.9296875e− 3
00 10 00 00 28 16 08 20 00 00 11 44 3.755092621e− 5
00 08 00 00 44 00 20 0C 04 40 01 40 3.650784492e− 5
00 04 00 00 04 04 04 05 00 40 00 40 3.662109375e− 3
00 02 00 00 00 02 8E 23 80 00 00 40 1.922607422e− 3
00 01 00 00 12 01 A8 28 A0 00 00 C0 1.907348633e− 5
00 00 80 00 52 08 A0 1C 01 40 00 C0 5.722045898e− 5
00 00 40 00 80 00 D0 02 20 04 00 00 2.44140625e− 3
00 00 20 00 80 00 B0 02 20 04 00 00 1.220703125e− 3
00 00 10 00 04 80 D2 06 31 20 00 00 7.724761963e− 5
00 00 08 00 C4 0C 18 94 01 24 20 00 1.609325409e− 5
00 00 04 00 04 04 05 80 00 20 20 00 2.746582031e− 3
00 00 02 00 04 04 03 80 00 20 20 00 3.662109375e− 3
00 00 01 00 04 A0 80 08 12 20 04 00 1.87754631e− 5
00 00 00 80 84 65 10 0C 00 30 24 00 1.609325409e− 5
00 00 00 40 40 20 40 58 02 00 04 00 6.8359375e− 3
00 00 00 20 40 20 40 38 02 00 04 00 6.8359375e− 3
00 00 00 10 C0 80 43 04 0A 12 00 00 1.086294651e− 5
00 00 00 08 40 40 DA 38 0A 02 00 01 2.011656761e− 5
00 00 00 04 02 40 14 05 00 02 00 20 2.197265625e− 3
00 00 00 02 02 40 14 03 00 02 00 20 3.295898438e− 3
00 00 00 01 90 00 30 81 00 02 8A 00 7.152557373e− 5



Table 6. Best 3-round ε-characteristics of DES for ε ∈ Eonebit

ε ΩL
ε,0 ΩR

ε,0 ΩR
ε,2 pΩε

80 00 00 00 04 03 8A 00 00 60 00 00 00 02 8A 00 6.034970284e− 7
40 00 00 00 46 88 C5 01 58 20 00 20 00 00 02 02 4.526227713e− 6
20 00 00 00 46 08 45 03 38 20 00 20 00 00 02 02 1.885928214e− 6
10 00 00 00 00 00 03 16 03 34 00 00 00 00 42 12 4.400499165e− 8
08 00 00 00 40 80 83 06 13 34 00 00 00 00 42 12 4.813045962e− 9
04 00 00 00 50 08 8A 02 80 00 03 42 40 08 00 00 2.695305739e− 6
02 00 00 00 50 08 CA 12 86 00 03 42 40 08 00 00 3.684988314e− 7
01 00 00 00 04 88 C2 06 30 20 00 00 00 00 41 14 1.432454155e− 9
00 80 00 00 42 14 0D 94 00 00 20 0A 40 00 01 14 8.952838471e− 9
00 40 00 00 C4 C0 92 56 48 4A 00 00 04 00 00 04 4.190951586e− 6
00 20 00 00 C0 C1 92 56 48 2A 00 00 04 00 00 04 1.676380634e− 6
00 10 00 00 84 C0 83 04 60 1C 00 00 04 00 11 40 1.426087692e− 7
00 08 00 00 66 58 0D C0 04 00 60 0C 04 40 01 40 3.655742375e− 8
00 04 00 00 88 62 58 78 06 04 04 04 00 40 00 40 3.129243851e− 6
00 02 00 00 C6 29 25 51 02 80 06 20 80 00 00 40 4.125467967e− 7
00 01 00 00 B2 64 04 00 00 00 1B 60 A0 44 00 00 8.381903172e− 9
00 00 80 00 23 72 0C 69 40 00 04 17 21 40 00 40 6.446043699e− 9
00 00 40 00 A0 04 14 89 00 00 D2 40 20 04 00 00 2.682209015e− 6
00 00 20 00 A0 00 14 09 00 00 B2 40 20 04 00 00 1.173466444e− 6
00 00 10 00 A1 00 10 88 00 00 D0 00 31 20 00 00 1.676380634e− 7
00 00 08 00 B0 04 30 08 00 00 C8 00 31 20 00 00 2.514570951e− 8
00 00 04 00 40 08 A0 0B 24 00 05 80 00 20 20 00 2.514570951e− 6
00 00 02 00 40 28 80 0B 24 00 03 80 00 20 20 00 2.793967724e− 6
00 00 01 00 10 30 09 00 04 A0 00 0A 12 20 04 00 1.403805072e− 8
00 00 00 80 90 00 34 00 00 06 00 20 12 00 20 01 3.274180926e− 8
00 00 00 40 04 51 10 21 00 28 00 58 02 00 04 00 4.889443517e− 6
00 00 00 20 04 41 14 21 00 28 00 38 02 00 04 00 4.889443517e− 6
00 00 00 10 1A 12 08 20 00 00 03 46 0A 12 00 00 2.900719664e− 8
00 00 00 08 1A 10 08 20 00 00 03 5E 0A 12 00 00 1.178705133e− 8
00 00 00 04 08 22 8C 29 80 00 04 45 00 02 00 20 2.011656761e− 6
00 00 00 02 00 22 8C 09 80 00 04 43 00 02 00 20 3.017485142e− 6
00 00 00 01 04 01 80 00 A0 60 00 01 00 02 8A 00 1.005828381e− 7


