
Pipelined Computation of Scalar Multiplication

in Elliptic Curve Cryptosystems

Pradeep Kumar Mishra

Cryptographic Research Group
Indian Statistical Institute

203 B T Road, Kolkata - 700108, INDIA
e-mail: pradeep t@isical.ac.in

Abstract. In the current work we propose a pipelining scheme for imple-
menting Elliptic Curve Cryptosystems (ECC). The scalar multiplication
is the dominant operation in ECC. It is computed by a series of point
additions and doublings. The pipelining scheme is based on a key ob-
servation: to start the subsequent operation one need not wait until the
current one exits. The next operation can begin while a part of the cur-
rent operation is still being processed. To our knowledge, this is the first
attempt to compute the scalar multiplication in such a pipelined method.
Also, the proposed scheme can be made resistant to side-channel attacks
(SCA). Our scheme compares favourably to all SCA resistant sequential
and parallel methods.

Keywords: Elliptic curve cryptosystems, pipelining, scalar multiplica-
tion, Jacobian coordinates.

1 Introduction

Elliptic Curve Cryptosystems (ECC) were first proposed independently by Koblitz
[16] and Miller [21] in 1985. The cryptosystem is based on the additive group
of points on an elliptic curve over a finite field. It derives its security from the
hardness of the elliptic curve discrete logarithm problem (ECDLP). For a care-
fully chosen curve over a suitable underlying field there is no subexponential
time algorithm to solve ECDLP. This fact enables ECC to provide a high level
of security with much smaller keys than RSA and primitives based on discrete
logarithm problems on finite fields. However, this security does not come for free.
The group operation in ECC is more complex than that of finite field based cryp-
tosystems. This provides a strong motivation for the cryptographic community
to work on ECC to make them more efficient.

The fundamental operation in ECC is scalar multiplication, namely, given an
integer m and an elliptic curve point P , the computation of mP . It is computed
by a series of doubling (DBL) and addition (ADD) operation of the point P , de-
pending upon the bit sequence representing d. A plethora of methods have been
proposed to perform the scalar multiplication in a secure and efficient way. For
an excellent review see [10]. The performance of all these methods is dependent



on the efficiency of the elliptic curve group operations: DBL and ADD. In the
current work we will refer to them as EC-operations. EC-operations in affine
coordinates involve inversion, which is a very costly operation particularly over
prime fields. To avoid inversion various co-ordinate systems have been proposed
in literature. In this work we will use Jacobian coordinates.

In the current work we describe a very general technique to compute the
scalar multiplication. It can be applied to any scalar multiplication method that
only uses doubling and addition (or subtraction), with or without precomputa-
tions.

The computation of scalar multiplication proceeds in a series of EC-operations.
A key observation is that these operations can be computed in a pipeline, so that
the subsequent operation need not wait till the current one exits. The ADD and
DBL algorithms have their own set of inputs. These algorithms can be divided
into parts some of which can be executed with only a part of the input. So one
part of the algorithm can begin execution as soon as the corresponding part of
the inputs is available to it. Thus two or more EC-operations can be executed
in a pipeline.

In the current work we propose a two stage pipeline. At any point of time
there will be at most two operations in the pipeline in a “Producer-Consumer Re-
lation”. The one which enters the pipeline earlier will be producing outputs which
will be consumed by the second operation as inputs. As soon as the producer
process exits the pipeline the subsequent EC-operation will enter the pipeline
as the consumer process. The earlier consumer would be producing outputs now
which will be consumed by the newer process.

Any processor capable of handling ECC must have capabilities (in hardware
or software) for executing field arithmetic. It must have modules for field ele-
ment addition, subtraction, multiplication and inversion. In computing the scalar
multiplication using a co-ordinate system other than affine coordinates, only one
field inversion is necessary. So the most important operations are addition and
multiplication. In the pipelined architecture we need a multiplier and an adder
for each of the pipe stages. The adder can be shared by the pipe stages as the
addition operation is much cheaper in comparison to multiplication. Note that
in this work, we will consider a squaring as a multiplication. However, this is
not true in general.

Our method will also require slightly more memory. As two EC-operations
will be computed simultaneously in two pipe stages more memory will be re-
quired for processing. This extra memory requirement is discussed in details in
Section 5.

In [17], [18], Paul Kocher et al. proposed Side-channel attacks (SCA), which
are considered to be the most potential threat against mobile devices and ECC.
Many countermeasures against SCA have been proposed in literature. Almost
all of them involve some computational overhead to resist SCA. One of the latest
methods proposed in [3] involves the least amount of computational overhead
to get rid of simple power analysis attacks (SPA). The authors divide each EC-
operation into atomic blocks which are indistinguishable from the side-channel.



So, in this model the computation of scalar multiplication is a sequence of indis-
tinguishable atomic blocks. We use a variant of this method to resist SPA. To
resist DPA many standard methods can be incorporated to it.

In this work we have used the computation time of an atomic block as a
unit of time. One atomic block has one multiplication, two additions and one
negation. As computation time of an addition is quite small in comparison to
that of a multiplication, computation time of an atomic block is approximately
that of a finite field multiplication. A point addition (mixed coordinates) takes 11
atomic blocks and a doubling takes 10 atomic blocks. So they can be computed
in 10 and 11 units of time respectively. In our pipelining scheme an EC-operation
can be computed in 6 units of time. This leads to a significant improvement in
performance (see Section 5). Furthermore, our scheme can be combined with
windowing methods to obtain even faster scalar multiplication.

2 Background

In this section we briefly discuss the current state of affairs in ECC and side-
channel attacks.

2.1 Elliptic Curve Preliminaries

There exists an extensive literature on elliptic curve cryptography. Here we only
mention the results that we need, without proof. We refer the reader to [10] for
details. In the current work we will concentrate on curves over large prime fields
only. Over a finite field Fq, q = pr of odd characteristic p > 3, an elliptic curve
has an equation of the form y2 = x3 +ax+ b where a, b ∈ Fq and 4a3 +27b2 6= 0.
An elliptic curve point is represented using a pair of finite field elements. The
group operations in affine coordinates involve finite field inversion, which is a
very costly operations, particularly over prime fields [9]. To avoid these inver-
sions, various co-ordinate systems like, projective, Jacobian, modified Jacobian,
Chudnovsky-Jacobian have been proposed in literature [6]. We present our work
in Jacobian coordinates, which are extensively used in implementations. In Ja-
cobian coordinates, (X : Y : Z) represents the point (X/Z2, Y/Z3) on the curve.

The scalar multiplication is generally computed using a left-to-right binary
algorithm.
Binary Algorithm (left-to-right) for scalar multiplication
Input: An integer m = mn−12

n−1 + · · · + m0,mn−1 6= 0 and a point P
Output: mP .
1. P0 = P
2. for i = 0 to n − 2;
3. Pi+1 = DBL(Pi);
4. if mn−2−i = 1
5. Pi+1 = ADD(Pi+1, P );
6. Return (Pn−1)



The ADD operation in Jacobian coordinates is much cheaper if the Z-co-
ordinate of one point is 1. This operation is called mixed addition [6]. In imple-
mentations of scalar multiplication, the addition operation in Step 5 is generally
a mixed addition.

The algorithm needs n − 1 point doublings and on the average n/2 addi-
tions to compute the scalar multiplication. As computing the additive inverse
of a given point is almost for free, addition and subtraction in the elliptic curve
group have almost the same complexity. To reduce the complexity the Non-

adjacent form (NAF) representation of the scalar multiplier has been proposed.
In NAF, the coefficients of the representation belong to the set {0, 1, -1} and no
two consecutive coefficients are non-zero. The number of non-zero terms in NAF
representation is on the average n/3. Thus if the scalar multiplier is represented
in NAF, the average number of point additions in the scalar multiplication al-
gorithm reduces to n/3. To further reduce the number of additions the w-NAF
representations have been proposed (see [22] [5]). With a precomputed table
of size 2w−1 points, the number of additions comes down to n/(w + 1). The
complexity of scalar multiplication is thus dependent on the efficiency of point
addition and doubling. We discuss the ADD and DBL algorithm in Jacobian
coordinates below.

If two points P (X,Y,Z) and Pi(Xi, Yi, Zi) are in Jacobian coordinates, then
the double of Pi i.e. 2Pi = Pi+1(Xi+1, Yi+1, Zi+1) is computed as:

Xi+1 = M2 − 2S, Yi+1 = M(S − Xi+1) − 8Y 4
i and Zi+1 = 2YiZi,

where M = 3X2
i + aZ4

i and S = 4XiY
2
i .

The sum P + Pi = Pi+1(Xi+1, Yi+1, Zi+1) is computed as:

Xi+1 = W 3−2U1W
2+R2, Yi+1 = −S1W

2+R(U1W
2−Xi+1), Zi+1 = ZZiW ,

where U1 = XZ2
i , U2 = XiZ

2, S1 = Y Z3
i , S2 = YiZ

3,W = U1 −U2, R = S1 −S2.

Let [a], [m] and [s] denote the time required for one addition, multiplication
and squaring in the underlying field respectively. Then, ADD has complexity
7[a] + 12[m] + 4[s] and DBL has complexity 11[a] + 4[m] + 6[s]. In the current
work, we do not distinguish between a multiplication and a squaring and neglect
additions. So, roughly, we can say ADD involves 16 multiplications and DBL
involves 10 multiplications. Mixed addition is quite cheaper, requiring only 11
multiplications.

2.2 Side-channel Attacks and Side-channel Atomicity

Side-channel attacks (SCA) are one of the most dangerous threat to ECC-
implementations. Discovered by Paul Kocher et al. [17], [18] SCA reveals the
secret information by sampling and analyzing the side-channel information like
timing, power consumption and EM radiation traces. ECC is very suitable for
mobile and hand held devices, which are used in hostile outdoor environments.
Hence an implementation must be side-channel resistant. SCA’s which use power
consumption traces of the computation are called power attacks. Power attacks
subsumes timing attacks [11]. They can be divided into simple power attacks



(SPA) and differential power attacks (DPA). Simple power attacks use infor-
mation from one observation to break the secret. Differential power attacks use
data from several observations and reveal the secret information by statistically
analyzing them. Power analysis can be performed with very inexpensive equip-
ments, hence the threat is real. Several countermeasures have been proposed in

Table 1. DBL Algorithm in Atomic Blocks

DBL Algorithm

Input: Pi(Xi, Yi, Zi)
Input: Pi = (Xi, Yi, Zi)
Output: 2Pi = (Xi+1, Yi+1, Zi+1)

∆1 R1 = T8 × T8 (Z2
i
) ∆6 R4 = T7 × T7 (Y 2

i
)

* R2 = R4 + R4 (2Y 2
i )

* R2 = R4 + R4 (2Y 2
i

)

* *
* *

∆2 R1 = R1 × R1 (Z4
i
) ∆7 R4 = T6 × R2 (2XiY 2

i
)

* R4 = R4 + R4 (S)

* R4 = −R4 (−S)

* R5 = R4 + R4 (−2S)

∆3 R1 = a × R1 (aZ4
i
) ∆8 R3 = R1 × R1 (M2)

* T6 = R3 + R5 (Xi+1)

* *
* R4 = T6 + R4 (Xi+1 − S)

∆4 R2 = T6 × T6 (X2
i
) ∆9 R2 = R2 × R2 (4Y 4

i
)

R3 = R2 + R2(2X2
i
) R2 = R2 + R2(8Y 4

i
)

* *
R2 = R3 + R2 (3X2

i
) *

∆5 T8 = T7 × T8 (YiZi) ∆10 T7 = R1 × R4 (M(Xi+1 − S))

T8 = T8 + T8 (Zi+1) T7 = T7 + R2 (−Yi+1)

* T7 = −T7 (Yi+1)

R1 = R1 + R2 (M) *

literature to guard ECC against SPA and DPA (see [2], [7], [11], [15], [4] for
example). Almost all of them need some computational overhead for the im-
munization. Side-Channel Atomicity recently proposed in [3] involves nearly no
overhead. There, the authors split the EC-operations into atomic blocks, which
are indistinguishable from each other by means of side-channel analysis. Hence,
if an implementation does not leak out any data regarding which operation being
performed, the side-channel information becomes uniform. In order to immunize
our computations against SPA, we choose this countermeasure with some mod-
ifications. Our division of the EC-operations into atomic blocks will be different
than the one given in [3]. This is to facilitate our pipelining scheme.



To immunize ECC from DPA, many countermeasures have been proposed.
Most of them involve randomization of the processed data, such as the repre-
sentation of the point or of the curve or of the scalar. We do not discuss the
these issues at length here. The interested reader can refer to Ciet’s Thesis [4]
for a comprehensive treatment. We just observe that almost all schemes can be
adapted to our method to make it DPA resistant.

3 Dividing EC-operations into Atomic Blocks

We divide each EC-operation into atomic blocks. Following [3], each block con-
tains one multiplication and two additions. Subtraction is treated as a negation
followed by an addition. To accommodate subtractions we include one negation
in each atomic block. The atomic blocks are presented in Table 1 and Table 2.
Our ADD and DBL algorithms are designed, keeping in mind scalar multiplica-
tion algorithm. In the binary algorithm, described in Section 2.1 whenever an
addition is carried out, one input is fixed i.e. P . So we may assume that like
DBL, algorithm ADD has also one input Pi. Also, we can keep the point P in
affine coordinates and gain efficiency by using mixed addition algorithm. Note
that in Table 1 and Table 2, we have assumed that the EC-operations always get
their inputs (Xi, Yi, Zi) at three specific locations T6, T7, T8 respectively. Also,
the EC-operation write back their outputs as these are computed to these loca-
tions only. The coordinates of the point P = (X,Y, 1), which is an argument to
all addition operations are also stored in two specific locations Tx = X,Ty = Y .
Also, the curve parameter a needs to be stored. These six locations are pub-
lic in the sense that any EC-operations in any of the two pipe stages can use
them. One more location is required for the dummy operations. Both operations
in the pipeline will share this location. Besides while two EC-operations being
computed in the pipeline, each of them will have some locations (five each) pri-
vate to them to store their intermediate variables. Thus the method requires 17
locations for the computation.

In Table 2 we provide the mixed addition algorithm in atomic blocks. Mixed
addition requires 11 multiplications and doublings involves 10. So, adding one
dummy multiplication to the DBL and some additions and negations to ADD/DBL,
we can use whole of them as atomic blocks. However in that case we have to
use these EC-operations as atomic units of computation. So, one operation has
to be completed before the other begins. We do not adopt this approach as our
aim in this work is to break the EC-operations into parts such that a part of one
can start execution while a part of another is still in the pipeline.

3.1 An Analysis of ADD and DBL

Let us analyze the ADD and DBL algorithms presented in the Table 1 and
Table 2. To DBL, there are three inputs, namely, Xi, Yi, Zi. It computes the
double of the input point. Let us look at the various atomic blocks more closely.

We make the following observations on DBL:



– The atomic blocks ∆1,∆2,∆3 can be computed with the input Zi only.
– Input Xi is needed by DBL at block ∆4 and thereafter.
– The block ∆5 needs the input Yi as well. But ∆5 produces the output Zi+1.

So, the next EC-operation can begin after DBL completes ∆5.
– The atomic block ∆8 produces the output Xi+1.
– ∆10 produces the output Yi+1 and the process terminates.

Table 2. ADD Algorithm in Atomic Blocks

ADD Algorithm

Input: P = (Tx, Ty), Pi = (Xi, Yi, Zi)
Output: P + Pi = (Xi+1, Yi+1, Zi+1).

Γ1 R1 = T8 × T8 (Z2
i
) Γ7 R2 = R2 × R4 (−U1W2)

* R5 = R2 + R2 (−2U1W2)

* *
* *

Γ2 R2 = Tx × R1 (U1) Γ8 R1 = R4 × R1 (W3)

* R1 = R1 + R5 (W3
− 2U1W2)

R2 = −R2 (−U1) R3 = −R3 (−S1)

* R5 = R3 + T7 (S2 − S1 = −R)

Γ3 R3 = Ty × T8 (Y Zi) Γ9 T6 = R5 × R5 (R2)

* T6 = T6 + R1 (Xi+1)

*
* R2 = T6 + R2 (Xi+1 − U1W2)

Γ4 R3 = R3 × R1 (S1) Γ10 R2 = R5 × R2 (−R(Xi+1 − U1W2))

R1 = R2 + T6 (−W ) *
R1 = −R1 (W )

* *

Γ5 T8 = R1 × T8 (Zi+1) Γ11 T7 = R3 × R4 (−S1W2)

* T7 = T7 + R2 (Yi+1)

* *
* *

Γ6 R4 = R1 × R1 (W2)

*
*
*

If instead a subtraction should be performed (add the negative (−Tx, Ty)), incorporate
R2 = −Tx in Γ1 and replace the first step of Γ2 by R2 = R2 × R1.

We have similar observations on ADD:

– The atomic blocks Γ1, Γ2, Γ3 can be computed with the input Zi only.
– Input Xi is needed by ADD at block Γ4 and thereafter.
– Γ5 produces the output Zi+1. So, the next EC-operation can begin after

ADD completes Γ5.



– The input Yi is not required till the atomic block Γ8.

– Γ9 produces the output Xi+1 and Γ11 produces Yi+1 and the process termi-
nates.

The most interesting part of this division into atomic blocks is that both EC-
operations perfectly match in a producer-consumer relation. In most situations
as we will see in the next section, as soon as an output is produced by the
producer process the consumer process consumes it. In some situations when
the consumer process requires the input before it is produced by the producer,
the consumer process has to wait an atomic block. However, such situations will
not arise much frequently, hence it does not affect the efficiency much.

4 Pipelining the Scalar Multiplication Algorithm in ECC

In this section we describe our pipelining scheme – a two stage one, each stage
executing an EC-operation in parallel. In the following discussion we assume
that the EC-operation executing in pipe stage 1 gets its inputs when it needs.
Later we will see, it is not always true. However such cases will not occur very
frequently.

In the computation of the scalar multiplication, an DBL is always followed
by an ADD or DBL, but an ADD is always followed by an DBL. So in the
proposed pipeline we always see a pattern like DBL(producer)-DBL(consumer)
or DBL(producer)-ADD(consumer) or ADD(producer)-DBL(consumer). This is
true even if the scalar is represented in NAF or w-NAF and makes the sequence
DBL-DBL more frequent.

Let us see how these EC-operations play their parts in this producer-consumer
relation. We show this in the Table 3. The atomic blocks Γi’s belong to an ADD
and ∆j ’s belong to DBL. Besides we have given a superscript to each of them
to denote which EC-operation has entered the pipeline earlier. In the following
description we will refer to pipe stage 1 and pipe stage 2 as PS1 and PS2 re-
spectively. Also, in this discussion our unit of time is time taken to execute one

atomic block. In the next three subsections we will discuss how EC-operations
coupled with each other behave in the pipeline.

4.1 DBL-DBL Scenario

Let us first consider the DBL-DBL scenario. It is presented in Columns 2 and 3
of Table 3.

– Let us assume that the first DBL (say, DBL(i)) and enters PS1 at time k+1.

– At time k + 5, DBL(i) produces its first output (Zi+1) and enters PS2. The
second doubling DBL(i+1) enters the stage PS1.

– At time k + 8, DBL(i) produces its second output. DBL(i+1) completes its

3rd atomic block ∆
(i+1)
3 at the same time.



Table 3. EC-operations in the pipeline

DBL-DBL DBL-ADD ADD-DBL

Time PS1 PS2 PS1 PS2 PS1 PS2

k
...

...
...

...
...

...

k + 1 ∆
(i)
1 - ∆

(i)
1 - Γ

(i)
1 -

k + 2 ∆
(i)
2 - ∆

(i)
2 - Γ

(i)
2 -

k + 3 ∆
(i)
3 - ∆

(i)
3 - Γ

(i)
3 -

k + 4 ∆
(i)
4 - ∆

(i)
4 - Γ

(i)
4 -

k + 5 ∆
(i)
5 - ∆

(i)
5 - Γ

(i)
5 -

k + 6 ∆
(i+1)
1 ∆

(i)
6 Γ

(i+1)
1 ∆

(i)
6 ∆

(i+1)
1 Γ

(i)
6

k + 7 ∆
(i+1)
2 ∆

(i)
7 Γ

(i+1)
2 ∆

(i)
7 ∆

(i+1)
2 Γ

(i)
7

k + 8 ∆
(i+1)
3 ∆

(i)
8 Γ

(i+1)
3 ∆

(i)
8 ∆

(i+1)
3 Γ

(i)
8

k + 9 ∆
(i+1)
4 ∆

(i)
9 Γ

(i+1)
4 ∆

(i)
9 * Γ

(i)
9

k + 10 * ∆
(i)
10 Γ

(i+1)
5 ∆

(i)
10 ∆

(i+1)
4 Γ

(i)
10

k + 11 ∆
(i+1)
5 *

... Γ
(i+1)
6 * Γ

(i)
11

k + 12
... ∆

(i+1)
6

... Γ
(i+1)
7 ∆

(i+1)
5 *

– At time k + 9 DBL(i) computes ∆
(i)
9 and DBL(i+1) computes ∆

(i+1)
4 . Note

that DBL(i+1) requires its second input i.e. Xi in this block, which is available
to it. It was computed by DBL(i) in the previous atomic block.

– During time k + 10, DBL(i) computes ∆
(i+1)
10 and computes its third output

(Yi+1). DBL(i+1) should compute ∆
(i)
5 . But it needs its third input which is

being computed at this time only. Hence it waits. DBL(i) terminates at the
end of time k + 10.

– DBL(i+1) computes ∆
(i)
5 , produces its first output and moves to PS2 in the

next time unit. Although the other pipe stage is vacant now it can not be
utilized as DBL(i+1) has not yet produced its first output.

Note that in this scenario, when two DBL’s enter the pipeline one by one,
two pipeline stages remain idle (one at time k + 10 and another at time k + 11)
during the computations. We have marked them by ’*’ in the table. If the attacker
using the side-channel information can detect this he may be able to conclude
that two doubling were being computed now. To keep the adversary at bay we
can compute two dummy blocks at these times. That will also implement the
wait for the other process.

One can easily convince oneself that these choices are optimal. The computa-
tion of Zi+1 requires Yi which is only provided in the final stage of the previous
doubling. Hence, a wait stage cannot be avoided.



4.2 DBL-ADD Scenario

Let us consider the situation when an DBL is followed by an ADD. This scenario
is described in Columns 4 and 5 of Table 3. Unlike the previous discussion we
will refer to the operations as ADD and DBL only, without any superscript.
Note that the DBL has entered the pipeline first and ADD later. Suppose the
DBL starts at time k + 1. We can see that:

– At time k + 5, DBL computes block ∆
(i)
5 , its first output Zi+1 and then it

enters PS2 at the next time unit.
– At time k + 6, the ADD enters at PS1, uses the output Zi+1 of DBL.

– At time k + 8, the DBL completes its block ∆
(i)
8 and produces the output

Xi+1.

– At time k+9, ADD computes Γ
(i+1)
4 . It needs its second input (Xi+1), which

is produced by the DBL in the previous time interval.
– At time k + 10, the DBL computes its last atomic block and provides its

third output. The ADD computes Γ
(i+1)
5 . The last output computed by the

DBL is required by the ADD two time units later.

In this scenario the coupling of operations is perfect. No pipeline stages are
wasted. Note however, that this sequence is always followed by a doubling. That
sequence is discussed in the next paragraph.

4.3 ADD-DBL Scenario

The scenario, when an ADD is followed by an DBL has been presented in
Columns 6 and 7 of Table 3. For sake of brevity we are not going for an anal-
ysis of it. One can see that here the combination of the EC-operations involves
three wait stages at times k + 9, k + 11 and k + 12. Still this is the optimal way
of performing this sequence and it fits perfectly after the DBL-ADD sequence
discussed above. In DBL-ADD-DBL the addition finishes 12 steps after entering
PS1 and at the same time the following doubling can enter PS2. These obser-
vations also guarantee that 6 atomic blocks are necessary for computation of
each EC-operation (see Section 5), except for the first and the last ones. This
requirement of 6 atomic blocks is exact and not just asymptotic.

5 Implementation and Results

In this section we will discuss the issues related to the implementation of the
scheme. Also, we will demonstrate the speed-up that can be achieved in an
implementation.
Hardware Requirement: As the proposed scheme processes two EC-operation
simultaneously, we will require more hardware support than is generally required
for ECC. To implement the pipe stages we will require a multiplier and an
adder for each of the pipe stages. As addition is a much cheaper operation



than multiplication one adder can be shared between the pipe stages. We do
not need separate (multiplicative) inverter for each pipe stage. In fact, we need
only an inversion after completing all the EC-operations. So one inverter would
suffice. Thus, in comparison to a sequential computation we need only one more
multiplier to implement the proposed scheme.

Memory Requirement: In general ADD requires 7 locations and DBL re-
quires 6 locations in memory in sequential execution, where one EC-operation is
executed at a time. So in a sequential implementation the whole scalar multipli-
cation can be computed using 7 locations for the EC-operations. The proposed
scheme requires 17 memory locations i.e. 10 extra memory locations. From the
space this corresponds to 5 precomputed points, however our scheme needs ac-
tive registers and not only storage. For a fair comparison we will later compare
our algorithm to a sequential one with 8 precomputed points.

Synchronization: As we have said there are seven locations where some values
will be stored during whole process of computation. So, if two processes working
at two stages of the pipeline wish to access these values simultaneously, conflict
may arise. Particularly, if one process is trying to read and the other is trying
to write the same location at the same time, then it will lead to a very serious
problem. The input values X,Y and a are static and no attempt is made to write
on these locations. Checking the above tables one can observe that the atomic
blocks are arranged in a manner that no conflicts occur.

Resistance Against SCA As the technique uses side-channel atomicity, it
is secure against simple power analysis under the assumption (cf. [3, 4]) that
dummy operations cannot be detected and that squarings and multiplications
are indistinguishable from the side channel. Note that the Hamming weight of
the scalar is leaked; we come back on this later. To resist DPA Joye-Tymen’s
curve randomization [15] can be easily adopted into the scheme. It will require
two more storage locations. As the scheme uses affine representation of the point,
it is does not adapt directly to Coron’s point randomization [7]. However, note
that after the first doubling, the output point is no more affine. Hence it can
be randomized. Also this later randomization does not compromise the security
because, the first EC-operation is always a doubling.

A second option is to do the preprocessing step T6 = Tx × Z2, T7 = Ty ×
Z3, T8 = Z, for some randomly chosen Z. This requires 4 multiplications and the
input to the first doubling is no longer affine; hence, the costs are higher than
in the first proposal. Both ways there is absolutely no problem in the scheme to
adapt to scalar randomizations.

Performance: We discuss the performance of the scheme in depth. There are
two multipliers, one for each of the pipe stages. The multiplications in the atomic
blocks being executed in the pipe stages are computed in parallel. As said ear-
lier, the scheme can be made resistant against DPA, using various randomization
techniques. That will require some routine computations. In the discussion below
we neglect these routine computations. Also, we will neglect the routine com-
putation required at the end to convert the result from the Jacobian to affine
coordinates.



To compute mP , if m has hamming weight h and length n one has to compute
n − 1 DBL and h ADD. An DBL operation requires 10 atomic blocks and an
ADD requires 11 atomic blocks to complete. In a sequential execution that will
consume 10(n − 1) + 11h units of time.

In the binary algorithm with the scalar multiplier m expressed in binary,
h = n/2 on average. So, the computation of the scalar multiplication requires
10(n − 1) + 11(n/2) = 15.5n − 10 atomic blocks. That is, one has to compute
about 15.5 atomic blocks per bit on the average. If m is represented in 160 bits,
i.e. n = 160, the scalar multiplication can be carried out by executing 2470
atomic blocks or in 2470 units of time.

In NAF representation of the multiplier, h = n/3 on average. So the com-
putation time is 10(n − 1) + 11 × n/3 time units. That is one has to compute
about 13.6n atomic blocks or 13.6 atomic blocks per bit of the multiplier. If m
is expressed in NAF and n = 160, the computation requires to execute 2177
atomic blocks. That is the computation takes 2177 units of time.

The binary methods with or without NAF representation use less memory
than our methods. For sake of fairness let us compare the performance of our
method with with the method using w-NAF (see [22]). The method requires
storing of 2w−1 points and n−1 doublings and 1/(w+1) additions on the average.
For a scalar of 160 bits with w = 5, the method in a sequential execution requires
to store 16 points and computes the scalar multiplication in 1893 units of time.

Example:

In Table 4, we have exhibited the computation process for a small scalar
multiplier 38 = 100110. To compute 38P , one has to carry out EC-operations
as DBL, DBL, DBL, ADD, DBL, ADD, DBL. Note that this multiplier encom-
passes all possibilities, i.e. DBL-DBL, DBL-ADD and ADD-DBL. The compu-
tation takes 46 units of time. In the table we have shown how the computation
progresses. Each atomic block has been assigned a superscript to denote the
serial number of the EC-operation to which it belongs. Also some atomic blocks
are prefixed or suffixed by (X) or (Y ) or (Z). A suffix indicates that at that
atomic block the EC-operation outputs the corresponding value. A prefix indi-
cates that at the specified atomic block the EC-operation consumes that input.
Also, a ’#’ sign in the time column indicates that an EC-operation exits the
pipeline at that time. A ’*’ in a pipe stage indicates a dummy atomic block has
to be computed there. A ’-’ indicates no computation.

As we can check from the table, in the pipelining scheme, the first EC-
operation which is usually an DBL, completes in 10 time units. In fact, as we
take the base point in affine coordinates, first three blocks are not necesssary
and it needs only 7 blocks. If we use Coron’s randomization here 5 more blocks
are required for that. After that an EC-operation (be it an DBL or an ADD)
completes in every 6 units of time. Let m be represented by n bits with hamming
weight h. Then the scalar multiplication will involve h + n − 1 EC-operations
(n − 1 doublings and h additions). The first doubling will take 7 units of time
and the other n + h − 2 will be computed in 6 units of time in the pipelining
scheme. So it will take 7+6(n+h− 2)+5 = 6(n+h) units of time. For a scalar



Table 4. An Example of the Pipelining

Time PS1 PS2 Time PS1 PS2

1 (Z)∆
(1)
1 - 24 ∆

(5)
2 Γ

(4)
7

2 ∆
(1)
2 - 25 ∆

(5)
3 (Y )Γ

(4)
8

3 ∆
(1)
3 - 26 * Γ

(4)
9 (X)

4 (X)∆
(1)
4 - 27 (X)∆

(5)
4 Γ

(4)
10

5 (Y )∆
(1)
5 (Z) - 28# * Γ

(4)
11 (Y )

6 (Z)∆
(2)
1 ∆

(1)
6 29 (Y )∆

(5)
5 (Z) *

7 ∆
(2)
2 ∆

(1)
7 30 (Z)Γ

(6)
1 ∆

(5)
6

8 ∆
(2)
3 ∆

(1)
8 (X) 31 Γ

(6)
2 ∆

(5)
7

9 (X)∆
(2)
4 ∆

(1)
9 32 Γ

(6)
3 ∆

(5)
8 (X)

10# * ∆
(1)
10 (Y ) 33 (X)Γ

(6)
4 ∆

(5)
9

11 (Y )∆
(2)
5 (Z) * 34# Γ

(6)
5 (Z) ∆

(5)
10 (Y )

12 (Z)∆
(3)
1 ∆

(2)
6 35 (Z)∆

(7)
1 Γ

(6)
6

13 ∆
(3)
2 ∆

(2)
7 36 ∆

(7)
2 Γ

(6)
7

14 ∆
(3)
3 ∆

(2)
8 (X) 37 ∆

(7)
3 (Y )Γ

(6)
8

15 (X)∆
(3)
4 ∆

(2)
9 38 * Γ

(6)
9 (X)

16# * ∆
(2)
10 (Y ) 39 (X)∆

(7)
4 Γ

(6)
10

17 (Y )∆
(3)
5 (Z) * 40# * Γ

(6)
11 (Y )

18 (Z)Γ
(4)
1 ∆

(3)
6 41 (Y )∆

(7)
5 (Z) *

19 Γ
(4)
2 ∆

(3)
7 42 - ∆

(7)
6

20 Γ
(4)
3 ∆

(3)
8 (X) 43 - ∆

(7)
7

21 (X)Γ
(4)
4 ∆

(3)
9 44 - ∆

(7)
8 (X)

22# Γ
(4)
5 (Z) ∆

(3)
10 (Y ) 45 - ∆

(7)
9

23 (Z)∆
(5)
1 Γ

(4)
6 46# - ∆

(7)
10 (Y )

Table 5. Comparison of Performance for n = 160

Algorithm Binary NAF w-NAF (w = 4)

Sequential 2477 2177 1893

Pipelined 1438 1278 1152



multiplier of length n bits represented in binary form, h = n/2 on average. Thus
the pipelining scheme will require 6(n + n/2) = 9n units of time on the average.
For n = 160 the proposed scheme will take 1440 units of time to compute the
scalar multiplication.

If the scalar multiplier is expressed in NAF, then h = n/3 on the average.
Hence time requirement will be 8n time-units. This implies, for n = 160 the time
required is 1280. In either case it is a speed-up of around 41 percent.

Note that in both cases described above our method is better than even
sequential w-NAF method. If w-NAF is used in pipelining scheme with those
extra storage, then for w = 4, the scalar multiplication can be computed in 1152
units of time. We have summarized this discussion in the Table 5.
Comparison with Parallel Implementations

Parallelised computation of scalar multiplication on ECC was described for
the first time by Koyama and Tsuruoka in [19]. A special hardware was used
to carry out the computation in their proposal. We compare our scheme with
some of the recent proposals which are claimed to be SCA resistant. The scheme
proposed in [8], uses a parallelized encapsulated-add-and-double algorithm us-
ing Montgomery arithmetic. This algorithm uses two multipliers and takes 10[m]
computations per bit of the scalar. Our algorithm as shown previously with NAF
representation of the scalar takes only 8[m] computation per bit. The storage
requirements are similar. Furthermore, we can obtain additional speed-up by
allowing precomputations. In [1], the authors have proposed efficient algorithms
for computing the scalar multiplication with SIMD (Single Instruction Multiple

data). Similar and more efficient algorithms are also proposed in [12]. In [12]
the authors have given two proposals. The first proposal, like our scheme, does
not use precomputations and takes 1629[m] to compute the scalar multiplication.
They have taken [s] = 0.8[m] and the cost includes all routine calculation includ-
ing the cost of Joye-Tymen’s countermeasure for DPA. In contrast, pipelining
requires only 1319[m] (all inclusive). Their second proposal uses precomputed
points, applies signed window expansions of the scalar and is quite efficient.
However, in a later work with Möller, the same authors (see [11]) remark that
using a precomputed table in affine coordinates is not secure against fixed table

attacks, a differential power attack. Even in Jacobian coordinates while using a
fixed precomputed table, the values in the table should always be randomized
before use.

Acknowledgment The author is thankful to Dr. T. Lange, Prof. D. Han-
kerson and Dr. P. Sarkar for reading the manuscript of the paper and giving
some constructive comments. Particularly, he is greatly indebted to Dr. Lange,
who made several suggestions for improvement of the paper.

References

1. K. Aoki, F. Hoshino, T. Kobayashi and H. Oguro. Elliptic Curve Arithmetic Using

SIMD, In ISC, 2001, LNCS 2200, pp. 235-247, Springer-Verlag, 2001
2. E. Briér and M. Joye. Weierstrass Elliptic Curves and Side-Channel Attacks. In

PKC 2002, LNCS 2274, pages 335-345, Springer-Verlag,2002.



3. B. Chevallier-Mames, M. Ciet and M. Joye. Low-cost Solutions for Preventing Sim-

ple Side-Channel Analysis: Side-Channel Atomicity, IEEE Trans. on Computers,
53(6):760-768, 2004.

4. M. Ciet. Aspects of Fast and Secure Arithmetics for Elliptic Curve Cryptography,
Ph. D. Thesis, Louvain-la-Neuve, Belgique.

5. C. Cohen. Analysis of the flexible window powering algorithm, To appear J.

Cryptology, 2004.
6. H. Cohen, A. Miyaji, and T. Ono. Efficient Elliptic Curve Exponentiation Using

Mixed coordinates, In ASIACRYPT’98, LNCS 1514, pp. 51-65, Springer-Verlag,
1998.

7. J. -S. Coron. Resistance against Differential Power Analysis for Elliptic Curve

Cryptosystems, In CHES 1999, pages 292-302.
8. W. Fischer, C. Giraud, E. W. Knudsen, J. -P. Seifert. Parallel Scalar Mul-

tiplication on General Elliptic Curves over Fp hedged against Non-Differential

Side-Channel Attacks, Available at IACR eprint Archive, Technical Report No
2002/007, http://www.iacr.org.

9. K. Fong and D. Hankerson and J. López and A. Menezes. Field inversion and point

halving revisited, Technical Report, CORR 2003-18, Department of Combinatorics
and Optimization, University of Waterloo, Canada, 2003.

10. D. Hankerson, A. Menezes and S. Vanstone. Guide to Elliptic Curve Cryptography,
Springer-Verlag, 2004.

11. T. Izu, B. Möller and T. Takagi. Improved Elliptic Curve Multiplication Methods
Resistant Against Side Channel Attacks, Proceedings of Indocrypt 2002, LNCS
2551, pp 296-313, Springer-Verlag.

12. T. Izu and T. Takagi. Fast Elliptic Curve Multiplications with SIMD operation,
ICICS 2002, LNCS, pp 217-230, Springer-Verlag.

13. T. Izu and T. Takagi. A Fast Parallel Elliptic Curve Multiplication Resistant
against Side Channel Attacks, ICICS 2002, LNCS, pp 217-230, Springer-Verlag.

14. T. Izu and T. Takagi. Improved Elliptic Curve Multiplication Methods Resistant
against Side Channel Attacks, INDOCRYPT 2002, LNCS, pp , Springer-Verlag.

15. M. Joye and C. Tymen. Protection against differential attacks for elliptic curve

cryptography, CHES 2001, LNCS 2162, pp 402-410, Springer-Verlag.
16. N. Koblitz. Elliptic Curve Cryptosystems, Mathematics of Computations, 48:203-

209, 1987.
17. P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS and

Other Systems, CRYPTO’96, LNCS 1109, pp. 104-113, Springer-Verlag, 1996.
18. P. Kocher, J. Jaffe and B, Jun. Differential Power Analysis, CRYPTO’99, LNCS

1666, pp. 388-397, Springer-Verlag, 1999.
19. K. Koyama, Y. Tsuruoka. Speeding up elliptic Curve Cryptosystems Using a Signed

Binary Windows Method, In CRYPTO’92, LNCS 740, pp 345-357, Springer-Verlag,
1992.

20. A. J. Menezes, P. C. van Oorschot and S. A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1997.
21. V. S. Miller. Use of Elliptic Curves in Cryptography, CRYPTO’85, LNCS 218,

pp. 417-426, Springer-Verlag, 1985.
22. J. Solinas. Efficient arithmetic on Koblitz curves, in Designs, Codes and Cryptog-

raphy, 19:195-249, 2000.


