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Abstract. In the execution on a smart card, side channel attacks such as
simple power analysis (SPA) and the differential power analysis (DPA)
have become serious threat [15]. Side channel attacks monitor power
consumption and even exploit the leakage information related to power
consumption to reveal bits of a secret key d although d is hidden inside a
smart card. Almost public key cryptosystems including RSA, DLP-based
cryptosystems, and elliptic curve cryptosystems execute an exponentia-
tion algorithm with a secret-key exponent, and they thus suffer from both
SPA and DPA. Recently, in the case of elliptic curve cryptosystems, DPA
is improved to the Refined Power Analysis (RPA), which exploits a spe-
cial point with a zero value and reveals a secret key [10]. RPA is further
generalized to Zero-value Point Attack (ZPA) [2]. Both RPA and ZPA
utilizes a special feature of elliptic curves that happens to have a special
point or a register used in addition and doubling formulae with a zero
value and that the power consumption of 0 is distinguishable from that of
an non-zero element. To make the matters worse, some previous efficient
countermeasures are neither resistant against RPA nor ZPA. Although
a countermeasure to RPA is proposed, this is not universal countermea-
sure, gives each different method to each type of elliptic curves, and is
still vulnerable against ZPA [30]. The possible countermeasures are ES
[3] and the improved version [4]. This paper focuses on countermeasures
against RPA, ZPA, DPA and SPA. We show a novel countermeasure
resistant against RPA, ZPA, SPA and DPA without any pre-computed
table. We also generalize the countermeasure to present more efficient
algorithm with a pre-computed table.

Keywords: Elliptic curve exponentiation, ZPA, RPA, DPA, SPA.

1 Introduction

Koblitz [14] and Miller [20] proposed a method by which public key cryptosys-
tems can be constructed on the group of points of an elliptic curve over a fi-
nite field. If elliptic curve cryptosystems satisfy both MOV-conditions [19] and
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FR-conditions [7], and avoid p-divisible elliptic curves over Fpr [31, 1, 29], then
the only known attacks are the Pollard ρ−method [26] and the Pohlig-Hellman
method [25]. Hence with current knowledge, we can construct elliptic curve cryp-
tosystems over a smaller definition field than the discrete-logarithm-problem
(DLP)-based cryptosystems like the ElGamal cryptosystems [9] or the DSA [8]
and RSA cryptosystems [27]. Elliptic curve cryptosystems with a 160-bit key are
thus believed to have the same security as both the ElGamal cryptosystems and
RSA with a 1,024-bit key. This is why elliptic curve cryptosystems have been
attractive in smart card applications, whose memory storage and CPU power is
very limited. Elliptic curve cryptosystems execute an exponentiation algorithm
of dP for a secret key d and a publicly known P as a cryptographic primitive.
Thus, the efficiency of elliptic curve cryptosystems on a smart card depends on
the implementation of exponentiation.

In the execution on a smart card, side channel attacks such as the simple
power analysis (SPA) and the differential power analysis (DPA) have become
serious threat. Side channel attacks, first introduced in [15, 16], monitor power
consumption and even exploit the leakage information related to power consump-
tion to reveal bits of a secret key d although d is hidden inside a smart card.
Thus, it is a serious issue that the implementation should be resistant against
SPA and DPA, and many countermeasures have been proposed in [3, 4, 13, 16,
21, 22, 24]. We may note here that almost public key cryptosystems including
RSA and DLP-based cryptosystems also execute an exponentiation algorithm
with a secret-key exponent, and, thus, they also suffer from both SPA and DPA
in the same way as elliptic curve cryptosystems. However, recently, in the case
of elliptic curve cryptosystems, DPA is further improved to the Refined Power
Analysis (RPA) by [10], which exploits a special point with a zero value and
reveals a secret key. An elliptic curve happens to have a special point (0, y) or
(x, 0), which can be controlled by an adversary because the order of basepoint is
usually known. RPA utilizes such a feature that the power consumption of 0 is
distinguishable from that of an non-zero element. Although elliptic curve cryp-
tosystems are vulnerable to RPA, RPA are not applied to RSA or DLP-based
cryptosystems because they don’t have such a special zero element. Further-
more, RPA is generalized to Zero-value Point Attack (ZPA) by [2]. ZPA makes
use of any zero-value register used in addition formulae. ZPA utilizes a special
feature of elliptic curves that addition and doubling formulae need a lot of each
different operations stored in auxiliary registers, one of which happens to be-
come 0. To make the matters worse, some previous efficient countermeasures of
the randomized-projective-coordinate method (RPC)[6] or the randomized-curve
method (RC)[13] are neither resistant against RPA nor ZPA. Because, a special
point (0, y) or (x, 0) has still a zero value even if it is converted into (0, ry, r) or
(rx, 0, r) by using RPC or RC. A countermeasure to RPA is proposed in [30], but
this is not a universal countermeasure, gives each different method to each type
of elliptic curves, and is still vulnerable against ZPA. The only possible counter-
measure is the exponent-splitting method (ES) in [3, 4], which splits an exponent
and computes dP = rP + (d − r)P = ⌊d/r⌋rP + (d mod r)P by using a ran-



dom number r. ES computes dP by the same cost as the add-and-double-always
algorithm with an extra point for computation.

This paper focuses on countermeasures against both RPA and ZPA, which
are also resistant against both SPA and DPA. Our countermeasure makes use
of a random initial point R, computes dP + R, subtracts R, and gets dP . By
using a random initial point at each execution of exponentiation, any point
or any register used in addition formulae changes at each execution. Thus, it
is resistant against DPA, RPA, and ZPA. In order to be secure against SPA,
we have to compute dP + R in such a way that it does not have any branch
instruction dependent on the data being processed. The easiest way would be to
compute dP + R in the add-and-double-always method[6]. However, it does not
work so straightforwardly if we execute it from MSB as we will see below. Our
remarkable idea lies in the computation method of dP + R that uses the binary
expansion from MSB and not LSB and is resistant against SPA. The binary
expansion from MSB has an advantage over that from LSB in that it is more
easily generalized to a sophisticated method with a pre-computed table like the
window method[18] or the extended binary method [32]. Let us remark that the
computation of dP + R based on the binary expansion from LSB is realized in
the straightforward way: change an initial value O to R in the binary expansion
from LSB as follows [12]:

dP + R = R + d0P + d12P + d22(2P ) + · · · + dn−12(2n−2)P

with the binary expansion of d = (dn−1, · · · , d0)2. We can easily change the
algorithm to the add-and-double-always method. However, the computation of
dP + R based on the binary expansion from MSB (see Algorithm 1) is not
straightforward: if we change an initial value O to R in the binary expansion
from MSB, then it computes 2n−1R+dP , and we thus have to subtract 2n−1R to
get dP . Apparently, it needs more work than the straightforward way of binary
expansion from LSB.

In this paper, we first show the basic computation method of dP + R that
uses the binary expansion from MSB and is resistant against SPA. This is called
BRIP in this paper. Next we apply the extended binary method[32] and present
more efficient computation method of dP +R with a pre-computed table, which
is still resistant against SPA. This is called EBRIP in this paper. EBRIP is
a rather flexible algorithm that can reduce the total computation amount by
increasing the size of a pre-computed table. BRIP can get dP in the computation
of approximately 24.0 M in each bit without using a pre-computed table, where
M shows the computation amount of 1 modular multiplication on the definition
field. EBRIP can get dP in the computation of approximately 12.9 M in each bit
with using a pre-computed table of 16 points. Compared with the previous RPA-
, ZPA-, and SPA-resistant method ES, the computation amount of BRIP is the
same as that of ES without an extra point for computation and the computation
amount of EBRIP can be reduced to only 54 % of that of ES.

This paper is organized as follows. Section 2 summarizes some facts of el-
liptic curves like coordinate systems and reviews power analysis of SPA, DPA,



RPA, and ZPA together with some known countermeasures. Section 3 presents
our new countermeasures, the basic countermeasure (BRIP) and the general-
ized countermeasure with a pre-computed table (EBRIP). Section 4 presents
the performance of our strategy compared with the previous RPA-, ZPA-, and
SPA-resistant countermeasure.

2 Preliminary

This section summarizes some facts of elliptic curves like coordinate systems and
reviews power analysis of SPA, DPA, RPA, and ZPA together with some known
countermeasures.

2.1 Elliptic Curve

Let Fp be a finite field, where p > 3 is a prime. The Weierstrass form of an
elliptic curve over Fp is described as

E/Fp : y2 = x3 + ax + b (a, b ∈ Fp, 4a3 + 27b2 6= 0).

The set of all points P = (x, y) satisfying E, together with the point of infinity
O, is denoted by E(Fp), which forms an abelian group. Let P1 = (x1, y1) and
P2 = (x2, y2) be two points on E(Fp) and P3 = P1 + P2 = (x3, y3) be the sum.
Then the addition formulae in affine coordinate are given as follows [5].

•Addition formulae in affine coordinate(P 6= ±Q)

x3 = λ2 − x1 − x2, y3 = λ(x1 − x3) − y1,

where λ = (y2 − y1)/(x2 − x1).
•Doubling formulae in affine coordinate(P = ±Q)

x3 = λ2 − 2x1, y3 = λ(x1 − x3) − y1,

where λ = (3x2
1 + a)/(2y1).

Let us denote the computation time of an addition (resp. a doubling) in the affine
coordinate by t(A+A) (resp. t(2A)) and represent multiplication (resp. inverse,
resp. squaring) in Fp by M (resp. I, resp. S). Then we see that t(A + A) =
I + 2M + S and t(2A) = I + 2M + 2S. Both addition and doubling formulae
need one inversion over Fp, which is much more expensive than multiplication
over Fp. Therefore, we transform affine coordinate(x, y) into other coordinates,
where the inversion is free. We give the addition and doubling formulae with
Jacobian coordinate, which are widely used.

In the Jacobian coordinates [5], we set x = X/Z2 and y = Y/Z3, giving the
equation

EJ : Y 2 = X3 + aXZ4 + bZ6.

Then, two points (X,Y,Z) and (r2X, r3Y, rZ) for some r ∈ F
∗
p are recognized

as the same point. The point at infinity is represented with (1, 1, 0). Let P1 =



(X1, Y1, Z1), P2 = (X2, Y2, Z2), and P3 = P1 + P2 = (X3, Y3, Z3). The doubling
and addition formulae can be represented as follows.

•Addition formulae in Jacobian coordinate(P 6= ±Q)

X3 = −H3 − 2U1H
2 + R2,

Y3 = −S1H
3 + R(U1H

2 − X3),
Z3 = Z1Z2H,

where U1 = X1Z
2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1 , H = U2 − U1, and

R = S2 − S1.

•Doubling formulae in Jacobian coordinate(P = ±Q)

X3 = T, Y3 = −8Y 4
1 + M(S − T ), Z3 = 2Y1Z1,

where S = 4X1Y
2
1 , M = 3X2

1 + aZ4
1 , and T = −2S + M2.

The computation times in the Jacobian coordinate are t(J + J ) = 12M + 4S
and t(2J ) = 4M + 6S, where J means Jacobian coordinates.

Elliptic curve cryptosystems often execute the elliptic curve exponentiation
of dP = P +P + · · ·+P , where P ∈ E(Fp) and d is an n-bit integer. The simple
method to compute dP is a so-called binary algorithm. Algorithm 1 shows the
binary algorithm to compute dP from MSB, where the binary expansion of d is
d = (dn−1, · · · , d0). Average computing complexity of Algorithm 1 is nD+n/2A,
where A and D denotes the computation amount of addition and doubling,
respectively. When we compute dP from LSB, we have to keep another point
2iP instead of T1 = P but can apply the iterated doubling formulae in Jacobian
coorinate [11], which computes 2kP for k ≥ 1 by 4kM +(4k +2)S. However, the
binary algorithm from LSB is not easily generalized to a sophiticated method
with a pre-computed table.

Algorithm 1 (Binary algorithm (MSB))
Input: d, P
Output: dP
1. T0 = ′, T1 = P.

2. for i = n − 2 to 0
T0 = 2T0

if di = 1 then T0 = T0 + T1

3. output T0.

2.2 Power analysis

There are two types of power analysis, the simple power analysis (SPA) and the
differential power analysis (DPA), which are described in [15, 16]. In the case
of elliptic curve and also hyper elliptic curve, DPA is further improved to use
a special point with a zero value, which is called the Refined Power Analysis
(RPA) [10]. RPA is generalized to the Zero-value Point Analysis (ZPA) [2]. In
this paper, DPA, RPA, and ZPA are called DPA variants generically.



Simple Power Analysis SPA makes use of such an instruction performed
during an exponentiation algorithm that depends on the data being processed.
Apparently, Algorithm 1 has a branch instruction conditioned by a secret expo-
nent d, and thus it reveals the secret d. In order to be resistant against SPA, any
branch instruction of exponentiation algorithm should be eliminated. There are
mainly two types of countermeasures: the fixed procedure method [6] and the
indistinguishable method [3]. The fixed procedure method deletes any branch in-
struction conditioned by a secret exponent d like add-and-double-always method
[6], Montgomery-ladder method [23], and window-based method [18]. Add-and-
double-always method is described in Algorithm 2. The indistinguishable method
conceals all branch instructions of exponentiation algorithm by using indistin-
guishable addition and doubling operations, in which dummy operations are
inserted.

Algorithm 2 (Add-and-double-always algorithm)
Input: d, P
Output: dP
1. T0 = P and T2 = P.

2. for i = n − 2 to 0
T0 = 2T0. T1 = T0 + T2.

if di = 0 then T0 = T0.

else T0 = T1.

3. output T0.

Differential Power Analysis DPA uses correlation between power consump-
tion and specific key-dependent bits. Algorithm 2 reveals dn−2 by computing the
correlation between power consumption and any specific bit of the binary repre-
sentation of 4P. In order to be resistant against DPA, power consumption should
be changed at each new execution of the exponentiation. There are mainly 3
types of countermeasures, the randomized-projective-coordinate method (RPC)
[6], the randomized curve method (RC)[13], and the exponent splitting (ES)
[3, 4]. RPC uses the Jacobian or Projective coordinate to randomize a point
P = (x, y) into (r2x, r3y, r) or (rx, ry, r) for a random number r ∈ F

∗
p, respec-

tively. RC maps an elliptic curve into an isomorphic elliptic curve by using an
isomorphism map of (x, y) to (c2x, c3y) for c ∈ F

∗
p. However, all these two meth-

ods are vulnerable against RPA and ZPA, which will be described in Section 2.2.
The only method secure against RPA and ZPA is ES, which splits an exponent
and computes dP = rP + (d − r)P for a randomly integer r.

Refined Power Analysis and Zero-value Point Attack DPA is special-
ized to reveal a secret key d by using a special elliptic-curve point with a zero
value, which is defined as (x, 0) or (0, y). These special points of (x, 0) and (0, y)
still have a zero value like (rx, 0, r) and (0, ry, r) even if it is converted into the
projective coordinate, respectively. This is why special points can not be ran-
domized by RPC or RC, and an adversary can thus make use of a zero value in



the execution of exponentiation. A countermeasure to RPA are proposed in [30],
but this is not a universal countermeasure, gives each different method to each
type of elliptic curves, and is still vulnerable against ZPA, described below.

RPA is generalized to ZPA by [2], which makes use of any zero-value register
in addition formulae, which is not randomized by RPC or RC. The addition
and doubling formulae have a lot of each different operations stored in auxiliary
registers, one of which may become zero. ZPA uses the difference in any zero
value register between addition and doubling.

We may note that ES can resist both RPA and ZPA because an attacker
cannot handle an elliptic curve point in such a way that any special point with
zero-value value can appear during an execution of exponentiation algorithm.

3 Efficient countermeasures against SPA and DPA

variants

In this section, we propose a new countermeasure against all DPA variants.

3.1 Our basic countermeasure

Here we show our basic countermeasure, called BRIP. Our method uses a ran-
dom initial point (RIP) R, computes dP + R, and subtracts R to get dP . By
using a random initial point at each execution of exponentiation, any point or
any register used in addition formulae changes at each execution. Thus, it is re-
sistant against DPA, RPA, and ZPA. In order to be secure against SPA, we have
to compute dP + R in such a way that it does not have any branch instruction
dependent on the data being processed. Our remarkable idea lies in a sophisti-
cated combination to compute dP + R from MSB by the same complexity as
Algorithm 2: first let 1 express 1 = (111 · · · 11)2 and apply the extended binary
method [17] to compute

(1 11 · · · 11
︸ ︷︷ ︸

n

)2R + (dn−1dn−1 · · · d1d0
︸ ︷︷ ︸

n

)2P.

Algorithm 3 shows our idea in detail. We get dP by computing dP + R and
subtracting R. BRIP makes all variables T0, T1, and T2 dependent on a random
point R, and thus let all variables of each addition and doubling differ at each
execution.

Algorithm 3 (Binary Expansion with RIP (BRIP))
Input: d, P
Output: dP
1. R =randompoint()
2. T0 = R, T1 = −R, T2 = P − R
3. for i = n − 1 to 0

T0 = 2T0



if di = 0 then T0 = T0 + T1

else T0 = T0 + T2

4. output T0 + T1

We discuss the security, the computation amount, and the memory amount.
BRIP lets the power-consumption pattern be fixed regardless of the bit pattern of
a secret key d, and thus it is resistant against SPA. The resistance against DPA
depends on the method of generating a random initial point R. The simplest
way to generate R is to generate the x-coordinate randomly and compute the
corresponding y-coordinate if exists. It should require much work. The cheaper
way is to keep one point R0 and convert R0 into a randomized point R by
RPC [12]. If R is chosen randomly by some ways mentioned above, BRIP can
be resistant against DPA, RPA, and ZPA, since any special point or zero-value
register can not appear during each execution. The computation amount required
for Algorithm 3 is nD + nA, which is the same as Algorithm 2. The number of
variables necessary for computation is only 3.

3.2 Our generalized countermeasure

Our basic countermeasure BRIP can be generalized to a faster method with a
pre-computed table since BRIP makes use of the binary expansion from MSB.
We may note that the binary expansion from LSB can not be easily generalized
to a faster method with a pre-computed table.

As for methods of using a pre-computed table, there are mainly two methods:
the window method [18] and the extended binary method [17, 32]. The extended
binary method is originally used to compute two exponentiations aP +bQ, which
is applied to compute one exponentiation as follows [32]. Let d =

∑n−1
i=0 di2

i and
n be even.

1. Divide d into two components of d = b ‖ a, where b = (dn−1 · · · dn

2
)2 and

a = (dn

2
−1 · · · d0)2.

2. Compute Q = 2
n

2 P .
3. Set a pre-computed table {P,Q, P + Q}.
4. Compute aP +bQ in the extended binary method by using the pre-computed

table.

The detailed algorithm is shown in Algorithm 4.

Algorithm 4 (Extended-binary algorithm with 2 divisions)
Input: d, P
Output: dP
1. Set d = b ‖ a, b = (bn

2
−1 · · · b0)2 = (dn−1 · · · dn

2
)2, and a = (an

2
−1 · · · a0)2 =

(dn

2
−1 · · · d0)2.

2. T1 = P, T2 = 2
n

2 P, T3 = T1 + T2, and T0 = O.

3. for i = n
2 − 1 to 0

T0 = 2T0.



if (ai, bi) = (1, 0) then T0 = T0 + T1.

elseif (ai, bi) = (0, 1) then T0 = T0 + T2.

elseif (ai, bi) = (1, 1) then T0 = T0 + T3.

4. output T0.

Going back to the countermeasure using a pre-computed table, it is necessary
for both the extended binary and window methods to make power-consumption
pattern same in order to be resistant against SPA. In the case of the window
method, some SPA-resistant methods are proposed in [21, 22, 24]. However, all
of these are not resistant against RPA or ZPA even if they are combined with
the methods of RC and RPC. In the case of the extended binary method, up to
the present, any SPA-resistant method has not been proposed.

Our generalized method is both SPA and DPA-variant resistant, which is able
to reduce the computation amount with a pre-computed table. Our sophisticated
idea lies in the length of representation of 1 = (111 · · · 11)2, which is adjusted to
be applied on any bit length of d and output the same executed pattern, while
holding down the additional compuation and memory amount. As a result, our
method is SPA-resistant naturally. In the following, two algorithms based on the
extended-binary and the window methods are described. The extended-binary-
based method is more efficient than window-based method although extended-
binary method usually does not work on a single exponentiation as efficient as
the window method.

Our extended-binary-based method with RIP Let us show our extended-
binary-based method with RIP, which is called EBRIP for short.

1. Choose a random point R.
2. Let the number of divisions be t.
3. Adjust n to be the least common multiple n′ of t and n by setting 0 to MSB

of d (n′ < n + t), where

d′ = 0 · · · 0 dn−1 · · · d0.

4. Divide d′ into t components (n′

t
= k) of d′ = αt−1 ‖ · · · ‖ α1 ‖ α0, that is,

αt−1 = 0 · · · d(t−1)k

...
α1 = d2k−1 · · · dk

α0 = dk−1 · · · d0

1 = 1 1 · · · 1

5. Compute Pi = 2kiP for i = 1 to t − 1. (Set P0 = P ).
6. Compute a pre-computed table Tt = {Σt−1

i=0aiPi − R (ai ∈ {0, 1})}, which
consists of 2t points.

7. Compute α0P0 + · · · + αt−1Pt−1 + 1R in the way of the extended binary
method.



Algorithm 5 shows the case of t = 2 and an even n for simplicity. Let us dis-
cuss the resistance, computation amount, and memory amount. As for SPA, the
power-consumption pattern is not changed for any initial point R and any secret
key d thanks to the expansion of 1, and EBRIP is thus secure against SPA. We
may note one remarkable point that the length of expansion of 1 is not fixed to n
but adjusted to ⌈n

t
⌉+ 1(< n). As a result, it realizes more efficient computation

than the window-based method. Moreover, under the assumption that an initial
point R is completely random, EBRIP is secure against DPA, RPA, and ZPA, as
we mentioned in Section 3.1. As for the computation amount, EBRIP consists of
these parts: compute base points P1, · · · , Pt−1, a pre-computed table Tt, and the
main routine. The computation amount for base points, Tt, or main routine is
(t−1)n′

t
D, 2tA, or n′

t
D + n′

t
A, respectively. Thus, the total computation amount

is n′D + n′

t
A + 2tA. On the other hand, the number of points in Tt is 2t, which

includes a random point R. EBRIP needs one more point of variable to execute.
Thus, the necessary memory is 2t + 1 in total.

Algorithm 5 (EBRIP (2 divisions))
Input: d, P
Output: dP
1. R =randompoint().
1. Set d = b ‖ a, b = (bn

2
−1 · · · b0)2 = (dn−1 · · · dn

2
)2, and

a = (an

2
−1 · · · a0)2 = (dn

2
−1 · · · d0)2.

2. T4 = P, T3 = 2
n

2 P, T0 = R, T1 = −R, T2 = T1 + T4, T3 = T1 + T3 and

T4 = T3 + T4.

3. for i = n
2 − 1 to 0

T0 = 2T0.

if (ai, bi) = (0, 0) then T0 = T0 + T1.

elseif (ai, bi) = (1, 0) then T0 = T0 + T2.

elseif (ai, bi) = (0, 1) then T0 = T0 + T3.

else then T0 = T0 + T4.

4. output T0 + T1.

Our window-based method with RIP Our window-based method with RIP
is summarized as follow, which is is called WBRIP for short.

1. Choose a random point R.
2. Set the width of window to be w.
3. Adjust n to be the least common multiple n′ of w and n by setting 0 to MSB

(n′ < n + w) of d, where

d′ = 0 · · · 0 dn−1 · · · d0.

4. Compute R′ = −(2w − 1)R.
5. Set a pre-computed table Tw = {R′, P + R′, 2P + R′, 3P + R′, · · · , (2w −

2)P + R′, (2w − 1)P + R′}, where the number of points in Tw is 2w.



6. Compute (0 · · · 0 dn−1 · · · d0
︸ ︷︷ ︸

n′

)2P+(1 11 · · · 11
︸ ︷︷ ︸

n′

)2R in the way of window method

by using Tw.

Let us discuss the security, the computation amount, and the memory amount.
Power-consumption pattern is not changed for any random R and any secret
key d thanks to the expansion of 1. This is why WBRIP is resistant against
SPA. This means that WBRIP is secure against SPA without any additional
modification on the window method seen in [21, 22, 24]. Furthermore, under the
assumption that an initial point R is completely random, our method is resistant
against DPA, RPA, and ZPA. Next we investigate the computation amount of
WBRIP. WBRIP consists of three parts: compute an intermediate point R′, a
pre-computed table Tw, and main routine. The computation amount of R′, a
pre-computed table Tw, or main routine is wD + A, (2w − 1)A, or n′

w
A + n′D,

respectively. Therefore, the total computation amount is n′D+ n′

w
A+2wA+wD,

where n′ < n + w. It is not as efficient as the extended-binary-based method
since the length of expansion of 1 is fixed to n′ to reduce the number of points
in Tw, which is the same as that in Tt for t = w. If we change the length of
expansion of 1 to a shorter length like n, then Tw must include other points
and thus the size of Tw becomes larger. Finally we discuss the memory amount
necessary to execute WBRIP. The number of points in Tw is 2w, which includes
a random point R. Additional one variable is necessary for computation. Thus,
the necessary memory is 2w + 1 points in total.

As a result, compared with EBRIP, WBRIP needs more computation amount
with the same memory amount.

4 Performance

From the point of view of computation and memory amount, we compare our
countermeasures BRIP and EBRIP with the previous method ES [4], which
are resistant against SPA and DPA variants. The previous SPA-resistant win-
dow methods[21, 22, 24] are not resistant against RPA or ZPA even if they are
combined combined with RC or RPC as we mentioned before. Thus, these SPA-
resistant window methods have to be combined with ES to be resistant both
RPA and ZPA. As a result, the computation and memory amount would be
less efficient than WBRIP, which is not so efficient as EBRIP. Table 1 shows
the comparison, where M or S shows the computation amount of modular mul-
tiplication or modular square on the definition field, respectively. We assume
that S = 0.8M as usual. In all cases of BRIP, EBRIP, and ES, the Jacobian
coordinate is the most efficient, and thus we use the Jacobian coordinate to
compute the total number of modular multiplications. Table 1 shows two types
of computation amount. One gives the computation amount in the case of 160-
bit definition field. The other gives the average computation amount in each
bit, which does not depend on the size of definition field. In order to discuss
the efficiency generally, the average computation amount in each bit is useful.



We note that EBRIP can fully make use of the technique of m-repeated elliptic
curve doublings [11] although it computes from MSB. Because pre-computation
of base points requires m-repeated elliptic curve doublings.

BRIP can compute dP in the computation amount of 160D + 160A with
3 points. The computation amount in each bit is 24.0M , which is the same as
that of ES. EBRIP with t = 2 can compute dP in the computation amount
of 160D + 84A with 5 points. The computation amount in each bit is 16.0M ,
which is reduced to only 66% of ES. EBRIP with t = 4 can execute dP in the
computation amount of 160D+56A with 17 points. In this case, the computation
amount in each bit is 12.9M , which is reduced to only 54% of ES. Note that
t = 4 is the fastest when the size of definition filed Fp is 160.

Table 1. Comparison of countermeasures

memory amount computation amount† computation amount
(#points, #scalar) #D + #A #M + #S in each bit

ES [4] (4, 2) 160D+160A 2856M + 1600S(3840M) 16M + 10S(24.0M)

BRIP (3, 0) 160D+160A 2856M + 1600S(3840M) 16M + 10S(24.0M)
EBRIP(t = 2) (5, 0) 160D+84A 1648M + 1140S(2560M) 10.3M + 7.1S(16.0M)
EBRIP(t = 3) (9, 0) 162D+62A 1392M + 1008S(2198M) 8.7M + 6.3S(13.7M)
EBRIP(t = 4) (17, 0) 160D+56A 1312M + 948S(2069M) 8.2M + 5.9S(12.9M)

† This shows the computation amount in the case of 160-bit definition field.

5 Concluding Remarks

In this paper, we have presented countermeasures of BRIP and EBRIP that are
resistant against RPA, ZPA, DPA, and SPA. Our countermeasure BRIP does not
require any pre-computed table and can get dP in the computation of approx-
imately 24.0 M in each bit. EBRIP with t = 4 can get dP in the computation
of approximately 12.9 M in each bit with using a pre-computed table and one
more point of 17 points in total. Both RPA and ZPA are easily applied to the
hyper elliptic curve cryptosystems because a divisor in a hyper elliptic curve
consists of more than two parts, some of which would happen to become 0. Our
countermeasure improves the addition-chain itself and not use a specific feature
of an elliptic curve such as a coordinate system. Therefore, BRIP and EBRIP
can also be generalized to deal with hyper elliptic curve cryptosystem. We will
describe BRIP and EBRIP on a hyper elliptic curves and discuss the efficiency
in our final paper.
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