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Abstract. We focus on the GPS identification scheme implementation
in low cost chips, i.e not equipped with a microprocessor (such as those
embedded in some prepaid telephone cards or RFID tags). We present
three solutions to decrease the overall number of manipulated bits during
the computation of the answer by a factor two or three. All the solutions
stand in the use of low Hamming weight parameters. The first one con-
sists in building the private key as the product of low Hamming weight
sub-keys. The second one suggests the choice of full size low Hamming
weight private keys. Finally, the third solution corresponds to a variant
of the basic GPS scheme in which large challenges with low Hamming
weight are used. Whereas the first solution does not withdraw the need
for a multiplier in the chip, the two other ones are ideally suited to low
cost chips as they can be implemented with only one serial addition.
Therefore, as a surprising result, one entity can be public key authenti-
cated by doing one on-line addition only at the time of authentication!

Keywords: Low cost chips, GPS identification scheme, RFID tags,
zero-knowledge.

1 Introduction

In 1989, C.P. Schnorr [11] presented an asymmetric identification scheme, based
on the discrete logarithm modulo a prime integer problem, which contains three
passes: the prover first sends a commitment, then receives a challenge from the
verifier and finally sends an answer depending on both the challenge and private
parameters.

One year before, J.J. Quisquater and L.C Guillou had presented the algo-
rithm GQ [6], based on the e-th root modulo a composite integer problem, which
also contains three passes. In both schemes, the first step consists in computing
a commitment with one modular exponentiation; but, on average, the exponents
used in the Schnorr scheme have a larger binary size than (the constant one) in
GQ: as a consequence, computing commitments in the Schnorr scheme requires
the manipulation of more bits than in GQ. Whereas the challenge steps are
identical, a second difference between the two schemes stands in the answer: the



Schnorr one only requires one modular multiplication and one modular addition
while GQ requires another (small) modular exponentiation. Thus, in this third
step, the GQ answer computation manipulates more bits than the Schnorr one.

Moreover, in his article, C.P. Schnorr presented a preprocessing algorithm to
efficiently calculate the commitments. A few years later, P. de Rooij [2] proved
this solution to be insecure. However, as in most discrete-logarithm-based iden-
tification schemes, the commitment can be computed in advance, so that it does
not require the exponentiation to be efficiently computed. Moreover, one can
even envisage that the commitment be computed by another entity, namely a
trusted third party, subsequently stored in the non-volatile memory of the chip.
Thus, the Schnorr scheme, as claimed by its author, is well-designed for iden-
tification by smart cards as the computation power can be limited to the one
needed to perform one modular addition and one modular multiplication.

With this scheme, C.P. Schnorr was able to efficiently use (ordinary) smart
cards for authentication. But, the price of such devices still limits their wide
development. Thus, chips with small computation power, typically between 500
and 2000 logical gates, called low cost chips in the following, represent a good
alternative: their low price makes it usable everywhere. But, for such devices,
the Schnorr scheme is no longer well-designed. Indeed, performing modular re-
ductions and even multiplications (see subsection 2.3) are quite difficult for these
devices. Then, new schemes appear, trying to modify the answer structure to
decrease the computation cost.

In 1991, the GPS scheme was introduced by M. Girault in [3] and proved
secure by J. Stern and G. Poupard in 1998 [10]. This scheme is quite similar to
the Schnorr one except it is based on the discrete logarithm modulo a composite
integer problem and the answer computation is easier than the Schnorr one,
as it only contains one multiplication and one addition without any modular
reduction.

At Financial Cryptography 2002, T. Okamoto, M. Tada and A. Miyaji pre-
sented the OTM scheme [8] based on the discrete logarithm problem; the new
fact was the absence of multiplication in the answer which only contains one
addition and one modular reduction. But one year later, in the same conference,
J. Stern and J.P. Stern presented an efficient attack against the OTM scheme
[12]. The authors presented at the same time a new scheme also based on the
discrete logarithm problem; once again the main fact stood in the answer which
contains no multiplication; its computation is based on a new easy operation
called dovetailing (this scheme is described in appendix B).

At Information Security Conference 2002, T. Okamoto, H. Katsuno and E.
Okamoto [14] presented another variant of GPS, but which does not substantially
decrease the number of operations of the basic GPS scheme.

In this paper, we continue the saga of implementing cryptographic schemes
in low-cost devices. We focus on the basic GPS scheme which seems to be the
best designed for such a goal: the absence of modular reduction makes the op-
timization of the multiplication very important as most of the manipulated bits
come from this operation (whereas in the Schnorr scheme, it also comes from



the modular reduction). So, we first recall the GPS scheme with its computa-
tion and security properties. After recalling the baby-step giant-step algorithm
in part 3, we introduce two new types of private keys: in part 4, the private key
is the product of low Hamming weight numbers such that it improves the an-
swer computation cost in comparison with the use of GPS with classical private
keys, or the Stern-Stern scheme. In part 5, we present full size private keys with
low Hamming weight and such that the non-zero bits are far enough from each
other: a direct application is for low cost chips, as the answer computation only
requires one addition so that it can be done quickly and sequentially. In part 6,
we focus on the type of challenges sent to the prover. Thus, we present a variant
of the classical GPS scheme in which a new set of challenges is used; we also give
security proofs of such a variant. Once again, such sets make this variant of GPS
ideally designed for low cost chips. With reasonable sizes of parameters, we can
achieve a level of security around 32, an adequate value in many environments,
by only computing one on-line addition. In a final part, we compare these three
solutions with the existing schemes: the basic GPS one and the Stern-Stern one.

2 The Basic GPS Identification Scheme

2.1 The GPS scheme

The GPS identification scheme from [3, 10], such as labellized by the NESSIE
project [4] in 2003, is an interactive protocol between a prover and a verifier
which contains one or several rounds of three passes. It is based on the discrete
logarithm modulo a composite integer problem: during a round of authentication,
a user proves his knowledge of a private value s related to the public value v by
the equation: v = g−s mod n. More precisely, a prover holds a private key s and
a public key (n,g,v) such that:

– n = pq is the product of two prime integers such that factoring n is difficult
(thus, different sizes of n should be used depending on the fact that n is a
universal or individual public key),

– g is an element of Z
∗

n (Zn denotes the residue class ring modulo n and Z
∗
n the

multiplicative group of invertible elements in Zn); preferably g is of maximal
order modulo n,

– v = g−s mod n.

There are also four security parameters S, k, R and l defined as follows:

– S ≥ 160 is the binary size of the private key s,
– k is the binary size of the challenges sent to the prover and determines the

level of security of the scheme.
– R is the binary size of the exponents used in the commitment computation.

It is typically equal to R = S + k + 80.
– l is the number of rounds the scheme is iterated. Theoretically, l is polynomial

in the size of the security parameters; l is often chosen equal to 1.



Prover Verifier

choose r ∈ [[0, 2R[[
compute W = gr mod n

W
−−−−−−−−−→

choose c ∈ [[ 0, 2k[[
c

←−−−−−−−−

check c ∈ [[0, 2k[[
compute y = r + s× c

y
−−−−−−−−→

check y ∈ [[0, 2R − 1 + 2k+S[[
verify gyvc = W mod n

Fig. 1. The basic GPS identification scheme

2.2 Security of the scheme

We briefly recall the security properties of the GPS scheme (more details are
given in [10]).

– An honest prover is always accepted.
– It can be shown that if a dishonest prover is able to be authenticated with

a probability substantially greater than 2−k (the probability of guessing the
value of the challenge), then this prover can be used to recover the private
key. Thus, k is called the level of security of the scheme.

– Finally, it can be proved that a passive eavesdropper cannot learn informa-
tion about the private key even from “many” executions of the protocol.

2.3 Answer computation cost

The computational cost of the answer is expressed in bit additions (assuming
adding a t-bit number is equivalent to adding t times one bit). The answer y is
equal to the addition of r with the result of the product s × c. As the final goal
is to implement such a scheme in low-cost devices, the shift and add paradigm
seems to be an adequate implementation for the multiplication. On average, c
has a Hamming weight equal to k/2 so that adding s×c to r with this algorithm
leads on average to k/2 additions of a S-bit number so that the computation
cost is equal to kS/2 bit additions.

In a low cost chip, decreasing the number of bit additions is important but
it is not the essential. The essential is to make the operations as serial as pos-
sible, since (costful) RAM (Random Access Memory) is very small, read/write
operations in NVM (Non-Volatile Memory) are slow, and addressing is sequen-
tial rather than random. This is why, while the first method we propose only
decreases the number of bit additions, the two other ones propose to compute
the answer with one large number addition, a serial operation in essence.



3 The Baby-Step Giant-Step Algorithm and some
Variants

In this section, we recall Shanks’ baby-step giant-step algorithm [1] and some
variants, which will be used in the following sections.

3.1 The classical algorithm

This algorithm was presented by D. Shanks in order to find discrete logarithms
modulo n, where n is an integer (prime or not). Thus, given a public value v = gs

mod n with s a S-bit secret number (we suppose S is an even integer), it recovers
s in O(2S/2) in time and space. J.M. Pollard presented a variant [9] the running
time of which is still O(2S/2), but uses very little space.

Shanks’ algorithm consists in computing two lists of values: {gi mod n | 0 ≤
i ≤ m − 1} and {v × g−j×m mod n | 0 ≤ j ≤ m − 1} where m = ⌈2S/2⌉. In the
two sets, two values meet for one j0 and one i0 such that s = i0 + m × j0.

The efficiency of this algorithm stands in the fact that it “cuts” the value s
as an addition of two values.

3.2 Case of low Hamming weight secret exponents

In 1999, D.R. Stinson described variants in the case of low Hamming weight
secret exponents [13]. Thus, given a public value v = gs mod n with s a S-bit

secret number with an Hamming weight equal to t, it recovers s in O(S
(S/2

t/2

)

)

(assuming S and t are even integers).
The algorithm uses splitting systems : it splits the set [[0, 2S − 1]] in S/2 sets

Bi, 0 ≤ i ≤ S/2− 1, such that any subset of t/2 values of [[0, 2S − 1]] stands in a
Bk. Thus, with such systems, it finds a decomposition of the t positions of the
non-zero bits in two sets of t/2 values that stand respectively in one Bj0 and
one Bi0 . Finally, an exhaustive search over all the possible sets of t/2 elements
in each set Bj as in the classical algorithm (two lists) recovers the two t/2-sets
corresponding to the positions of the non-zero bits.

Once again, this algorithm “cuts” the value s as an addition of two values.

3.3 Case of secret exponents equal to a product in a group of

known order

Let G = 〈g〉 be a group of known order N , v be a public value equal to gs in G
where s is the product of two elements respectively picked in X1 and X2. This
variant takes advantage of the structure of s (we assume than N is larger than
all the possible values s) and recovers s in O(max(#(X1), #(X2))).

As described by J. Hoffstein and J.H. Silverman in [7], computing the two

sets {vj−1 mod N | j ∈ X1} and {gi | i ∈ X2} makes two values meet in the two
sets for one j0 and one i0; the value s is then equal to j0 × i0 mod N .

The practicality of this variant relies upon the fact that the order of the
group is known, which makes possible to compute the values j−1 mod N .



4 Low Hamming Weight Private Sub-Keys

In the second variant of the baby-step giant-step algorithm described in 3.3, note
that if the order is unknown, the algorithm cannot be applied. Hence, it becomes
possible to build a GPS private key as the product of smaller values, in order
to optimize the computation cost of the answer, and more generally to speed
up any multiplication involving the private key. A concrete solution consists in
selecting private keys as equal to the product of low Hamming weight sub-keys.

The GPS scheme has this particular feature that the group generator g is
of unknown order (at least to an enemy). As stated above, this can be used to
optimize the computation of the answer. In the following, we make more precise
the structure of the private keys that we suggest and the different properties it
needs to ensure to protect this particular implementation from existing attacks.

4.1 The structure of the private key

The construction of the S-bit private key s consists in choosing randomly t
numbers, s1, s2,. . . , st of respective binary sizes l1, l2,. . . , lt with n1, n2,. . . , nt

non-zero bits randomly located, such that s =
∏1

j=t sj .
A first constraint stands on such a decomposition: we impose that the s be

exactly (and always) a S-bit number. Thus, we need to take into account the
position of the non-zero bits and impose for each sj , a range of bit positions,
denoted by [[0, bj ]] (bj < lj), where the nj random bits are located such that even
if all the random bits in each sj correspond to the nj possible most significant
bits, we still obtain a S-bit value.

Finally, as in all schemes based on the discrete logarithm problem, the binary
size of the private key must be at least 160 so that the classical baby-step giant-
step algorithm has a complexity of around O(280) or more.

As explained below, the goal of this approach is to optimize the computation
cost of the answer y = r + s × c. The trick consists in first computing s1 × c,
then s2 × (s1c), and going on with the other factors sj . Thus, if c is a k-bit
number, computing s1 × c implies exactly n1 additions of a k-bit number and
the result value is a (k + l1)-bit number. Then, computing s2 × (s1c) implies n2

additions of a (k + l1)-bit number. If we generalize, (assuming adding a k-bit
number is equivalent to adding k times one bit) we obtain as a final cost for the

multiplication
∑t

j=1 nj × (k +
∑j−1

u=1 lu). Finally we need to add the number sc
to r which requires S + k bit additions. the answer computation cost is equal to
S + k +

∑t
j=1 nj × (k +

∑j−1
u=1 lu). To optimize this computation cost equation,

we need to minimize this expression considered as a function of t, lj , nj with
still the other constraints cited above.

4.2 Other security aspects

Since the last variant of baby-step giant-step algorithm cannot be used, per-
forming an exhaustive search seems to be the only way of retrieving s. So, the



different factors sj should be chosen such that the set of possible private keys is

large enough: typically 280 elements. It implies that:
∏t

j=1

(

bj+1
nj

)

≥ 280.

Moreover, to prevent our construction from being vulnerable to the Stinson
algorithm recalled above, we need to ensure that the Hamming weight of the
private keys is not too low. This can be achieved by choosing numbers nj such
that their product is great enough (depending on the private key binary size).

4.3 Numerical application

The number of factors t should preferably be equal to 2; in that case, the private
key s is the product of s1 of size l1 with n1 + 1 bits equal to 1 and s2 of size l2
with n2 + 1 bits equal to 1. To avoid the Stinson attack, we also suggest that
n1×n2 be great enough (more than 80 for example) in order to obtain a private
key with a large enough Hamming weight. Finally, if we look at the computation
cost equation, it becomes: S + k + n2 × (k + l1) + n1 × k which can be rewritten
as S + k × (n1 + n2 + 1) + n2 × l1.

For example, a 160-bit private key s can be chosen equal to s2 × s1 where s2

is a 142-bit number with 16 random bits chosen among the 138 least significant
ones and s1 a 19-bit number with 5 random bits chosen among the 16 least
significant ones. With such values, we obtain private keys of average Hamming
weight equal to 64, which is enough to prevent from the Stinson attack (since
the complexity is then around O(280)). The cost equation becomes 22×k+464.

5 Low Hamming Weight Full Size Private Keys

In this part, we focus on full size (i.e size of n) private keys which can be used in
GPS. Generally, using large private keys is not recommended for low cost chips.
Here we explain how to take advantage of a full size private key to obtain a very
efficient answer computation. Moreover, we also suggest in appendix A a way
for efficiently storing such private keys.

5.1 Description of the private key structure

This approach consists in using a full size private key with a few non-zero bits
which are distant enough to each other, so that multiplying a number with this
key comes to concatening shifted versions of this number.

More precisely, assuming k is the binary size of the challenges sent to the
prover, the non-zero bits of the private key must be separated by at least k − 1
zero bits. Thus, performing s× c only consists in writing disjoint blocks of bits,
each block representing the binary decomposition of the challenge. So, computing
the answer y = r+s×c can be performed sequentially as all the shifted challenges
are disjoint. The computation is then very well suited to low cost chips.

Moreover, the computation cost of the answer is small: if we denote by t the
Hamming weight of s, it consists of t additions of blocks of k bits so that the
computation cost of the answer is equal to k × t bit additions.



Fig. 2. A private key with a Hamming weight equal to 5

5.2 Security aspects

We first need to obtain a key space large enough; so let us explain how to
determine it for a S-bit private key with a Hamming weight equal to t and with
non-zero bits separated by at least k − 1 zero bits.

As the k−1 bits following a non-zero bit must be equal to zero, we can reduce
the evaluation of such private keys cardinality to the one of private keys of size
S − (t − 1) × (k − 1) − 1 with a Hamming weight equal to t − 1 (subtracting
(t − 1) × (k − 1) corresponds to the numbers of bits necessarily equal to zero
and 1 corresponds to the Sth bit, equal to 1). Thus, with this reduction, the
cardinality is obviously equal to the number of ways to locate t−1 non-zero bits
among S − (t − 1) × (k − 1) − 1, which is equal to

(

S−(t−1)×(k−1)−1
t−1

)

.
So let us now explain how to construct efficiently such private keys. The first

step consists in finding integer value nbfree and t such that
(

nbfree

t−1

)

is greater
than a required key space size. Then, in a second step, depending on the level
of security required denoted by k, we obtain the private key binary size, S, as
follows : S = nbfree + (t − 1) × (k − 1) + 1.

The second security point focus on the Stinson algorithm, recalled before.
The complexity of the algorithm is then around

(nbfree/2
t/2

)

. As shown in the

below numerical application, this condition is generally ensured.

5.3 Numerical application

If we use 600 free zero bits and a private key with a Hamming weight equal to 29,
the key space cardinality is then equal to

(

600
28

)

> 2159 and the complexity of the

Stinson attack is then around
(

300
14

)

> 279. If we now want to use the private key
in environments requiring at most a level of security k = 32, we finally obtain
private keys binary size S = 600 + 28 × 31 + 1 = 1469 (for k = 16, S = 1021).

6 Low Hamming Weight Challenges

In this section, we present a new way of selecting challenges, which may be of
independent interest. Usually, the set of challenges is chosen as an interval of



integers [[0, 2k[[, where k is the level of security of the scheme. But it can also
be defined as a set of values verifying a particular property, in order to achieve
a specific goal. For example, in the following, we show how to speed up the
computation of the answer in GPS scheme by defining a challenge as a sum
of “sufficiently distant” powers of two (so that multiplying by the private key
comes to adding several shifted and disjoint versions of the key). This is quite
similar to the solution presented in the previous section, except that the roles
of the private key and the challenge are swapped. But, contrary to it (and also
in section 4) in which specific private keys are suggested but the protocol is not
altered, the present one slightly modifies the protocol so that the security proofs
must be adapted (which can be done in a straightforward manner).

6.1 Security

In most zero-knowledge interactive protocols [5], the verifier selects a random
challenge in an interval of integers [[0, C[[, and it can be proven (by an “extrac-
tion” method) that, at each protocol iteration, a fake prover can answer to at
most one value of the challenge. In other words, the probability of a successful
masquerade is (substantially) upper bounded by 1/C. The logarithm in base 2
of C is often reffered to as the “level of security” of the scheme, expressed in bits.
For example, if this level is equal to 32 bits, an enemy will remain undetected
with probability at most 2−32.

In the Schnorr scheme, the challenges are randomly picked in the interval
[[0, 2k[[, 22k < q, where q is the order of the subgroup which is used. But they
actually could be chosen in any subset of the interval [[0, q[[ of cardinality 2k,
without changing anything else in the protocol: the security proof (the so-called
“soundness property”) would remain valid. Note however that not any integer
subset of cardinality 2k would be convenient, since two challenges which are
equal modulo q call for the same answer by the prover.

In the GPS scheme, the situation is different in two ways. First, the size
R of the exponent used in the commitment computation must grow with the
maximum size of the challenge, in order to maintain the zero-knowledge property.
Second, any integer subset of cardinality 2k (with a “not too large” greatest
element) can take the place of the interval [[0, 2k[[, since the order of the subgroup
is, in this case, unknown (at least to the enemy). More precisely:

Definition 1 Let n be a modulus and g an element of Z
∗

n . Let S be an integer
smaller than the order of g. The short discrete logarithm problem is to find
s in[[0, S[[ given gs mod n.

Assumption 1 The short discrete logarithm problem is polynomially intractable.

Theorem 1 (using notations of section 2). Let GPS* the variant of GPS in
which the set of challenges is an integer subset of cardinality B bounded by the
integer C. Then GPS* is a (statistically) zero-knowledge interactive proof of
knowledge of a short discrete logarithm if l, C and B are polynomial in |n|,
lSC/R is negligible and log(|n|) = o(l × logB).



Proof. (Hints) In the classical GPS, the challenges are randomly picked in the
set [[0, 2k[[ and the value 2k, used during the security proofs, has two different
goals. Indeed, it represents both the cardinality of the set and its upper bound.
So, in order to correctly establish the security proofs of GPS*, we rely on the
classical GPS proofs given in [10], by separating the two goals of 2k.

Completeness. Nothing is modified to the classical proof, as it only consists
in the verification of the equation gyvc = W mod n.

Soundness. We can remark, as in the classical GPS, that the probability of
impersonation is equal to 1/Bl, so that we need log(|n|) = o(l×logB). Moreover,
during the extraction, the running time is linear in l so that l must be polynomial
in |n|. Finally, an exhaustive search over values smaller than C is required so
that C must be polynomial in |n|.

Statistical zero-knowledge. First, to generate valid triplets (W ,c,y), and
assuming that c is not randomly chosen (in the case of a dishonest verifier), we
need to try B triplets in average to obtain one with a valid c. In order to obtain l
valid triplets, we need on average l×B tries. So l×B must be polynomial in |n|.
In a second part, we need to compare the distribution of a simulation and a real
communication. Relying on the proof given in [10], lSC/R must be negligible.

This approach leads to a new secure solution to speed up the multiplication
in the GPS scheme, by using specific challenges. Let us now present how they
are constructed.

6.2 A new set of challenges: the property

The computation of the answer y in GPS requires an addition and a multipli-
cation (y = r + s × c). Whereas in the previous part we focused on the private
key construction to decrease the cost of the multiplication, here we deal with the
structure of the challenges. Roughly, our proposal consists in using large and low
Hamming weight challenges with the non-zero bits far enough from each other.

More precisely, if r and s are respectively R and S-bit integers, the challenge
size k should be such that R = S + k + 80. Thus, adding the product s × c to r
mainly transforms the R − 80 least significant bits of r.

So, if we denote by Bs the binary representation of the private key s, the
present solution consists in using challenges such that adding the product s × c
to r only implies the addition of disjoint blocks Bs on the R − 80 bits of lowest
Hamming weight of r. To obtain disjoint blocks Bs, the challenges only need to
have non-zero bits separated by at least S − 1 zero bits. Thus, with this type of
challenges, there is no longer any multiplication but only one serial addition of
r with a large number composed of disjoint blocks Bs.

Let us now consider the number of such challenges for a given R and S. Let
u be the quotient of the Euclidean division of R − 80 by S; we can add at most
u disjoint blocks representing the private key. The set C of challenges is:

C =







t
∑

j=1

2ij | ∀j ∈ [[1, t − 1[[ ij+1 ≥ ij + S, i0 ≥ 0, it < R − 80 − S, t ≤ u









Fig. 3. A large challenge with an Hamming weight equal to 5

6.3 Cardinality of the set

Let us denote by NBR,S(h) the number of challenges in C inducing h ≤ u
additions of blocks Bs for a S-bit private key s and commitment exponents r
of size R. First, we consider in the following that the challenges size is at most
R−S−80 bits. As in the previous section, for a given h, NBR,S(h) is also equal
to the number of ways to locate h non-zero bits among R− 80−S − h× (S − 1)
since for each non-zero bit, the S−1 following ones must be equal to zero. So we
obtain that NBR,S(h) =

(

R−80−S−h×(S−1)
h

)

. Then, the cardinality of C is equal
to:

u
∑

h=0

(

R − 80 − S − h × (S − 1)

h

)

It is quite obvious that NBR,S(h) is higher for some h around u. However, in
some cases, it can be more interesting to limit h to u− 1 or u− 2 as the level of
security is not really modified and the computation cost can be decreased. For
example, if S = 160 and R = 880, we obtain u = 5 and NB880,160(5) = 1! Thus
limiting h to 4 decreases the computation cost downto one addition of S bits.

6.4 Numerical application

With this new type of challenges, we can achieve a level of security of around
32 if R = 1088 and S = 160 (using challenges with an Hamming weight equal
to 5 and with a binary size at most equal to 850). This solution can be very
efficient in environments using very little power such as low cost chips. Indeed,
this solution only increases the regeneration time of the value r.

7 Comparison of the Answer Computation Costs

In this section we compare the three new solutions presented in this article with
the existing efficient schemes: the GPS and the Stern-Stern schemes. We recall
that these two schemes respectively lead on average to an overall number of kS/2
and kS/3 bit additions.

In the following table, S is the private key size and HW its Hamming weight.



Existing solutions Our solutions

Level Basic GPS Stern-Stern first solution second solution third solution
of S=160 S=160 S=160 S=1469 S=160

security HW unknown HW unknown HW around 64 HW=29 HW unknown

16 1280 853 816 464 480 (380 3)

32 2560 1706 1168 928 800 (850 5)

64 5120 3413 1872 1600 (1800 10)

80 6400 4266 2224 1920 (2270 12)

Fig. 4. Number of bit additions in answer computation

To compare with the solution in which the private key is the product of low
Hamming weight sub-keys, we use the numerical application given in section 4:
s2 a 142-bit number with 16 random bits and s1 a 19-bit number with 5 random
bits. The computation cost is equal to 22k + 464.

For the second solution with full size low Hamming weight private keys, we
also use the given example where s is a 1469-bit number with a Hamming weight
equal to 29 (which can be used for level of security until 32).

For the last solution, which makes use of large and low Hamming weight
challenges, three figures are given: the first one corresponds to the computation
cost of the answer and the two last ones into brackets correspond respectively
to the challenge binary size needed to obtain the target level of security and the
smallest number of disjoint shifts of the private key that can be added to obtain
the wanted level.

8 Conclusion

We have presented three new solutions to improve the implementation of the
GPS scheme in low cost chips. Two of them use specific private keys the con-
struction of which seems to resist to the current state of the art. The third
solution lets the private key unchanged and only implies the use of particular
challenges. The latter solution is as secure as the standard GPS scheme and is
also the one which best improves the computational cost of the answer. The
consequence of this solution is a very efficient implementation in low cost chips,
so that one can be public-key authenticated by doing one on-line addition only!
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A Full Size Secret Key Storage

We denote by k the challenge binary size, by S the secret key binary size and
by t the private key (low) Hamming weight. Moreover, we also consider that the
level of security cannot be greater than k. Once the maximum level of security
is determined, the private key storage directly depends on k, so that k cannot
be changed after the creation of the card.

This (non unique) method consists in using private keys the non-zero bits of
which are quite regularly located.

Indeed, assuming t − 1 divides S − 1 (otherwise, we can increase S), we can
divide the S−1 bits (the Sth one is equal to 1) of the private key in t−1 intervals
of (S − 1)/(t − 1) bits, the position of the least significant bit of each interval
corresponding to a multiple of (S − 1)/(t− 1). In any interval of (S − 1)/(t− 1),
there is one block of k bits used to write the shifted challenge so that there are
(S−1)/(t−1)−k free bits in the interval and as a consequence (S−1)/(t−1)−k+1
possible positions to write a non-zero bit in the interval. Thus, the private key
can be written as:

s = 2S−1 +

t−1
∑

i=1

2(i−1) S−1

t−1
+ji , ∀ 1 ≤ i ≤ t − 1, 0 ≤ ji ≤

S − 1

t − 1
− k



Thus, storing the private key can be reduced to the storage of the t−1 values
ji of constant size log2((S − 1)/(t− 1) − k + 1) + 1; some values can be written
with less than log2((S−1)/(t−1)−k+1)+1 bits, but we would rather add zero
bits to obtain the above size, so that we only need to store the value ji without
its binary size: storing s requires (t − 1)(log2((S − 1)/(t − 1) − k + 1) + 1) bits.

For example, with this method, we can use a 1485 bit private key with an
Hamming weight equal to 29 and in environments requiring a level of security
at most equal to 32. Storing this private key leads to the storage of 28 numbers
equal at most to 21 (= 24 + 22 + 20), so that 28 × 5 = 140 bits are necessary to
store such private keys.

B The Stern-Stern Scheme

B.1 The scheme

Like GPS, it is based on the discrete logarithm modulo a composite integer
problem. The private key is an odd s such that 1 = gs mod n where g and n are
public parameters. There are also four security parameters R, S, k and l which
have the same goal and properties than in the basic GPS.

Prover Verifier

choose r ∈ [[0, 2R[[
compute W = gr mod n

W
−−−−−−−−−→

choose c ∈ [[0, 2k[[
c

←−−−−−−−−

check c ∈ [[0, 2k[[
compute y = Ds(r, c)

y
−−−−−−−−→

check 0 < y < 2R − 1 + 2k+S

verify c = y mod 2k

verify gy = W mod n

Fig. 5. The Stern-Stern scheme

B.2 The dovetailing operation

Let us now explain how to compute the answer practically. The operationDs(r, c),
called dovetailing, consists in making the k-bit number c appear as the k least
significant bits of r by adding adequate shifts of s.

Notations. For any integer b, we denote by |b| its binary size and by bj , the
(j + 1)th bit of b starting from the least significant bit; thus b = b|b|−1 . . . b1b0.



First method. In a first way, the authors perform the dovetailing operation by
only using s0 (which is equal to 1 since s is odd). The answer is built progres-
sively; the value y is first initialized with the value r. Then, we look at the bit
r0; if it is equal to c0, then nothing is done, else we add s to r so that the wanted
bit appears. We go on with the following bits. For example, if ri is different from
ci, then we need to add an adequate shift of s, i.e 2i × s, such that s0 location
coincides with the one of ri. We follow this algorithm until rk.

With this method, on average, k/2 bits over the k least significant bits of r
need the addition of s, a S bit number. Thus, we obtain on average an overall
number of kS/2 bit additions.

Second method. In a second way, the authors suggest the use of a private key
the two least significant bits of which are equal to 01. Thus, they transform the
value of r not only by adding, but also by subtracting some shifts of the private
key. Indeed, when ri is not equal to ci, instead of automatically adding a shift of
s, they first compute t = 2ri+1 + ri − 2ci+1 − ci mod 4. Depending on the value
of t, they determine if it is better to add (t = 3) or to subtract (t = 1) a shift of
the private key in order to obtain the wished value for ri+1 at the same time.

With this second method, on average, one bit over three requires one addition.
The number of bit additions falls down from k/2 to k/3 so that, finally we obtain
kS/3 bit additions.


