
A New Baby-Step Giant-Step Algorithm and

Some Applications to Cryptanalysis

Jean Sébastien Coron1, David Lefranc2 and Guillaume Poupard3

1 Université du Luxembourg
Luxembourg

coron@clipper.ens.fr
2 France Télécom

42 rue des Coutures
F-14066 Caen, France

david.lefranc@francetelecom.com
3 DCSSI Crypto Lab

51 Boulevard de Latour-Maubourg
75700 Paris 07 SP, France

Guillaume.Poupard@m4x.org

Abstract. We describe a new variant of the well known Baby-Step
Giant-Step algorithm in the case of some discrete logarithms with a spe-
cial structure. More precisely, we focus on discrete logarithms equal to
products in groups of unknown order. As an example of application, we
show that this new algorithm enables to cryptanalyse a variant of the
GPS scheme proposed by Girault and Lefranc at CHES 2004 conference
in which the private key is equal to the product of two sub-private keys of
low Hamming weight. We also describe a second attack based on a known
variant of the Baby-Step Giant-Step algorithm using the low Hamming
weight of the sub-private keys.

Key words: Baby-Step Giant-Step algorithm, discrete logarithm, GPS sche-
me, binary trees, low Hamming weight.

1 Introduction

In 1976, public key cryptography was introduced by Diffie and Hellman [2]. In
their seminal paper, the authors originally explained how to use a mathematical
assumption, namely the discrete logarithm problem, to obtain a key establishment
protocol.

Since this first result, many identification schemes using the discrete loga-
rithm problem have been proposed [4, 8, 15] and the security of this problem
has been extensively studied (see [9] for a survey). Two major results are the
Baby-Step Giant-Step algorithm due to Shanks [1] and the rho method due to
Pollard [12]. These algorithms, used to recover discrete logarithms, are now the
references to provide lower security bounds for the size of discrete logarithms
since they apply as a generic method in any mathematical structure.

One of the main advantages of discrete-logarithm-based identification or sig-
nature schemes is that, when used with precomputations, they generally require
only few computations for the prover or the signer so that such schemes are well
designed for an integration in low cost chips. For example, in the well known
Schnorr identification scheme [15], a prover using precomputations can be au-
thenticated at the cost of one modular multiplication and one modular addition.
On the opposite, in a RSA-based [14] identification schemes [3, 6], the prover
usually has to compute at least one modular exponentiation.

Another attractive discrete-logarithm-based identification scheme is the GPS
scheme introduced by Girault [4] and proved secure by Poupard and Stern [13].
Like the Schnorr scheme, if used with precomputations, the GPS scheme is very
efficient since, during the execution of the protocol, the prover has only to com-
pute one addition and one multiplication without any modular reduction. With
the appearance of new technologies, like RFID tags or more generally very low
cost chips, in which even a multiplication may be too difficult to compute, em-
bedding cryptographic protocols in such devices is now becoming a new chal-
lenge. One solution may be the use of discrete-logarithm-based schemes since
they already provide efficient solutions for low cost chips. However, to better the
integration of such schemes in very low cost devices, improvements are generally
required and two different approaches can be distinguished.

The first one consists in designing new schemes with new computation re-
quirements. For instance, Okamoto, Tada and Miyaji [11] proposed a new identi-
fication scheme based on the discrete logarithm problem in which a prover using
precomputations has only to compute one modular reduction and one addition.
However, Stern and Stern [17] proved this scheme to be insecure with the sug-
gested parameter sizes. In addition to this cryptanalysis, they also proposed a
variant of the GPS identification scheme, based on a new operation called dove-
tailing, which is more efficient than the classical GPS scheme. Finally, Okamoto,
Katsuno and Okamoto [10] suggested another variant of the GPS identification
scheme in which the original multiplication can be replaced by additions of sev-
eral private keys.

The second approach consists in using existing schemes but with specific pa-
rameters. A classical example may be the use of a low Hamming weight (num-
ber of non zero bits in the binary representation) discrete logarithm to decrease
the computation cost of the associated exponentiation. However, Stinson [18]
proposed some Baby-Step Giant-Step variants for such discrete logarithms. At
CHES 2004 conference, Girault and Lefranc [5] proposed some variants of the
GPS identification scheme, well designed for an integration in RFID tags. One
of these variants is based on the use of specific discrete logarithms equal to prod-
ucts of low Hamming weight numbers. For lack of security guarantees on such
private keys, the authors recalled the state-of-the-art on the different Baby-Step
Giant-Step algorithms and then checked that it was not efficiently applicable
to their new type of private keys. In this paper, we present a new variant of
Baby-Step Giant-Step algorithm to attack such private keys. We believe that
this variant is also of independent interest.

2

This paper is organized as follows. After recalling some useful variants of
the Baby-Step Giant-Step algorithm in Section 2, we describe in Section 3 our
new algorithm for discrete logarithms equal to products of sub-private keys in
groups of unknown order. In Section 4, we briefly recall the GPS scheme and the
Girault-Lefranc private keys. Then we present two attacks on such private keys:
the first one is an application of our new algorithm and the second one makes
use of a known variant of the Baby-Step Giant-Step algorithm.

2 Baby-Step Giant-Step Algorithms

In this section, we recall Shanks’ Baby-Step Giant-Step algorithm [1] and some
useful variants. We first specify the notations we use.

Notations Let G = 〈g〉 be a finite cyclic abelian group generated by the ele-
ment g and written multiplicatively. Let n be the order of G. As a consequence,
we have G =

{

gi; i ∈ [[0, n − 1]]
}

. For any value v in G, the discrete logarithm
of v in base g, denoted logg v, is the unique non-negative integer x less than n
such that v = gx.

The discrete logarithm problem is to compute logg v given g and v.
Let ℓ denote the value ⌈log2 n⌉. Then, the binary representation of x = logg v

requires at most ℓ bits such that we can write

x =

ℓ−1
∑

i=0

xi2
i,

where xi ∈ {0, 1} for 0 ≤ i ≤ ℓ−1. The Hamming weight of an integer x, denoted
wt(x), is equal to the number of 1’s in its binary representation.

Let t < ℓ be a positive integer. The Hamming weight t discrete logarithm prob-
lem is to compute logg v given g and v with the extra information wt(logg v) = t.

2.1 The Classical Baby-Step Giant-Step Algorithm

One of the most famous and generic algorithms dealing with the discrete loga-
rithm problem is the so-called Baby-Step Giant-Step algorithm. Introduced by
Shanks [1], it is a time-memory trade-off with time complexity O

(√
n
)

group
multiplications.

The algorithm works as follows. Let m = ⌈n1/2⌉. For any given value v ∈ 〈g〉,
x = logg v is less than n so it can be written as a+b×m with a and b strictly less

than m. From the equality v = glogg v = ga+b×m, we obtain that v × g−bm = ga

for some values a and b less than m. Thus, in the two following lists

(

1, g, g2, . . . , gm−2, gm−1
)

and

3

(

v, vg−m, vg−2m, . . . , vg−(m−2)m, vg−(m−1)m
)

,

there exists at most two collisions, i.e two couples (ga0 ,vg−b0m) and (ga1 ,vg−b1m)
such that ga0 = vg−b0m and ga1 = vg−b1m. The value x is obtained using the
couple with the smallest bi and x = ai + bim. The time complexity of this
algorithm mainly relies on the computation of the lists both of which contains
m elements. Thus, the time complexity of this algorithm is O

(

⌈n1/2⌉
)

group
multiplications. However, in this generic algorithm, the space requirement is
also O

(

⌈n1/2⌉
)

.
In order to decrease such a large space requirement, Pollard [12] proposed two

randomized variants of this algorithm, known as rho and lambda methods. The
generic idea is two find a linear equation over logg v. The space requirement is

then very small and the expected running time of these variants is still O
(

⌈n1/2⌉
)

group multiplications.

2.2 Low Hamming Weight Discrete Logarithms

In 1999, Stinson described some variants [18] of the Baby-Step Giant-Step algo-
rithm in the case of the Hamming weight t discrete logarithm problem, i.e the
computation of discrete logarithms for which the Hamming weight is known to
be t.

Without loss of generality, let us assume that ℓ = ⌈log2 n⌉ is even (otherwise
we consider ℓ + 1). This algorithm relies on the concept of splitting system.

Definition 1 (Splitting system). Let t and ℓ be such that 0 < t < ℓ. A
(ℓ,t)-splitting system is a pair (X,B) that satisfies:

– |X | = ℓ, and B is a set of subsets of X, each subset having ℓ/2 elements.
– ∀ Y ⊂ X such that |Y | = t, ∃ B ∈ B such that |B ∩ Y | = t/2.

For example, let t and ℓ be two even integers such that 0 < t < ℓ. Let X =
[[0, ℓ − 1]] and let B = {Bi ; 0 ≤ i ≤ ℓ/2 − 1} where for all 0 ≤ i ≤ ℓ/2 − 1,
Bi = {i+ j mod ℓ ; 0 ≤ j ≤ ℓ/2− 1}. The pair (X ,B) is a (ℓ,t)-splitting system.

Thus, let v ∈ 〈g〉 such that wt
(

logg v
)

= t (assumed to be even). We now
use the above splitting system in the algorithm. Any element of 〈g〉 is now
identified to the set of the positions of the non zero bits involved in the binary
representation of its discrete logarithm. Thus, v is identified to a subset Y ⊂ X
of t elements. The goal of the algorithm is to find a decomposition of Y into two
subsets of t/2 elements using the splitting system.

For all Bi in B
– For all Y j

i ⊂ Bi of t/2 elements, identify the corresponding value Aj
i in

G. Let L1 be the list of pairs (Y j
i ,Aj

i).
– Consider the set Wi = [[0, ℓ − 1]] \ Bi.

4

– For all W k
i ⊂ Wi of t/2 elements, identify the corresponding value Bk

i in
G. Let L2 be the list of pairs (W k

i ,v × (Bk
i)−1).

– If two values Aj0
i in L1 and v × (Bk0

i)−1 in L2 meet for one given set

Y j0
i and one given set W k0

i , then output the element of 〈g〉 identified to

Y j0
i ∪ W k0

i ; otherwise go on the loop over Bi.

The time complexity of Stinson’s algorithm is O(ℓ
(ℓ/2

t/2

)

) group exponentia-

tions1 and the space requirement is O
((ℓ/2

t/2

))

.

A detailed analysis of the number of group multiplications required to find
the result in the worst case is ℓ/2 × (t − 1)

(ℓ/2
t/2

)

group multiplications.

2.3 Discrete Logarithms as Products in Groups of Known Order

This second variant of the Baby-Step Giant-Step algorithm focuses on discrete
logarithms equal to products of integers. More precisely, it addresses the problem
of computing the value x = logg v for a given v ∈ 〈g〉, whenever x = x1 ×
x2 mod n with x1 ∈ X1, x2 ∈ X2. We denote by |X1| and |X2| the respective
cardinalities of X1 and X2.

This variant is described in a technical report of Hoffstein and Silverman [7]
and works as follows. From the equality v = gx = gx1×x2 mod n, we immediately
obtain that

vx−1
2 mod n = gx1 .

As a consequence, in the two following sets
{

vj−1 mod n; j ∈ X1

}

and
{

gi; i ∈
X2

}

, there exists at least one collision, i.e a same value obtained for one vj−1
0 mod n

and one gi0 such that x is equal to j0 × i0 mod n.
The time complexity is O

(

|X1|+ |X2|
)

group exponentiations since it mainly
relies on the construction of two sets containing respectively |X1| and |X2| ele-
ments. In terms of number of group multiplications, without any assumption
on the structure of the sets X1 and X2, the time complexity is O

(

(|X1| +

|X2|) log2 n
)

but this bound can be decreased for some specific choices of those
sets. Finally, the smallest set must be stored so that the space complexity is
O

(

min(|X1|, |X2|)
)

.

3 Discrete Logarithms as Products in Groups of

Unknown Order

We now present a new variant of the Baby-Step Giant-Step algorithm that can
be used to compute discrete logarithms equal to a product in a group of unknown
order. As an application of this method, we propose a cryptanalysis in the next
section.

1 This algorithm can be turned into a randomized Las Vegas variant the time com-
plexity of which is O

�√
t
�

ℓ/2

t/2

��
.

5

3.1 Preliminaries

In this section, we consider a finite cyclic abelian group G = 〈g〉, written mul-
tiplicatively, of unknown order n. Let X1 and X2 be two sets of integers, the
problem we address is to compute the discrete logarithm x = logg v for a given
value v ∈ G, whenever x = x1 × x2 mod n with x1 ∈ X1, x2 ∈ X2. We denote
by |X1| and |X2| the respective cardinalities of the two sets X1 and X2.

The variant of the Baby-Step Giant-Step suggested by Hoffstein and Silver-
man and recalled in Section 2.3 cannot be applied, since it requires modular
inversion modulo the unknown order n of the group. Our new variant enables
us to overcome this problem.

3.2 Overview of the Full Algorithm

We first present the general method used in the algorithm. As for the second
variant of the baby-Step Giant-Step algorithm presented in Section 2.3, we first
consider the general equation in G

vx−1
1 mod n = gx2 . (1)

As explained above, considering directly this equation is no longer interesting
since computing inverses modulo the unknown order is not feasible.

However, we can use a trick that has for example already been used by Shoup
[16]. We denote

π1 =
∏

i∈X1

i,

and we raise Equation 1 to the power π1, so that we obtain vπ1x−1
1 mod n = gπ1x2

which can be rewritten as:

v
Q

i∈X1\{x1} i = gπ1×x2 (2)

With this new equation, the knowledge of the order of g is no longer necessary.
We can now use the classical method like in the other Baby-Step Giant-Step
algorithms. More precisely, in a first time we can compute the two following sets

S1 =
{

v
Q

k∈X1\{i} k; ∀i ∈ X1

}

and S2 = {gπ1×j; ∀j ∈ X2}.

In the two sets, two values meet for one value v
Q

k∈X1\{i0} k and one value
gπ1j0 such that x is equal to i0 × j0.

However, we must be careful with the actual time complexity of this algo-
rithm. More precisely, let us evaluate the time complexity of the construction
of the set S1; in the different Baby-Step Giant-Step algorithms recalled in Sec-
tion 2, the computation of each element of the relative sets requires (at most) a
modular inversion and a group exponentiation. In our new algorithm, the value
π1 cannot be reduced modulo the unknown order n so that, computing each
element in a classical way is equivalent to computing (|X1| − 1) group exponen-
tiations with log2 n bits exponents. Thus the näıve computation of the full set

6

S1 has a time complexity O
(

|X1|2
)

group exponentiations. Taking into account
the time complexity required for the computation of S2, we finally obtain a time
complexity O

(

|X1|2 + |X2|
)

group exponentiations, i.e O
(

(|X1|2 + |X2|) log2 n
)

group multiplications.
Since the complexity of the exhaustive search over all the possible x1 ∈ X1

and x2 ∈ X2 is obviously in O
(

|X1|× |X2|
)

group exponentiations, the practical
gain of our algorithm may not be significant (for instance if |X1| ≅ |X2|), with
a näıve computation of S1.

Note that there is no problem with the computation of the set S2 since after
computing one time gπ1 , each element of S2 can be obtained using a single group
exponentiation.

Let us now present how to construct efficiently the set S1.

3.3 Efficient Construction of S1

The algorithm. For a better overview of the construction, we consider in the
following a set X of 2q elements denoted by xi, i ∈ [[1, 2q]] for which we want to
obtain the set of values

S =
{

v
Q

xi∈X\{xj} xi ; ∀j ∈ [[1, 2q]]
}

.

The method we present relies on an implicit binary tree structure. The al-
gorithm starts from the root equal to v and it ends with 2q leafs equal to the
elements of S. All the nodes can be computed using the following algorithm:

node(0,0) := v
For i ∈ [[0, q − 1]]

For j ∈ [[0, 2i − 1]]

(Left Son)

expL :=
(2j+2)(2q−i−1)

∏

k=1+(2j+1)(2q−i−1)

xk

node(i+1,2j) = (node(i,j))
expL

(Right Son)

expR :=
(2j+1)(2q−i−1)

∏

k=1+2j(2q−i−1)

xk

node(i+1,2j+1) = (node(i,j))
expR

This algorithm iteratively computes

node(i, j) = v

(j×2q−iQ
k=1

xk

)

×

(2qQ
ℓ=1+(j+1)2q−i

xℓ

)

7

for i ∈ [[0, q]] and j ∈ [[0, 2i −1]], i.e v to the power the product of all the xk ∈ X ,
but a “gap” of 2q−i consecutive elements. This property is easily proved using a
recursive argument. As a consequence, for all i ∈ [[0, 2q − 1]] the leaf node(q,i), is

equal to the value v
Q

xj∈X\{xi+1} xj .

Example. Let q = 2. Using the algorithm for the first generation, the left son
of the root, denoted by node(1,0) is equal to vx3x4 and the right son, denoted
node(1,1), is equal vx1x2 . The second generation is described in Fig. 1.

v

vx3x4 vx1x2

vx1x2x3vx1x2x4vx1x3x4vx2x3x4

Fig. 1. Iteration of the algorithm for q = 2

Complexity of the construction. The advantage of our algorithm is twofold:

1. Once the two sons node(i+1,2j) and node(i+1,2j+1) of node(i,j) are computed,
the node(i,j) is no longer required, so that it can be erased. Thus, as men-
tioned previously, the algorithm uses a binary tree structure but does not re-
quire the storage of the entire tree. As a consequence, the space requirement
during the algorithm execution is optimal, i.e equal to the space required for
the storage of the set S.

2. The different exponents xk are used only once during each loop over i.
Thus, the time complexity (in terms of group exponentiations) is equal to
O

(

|X | log2 |X |
)

as there are exactly q loops involving |X | group exponentia-
tions. This complexity can also be obtained considering the overall number
of group exponentiations given by:

q−1
∑

i=0

2i
−1

∑

j=0

(2 × 2q−i−1) = 2

q−1
∑

i=0

(2q−1) = q × 2q

In terms of group multiplications complexity, without additional assump-
tion on the structure of X, all the exponents we use have log2 n bits so the
complexity is O

(

|X | log2 |X | log2 n
)

group multiplications.

8

3.4 Complexity of the Full Algorithm

Our new variant of the Baby-Step Giant-Step algorithm described in Section
3.2, is based on the computation of two sets S1 and S2. Using the method of
Section 3.3, the computation of the set

S1 =
{

v
Q

k∈X1\{i} k; ∀i ∈ X1

}

has time complexity O
(

|X1| log2 |X1| log2 n
)

group multiplications and the com-

putation of

S2 = {gπ1×j ; ∀j ∈ X2}

has time complexity O
(

|X2| log2 n
)

group multiplications. Thus, the overall time

complexity, for computing the two sets, is O
(

(

|X2| + |X1| log2 |X1|
)

log2 n
)

.

Finally, finding two identical values in the two sets can be done efficiently
(for example if one set is sorted), so that the time complexity of the algorithm
mainly relies on the construction of the sets. Thus, the time complexity of the

full algorithm is also O
(

(

|X2| + |X1| log2 |X1|
)

log2 n
)

group multiplications.

4 Attacks on GPS with Private Keys From CHES’04

In this section, we briefly recall the basic GPS scheme [4, 13]. Next, we recall the
private keys suggested by Girault and Lefranc at CHES 2004 conference and we
finally present two attacks on such private keys. The first one relies on our new
algorithm from Section 3 taking advantage of a first weakness of the private key
and the second attack relies on a second weakness of the private keys.

4.1 The GPS Scheme

We denote by Zn the residue class ring modulo n and Z
∗

n the multiplicative
group of invertible elements in Zn. The GPS identification scheme from [4, 13],
is an interactive protocol between a prover and a verifier which contains one or
several rounds of three passes. The security is based on the intractability of the
short discrete logarithm problem defined as follows.

Definition 2. Let n be a composite integer the factorization of which is un-
known. Let g be an element in Z

∗

n of maximal order λ(n). Let S be an integer
such that 2S < λ(n). The short discrete logarithm problem consists in computing
the value s ∈ [[0, 2S[[given v = gs mod n.

Assumption. The short discrete logarithm problem is polynomially intractable.

During a round of identification, a prover uses his knowledge of a private
value s related to the public value v by the equation v = g−s mod n. More

9

precisely, in typical applications, a prover holds a private key s and a public key
(n,g,v) such that:

– n = pq is the product of two prime integers such that factoring n is difficult,
– g is an element of Z

∗

n of maximal order λ(n),
– v = g−s mod n.

There are four security parameters S, k, R and m defined as follows:

– S is the binary size of the private key s; S = 160 is a typical choice.
– k is the binary size of the challenges sent to the prover and determines the

level of security of the scheme.
– R is the binary size of the exponents used in the commitment computation.

It typically verifies R = S + k + 80.
– m is the number of rounds the scheme is iterated. Theoretically, m is polyno-

mial in the size of the security parameter; but, in practice, m is often chosen
equal to 1.

Prover Verifier

choose r ∈ [[0, 2R[[

compute W = gr mod n
W−−−−−−−−−→

choose c ∈ [[0, 2k[[
c←−−−−−−−−

check c ∈ [[0, 2k[[

compute y = r + s× c
y−−−−−−−−→ check y ∈ [[0, 2R + 2k+S [[

verify gyvc = W mod n

Fig. 2. The basic GPS identification scheme

Security of the scheme. The security of the GPS scheme is recalled in the
following Theorem (the proof is given in [13]).

Theorem 1. The GPS identification scheme is a secure identification scheme
under the intractability of the short discrete logarithm problem if m and 2k are
polynomial in |n|, m × 2S+k−R is negligible in |n| and log |n| = o(m × k).

4.2 The Girault-Lefranc Private Keys

As many other discrete-logarithm-based schemes, the GPS identification scheme,
used with precomputations of the commitments W = gr mod n, is a very effi-
cient scheme for the prover. Thus, during the protocol, the computations of the
prover can be reduced to the computation of the value y = r+sc so that it is well

10

designed for low cost chips. However, in new chips like RFID tags, even comput-
ing a multiplication may be too expensive. Thus, at the CHES 2004 conference,
Girault and Lefranc [5] proposed three solutions to make easier the integration
of the GPS identification scheme in such chips. Their goal was to remove (or at
least reduce) the computation requirement for y = r + sc.

One of these solutions consists in using specific private keys equal to the
product of low Hamming weight sub-private keys. More precisely, they consider
a private key s equal to s1 × s2 with s1 in X1 and s2 in X2 such that both s1

and s2 have a low Hamming weight.
With such private keys, the computation of s×c is then replaced successively

by the computation of s2 × c and s1 × (s2c). Thus, since the Hamming weight of
the sub-private keys s1 and s2 is low, the computation of y using the shift-and-
add paradigm does not involve too many shifts.

Security of such Private keys. During this analysis, we require a security
over the private key of 280 group multiplications. However, the level of security
is highly application dependant and some lower levels can be accepted.

The authors give some general security arguments on such private keys. In-
deed, they suggest the use of sub-private keys s1 and s2 such that:

1. the private key s = s1s2 is sufficiently large, i.e around 160-bit, such that the
classical Baby-Step Giant-Step has a time complexity of around 280 group
multiplications;

2. the average Hamming weight of s = s1s2 is around 64 such that Stinson’s
algorithm requires more than 280 group multiplications.

Finally, since the group generator g is of unknown order λ(n), the second
variant of the Baby-Step Giant-Step algorithm recalled in Section 2.3 cannot be
used. Thus, Girault and Lefranc consider that the best attack on such private
keys is the exhaustive search over s1 and s2 which time complexity is obviously in
O

(

|X1|×|X2|
)

group exponentiations, where |X1| and |X2| denote the respective
cardinalities of X1 and X2. Thus, they suggest to consider two adequate sets X1

and X2 such that |X1| × |X2| ≅ 280.

Numerical Application. In [5], Girault and Lefranc give the following exam-
ple. To obtain a 160-bit private key s with an Hamming weight equal on average
to 64, s2 should be a 142-bit number with 16 random bits equal to 1 chosen
among the 138 least significant ones and s1 a 19-bit number with 5 random bits
equal to 1 chosen among the 16 least significant ones.

With such sub-private keys, the cardinality of X1 is equal to
(

16
5

)

≅ 212 and

the cardinality of X2 is equal to
(

138
16

)

≅ 268; so that the exhaustive search is at
least as infeasible as the classical Baby-Step Giant-Step algorithm for a 160-bit
key.

Then, if we assume that c is a 32-bit number, computing r+s×c in a classical
way involves on average 16 additions of a 160-bit numbers, i.e 2560 bit additions.

11

Using the structure of the private key equal to a product of low Hamming weight
sub-private keys, then computing s2 × c requires exactly 5 additions of a 32-bit
number, then s1 × (s2c) requires 16 additions of a 51-bit number and adding
s1(s2c) to r requires a final addition of a 192-bit number. Finally, only 1168 bit
additions are required.

4.3 Two Attacks

This first attack relies on our new Baby-Step Giant-Step algorithm described
in Section 3. Thus, to prove the efficiency of our algorithm, we apply it to the
numerical application given in Section 4.2.

In this example, we recall that the two sets X1 and X2 are of cardinalities
respectively upper bounded by 212 and 268. We also recall that the time com-
plexity of our new algorithm is O

(

|X2| + |X1| log2 |X1|
)

group exponentiations.
Thus, applied to the given example, our algorithm recovers the private key s with
about 268 group exponentiations, which is significantly less than the complexity
of the exhaustive search equal to 280 group exponentiations.

A detailed enumeration of the number of group multiplication shows that
the computation of the set S2 in the algorithm of section 4.2 has the highest
complexity; using precomputation in the usual square and multiply exponentia-
tion algorithm leads to a complexity of 273 group multiplications (the exhaustive
search requires around 284 group multiplications).

Whereas our first attack only takes advantage of the structure of product of
the private keys, we now describe a second attack which takes advantage of both
the product structure and the low Hamming weight of the sub-private keys.

Indeed, from the basic equation v = gs = gs1×s2 , and denoting gs1 by h, we
then obtain the new equation

v = hs2 .

With this change of base, the discrete logarithm of v in base h is a low
Hamming weight number so that Stinson’s algorithm can now be easily applied.
The attack consists in using Stinson’s algorithm (see section 2.2) for all possible
bases h defined as gi for any i in X1. The complexity of this attack is then
obviously O

(

|X1| × ℓ
(ℓ/2

t/2

))

group exponentiations, ℓ denoting the binary size of

s2 and t its Hamming weight. Note that the space requirement of this attack is
the same as the one of Stinson’s algorithm, i.e O(

(ℓ/2
t/2

)

).

In the numerical application of section 4.2, we recalled that |X1| ≅ 212 and

that s2 is a 138-bit number with a Hamming weight equal to 16. As
(138/2

16/2

)

≅ 233,

we recover the private key with about 252 group exponentiations.
A detailed analysis of the exact number of group multiplications required by

this attack shows that the private key recovery requires 254 group multiplications
in the worst case.

12

To keep using Girault-Lefranc private keys, we suggest to consider new types
of sub-private keys. Indeed, s1 should be a 30 bit number with 12 non zero bits
and s2 should be a 130-bit number with 26 non zero bits.

With such sub-private keys, our first algorithm requires around 294 group
multiplications and the complexity of the second attack is then around 280 group
multiplications. However, the computation advantage of the method is obviously
decreased. Using the same consideration as in the numerical application of sec-
tion 4.2, the number of bit additions is then equal to 2100; the practical gain is
less significant, specially with small challenges c.

5 Conclusion

We have proposed a new variant of the Baby-Step Giant-Step algorithm for
discrete logarithms equal to products in groups of unknown order. More precisely,
our algorithm recovers x = x1 × x2 with x1 ∈ X1, x2 ∈ X2 from the given value
gx in time O

(

(|X2| + |X1| log2 |X1|) log2 n
)

group multiplications.
This new variant finds a direct application with the GPS scheme used with

such private keys as described by Girault and Lefranc at CHES 2004 conference.
Thus, whereas the time complexity of the best known attack (the exhaustive
search) on such private key was 284 group multiplications, using our new algo-
rithm, this complexity falls downto 273 group multiplications. Moreover, using
the fact that such private keys require sub-private keys of low Hamming weight,
we have constructed a second attack the time complexity of which is 254 group
multiplications.

Acknowledgements

The authors wish to thank Aline Gouget and Marc Girault for valuable and
helpful discussions and comments.

References

1. H. Cohen. A Course in Computational Algebraic Number Theory, volume 138 of
Graduate Texts in Mathematics. Springer-Verlag, 1993.

2. W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions

on Information Theory, 22(6):644–654, November 1976.
3. A. Fiat and A. Shamir. How to Prove Yourself : Practical Solutions to Identification

and Signature Problems. In A. M. Odlyzko, editor, Advances in Cryptology - Crypto

’86, volume 263 of Lecture Notes in Computer Science, pages 186–194. Springer
Verlag, 1986.

4. M. Girault. Self-Certified Public Keys. In D. W. Davies, editor, Advances in

Cryptology - Eurocrypt ’91, volume 547 of Lecture Notes in Computer Science,
pages 490–497. Springer-Verlag, 1991.

5. M. Girault and D. Lefranc. Public Key Authentication with one Single (on-line)
Addition. In M. Joye and J. J. Quisquater, editors, CHES, volume 3156 of Lecture

Notes in Computer Science, pages 413–427. Springer-Verlag, 2004.

13

6. L. C. Guillou and J. J. Quisquater. A Practical Zero-knowledge Protocol Fitted
to Security Microprocessor Minimizing both Transmission and Memory. In C. G.
Günther, editor, Advances in Cryptology - Eurocrypt ’88, volume 330 of Lecture

Notes in Computer Science, pages 123–128. Springer-Verlag, 1988.
7. J. Hoffstein and J.H. Silverman. Random Small Hamming Weight Products with

Applications to Cryptography. Technical report, NTRU Cryptosystems.
8. National Institute of Standards and Technologies. Digital Signature Standard

(DSS). Federal Information Processing Standards, Publication 186, november 1994.
9. A. M. Odlyzko. Discrete Logarithms: The Past and The Future. Designs, Codes,

and Cryptography, 19(2/3):129–145, 2000.
10. T. Okamoto, H. Katsuno, and E. Okamoto. A Fast Signature Scheme based on

new on-line Computation. In C. Boyd and W. Mao, editors, Information Security

Conference ’02, number 2851 in Lecture Notes in Computer Science, pages 111–
121. Springer-Verlag, 2003.

11. T. Okamoto, M. Tada, and A. Miyaji. An Improved Fast Signature Scheme without
on-line Multiplication. In M. Blaze, editor, Financial Crypto, volume 2357 of
Lecture Notes in Computer Science. Springer-Verlag, 2003.

12. J. M. Pollard. Monte Carlo Methods for Index Computations (mod p). Mathemat-

ics of Computation, 32(143):918–924, 1978.
13. G. Poupard and J. Stern. Security Analysis of a Practical ”on the fly” Authenti-

cation and Signature Generation. In K. Nyberg, editor, Advances in Cryptology -

Eurocrypt ’98, volume 1403 of Lecture Notes in Computer Science, pages 422–436.
Springer-Verlag, 1998.

14. R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communication of the ACM, 21(2):120–126, 1978.

15. C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. In G. Bras-
sard, editor, Advances in Cryptology - Crypto ’89, volume 435 of Lecture Notes in

Computer Science, pages 239–252. Springer-Verlag, 1990.
16. V. Shoup. Practical Threshold Signatures. In B. Preneel, editor, Advances in

Cryptology - Eurocrypt ’00, volume 1807 of Lecture Notes in Computer Science,
pages 207–220. Springer-Verlag, 2000.

17. J. Stern and J. P. Stern. Cryptanalysis of the OTM Signature Scheme from FC’02.
In R. N. Wright, editor, Financial Cryptography ’03, volume 2742 of Lecture Notes

in Computer Science, pages 138–148. Springer-Verlag, 2003.
18. D. R. Stinson. Some Baby-Step Giant-Step Algorithms for the Low Hamming

Weight Discrete Logarithm Problem. Mathematics of Computation, 71(237):379–
391, 2002.

14

