
SPA-resistant Scalar Multiplication on

Hyperellipitc Curve Cryptosystems Combining

Divisor Decomposition Technique and Joint

Regular Form

Toru Akishita1, Masanobu Katagi1, and Izuru Kitamura1

Information Technologies Laboratories, Sony Corporation,
6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo, 141-0001 Japan

akishita@pal.arch.sony.co.jp,

{Masanobu.Katagi,Izuru.Kitamura}@jp.sony.com

Abstract. Hyperelliptic Curve Cryptosystems (HECC) are competitive
to elliptic curve cryptosystems in performance and security. Recently ef-
ficient scalar multiplication techniques using a theta divisor have been
proposed. Their application, however, is limited to the case when a theta
divisor is used for the base point. In this paper we propose efficient and
secure scalar multiplication of a general divisor for genus 2 HECC over
IF2m . The proposed method is based on two novel techniques. One is di-
visor decomposition technique in which a general divisor is decomposed
into two theta divisors. The other is joint regular form for a pair of
integers that enables efficient and secure simultaneous scalar multipli-
cation of two theta divisors. The marriage of the above two techniques
achieves both about 19% improvement of efficiency compared to the stan-
dard method and resistance against simple power analysis without any
dummy operation.

Keywords: hyperelliptic curve cryptosystems, scalar multiplication, theta
divisor, signed binary representation, simple power analysis

1 Introduction

Elliptic Curve Cryptosystems (ECC) have increased their importance in public
key cryptosystems because of their higher efficiency than RSA cryptosystems.
Hyperelliptic Curve Cryptosystems (HECC) are generalization of ECC: ECC
just correspond to HECC of genus 1. The security of HECC whose genus is
smaller than 4 is thought to match that of ECC of the same group size. On the
other side, the performance of HECC was believed to be slower than that of
ECC due to their complex group operations. However, since Harley proposed an
efficient group addition and doubling algorithm, so-called Harley algorithm, for
genus 2 curves of odd characteristics in 2000 [7], optimizations and generaliza-
tions of Harley algorithm have been carried out [2], and at present HECC are
competitive to ECC also in performance.

In recent years, a new class of attacks has been proposed to extract some
secret information from a cryptographic device using its power consumption: so-
called power analysis. This paper deals with only Simple Power Analysis (SPA),
which utilizes a power consumption trace during a single execution. Differential
Power Analysis (DPA) is the more sophisticated attack that requires many power
consumption traces with statistical tools.

In regard to HECC, the countermeasure against SPA must be considered
when an ephemeral and secret scalar is used for scalar multiplication. The stan-
dard countermeasure is the double-and-add-always method that always repeats
a divisor class doubling and a divisor class addition per bit of the scalar [3].
Recently the useful countermeasure for ECC, Montgomery ladder, was applied
to HECC [4], but underlying curves of the HECC version are limited.

On the contrary, efficient and SPA-resistant scalar multiplication techniques
peculiar to HECC have been recently proposed, which use a theta divisor [9, 8].
A theta divisor has weight smaller than the genus of the underlying curve. For a
genus 2 hyperelliptic curve over IFq, a theta divisor is represented as D = (x +
u0, v0), whereas a general divisor is represented as D = (x2+u1x+u0, v1x+v0),
where ui, vi ∈ IFq. The cost of an addition of a theta divisor is smaller than that
of a general divisor due to its simple representation, so that scalar multiplication
of a theta divisor is faster than that of a general divisor. This efficiency, however,
can be utilized in the limited case, when the base point is a theta divisor and
scalar multiplication of the base point is carried out, for example, in HEC Diffie-
Hellman phase 1 or HEC-DSA signature generation.

In this paper we enhance the efficient use of a theta divisor to scalar multi-
plication of a general divisor for a genus 2 curve over IF2m . The enhancement is
based on the following two novel techniques. The first one is Divisor Decomposi-
tion Technique (DDT). A general divisor D = (U(x), V (x)) can be decomposed
into two theta divisors D1 and D2 if U(x) is reducible over IF2m . The second
one is Joint Regular Form (JRF), which is a new signed binary representation
of a pair of integers such that one is even and the other is odd. Any signed bits
at the same position of JRF satisfy that one is 0 and the other is ±1.

In order to utilize both DDT and JRF, we compute dD1 + (d + 1)D2 and
then subtract D2 as compensation instead of the scalar multiplication dD. The
simultaneous scalar multiplication dD1+(d+1)D2 with JRF of (d, d+1) repeats
a divisor class doubling and an addition of a theta divisor ±D1 or ±D2 per bit
of d. Its cost is almost equal to the cost of the double-and-add-always method
of a theta divisor, and is smaller than that of a general divisor. Moreover, SPA-
resistance is guaranteed because of regularity without any dummy operation,
which causes the possibility of fault-based attacks. Even if D is unable to be
decomposed into D1 and D2, we update D by repeating a divisor class doubling of
D until D can be decomposed into D1 and D2. Then, after computing (dD1+(d+
1)D2)−D2 = dD, we repeat a divisor class halving [10] of dD the corresponding
times. The proposed method is 18.7% faster than the double-and-add-always
method of a general divisor.

The rest of paper is organized as follows. In next two sections, we briefly
introduce HECC mainly focused to theta divisors and scalar multiplication. In
Section 4 and 5, we present two novel techniques: Divisor Decomposition Tech-
nique (DDT) and Joint Regular Form (JRF). In Section 6, we show the efficient
and secure scalar multiplication of a general divisor by combining DDT and
JRF. Section 7 analyzes the computational efficiency of the proposed method.
Finally, we draw our conclusion and discuss further work in Section 8.

2 Hyperelliptic Curve Cryptosystems

We give only a brief introduction of Hyperelliptic Curve Cryptosystems (HECC)
because of space limitation. More details can be found, for example, in [1, 2, 11].

In this paper, we discuss genus 2 HECC over IF2m . A hyperelliptic curve over
IF2m is defined by C : y2+h(x)y = f(x), where h(x) = x2+h1x+h0 ∈ IF2m [x] and

f(x) = x5+
∑3

i=0 fix
i ∈ IF2m [x]. In contrast to ECC, points P on a hyperelliptic

curve C do not form a group. The group law is defined over Jacobian variety JC .
JC is isomorphic to a divisor class group which forms an additive group, and
each divisor class is uniquely represented as a reduced divisor. A reduced divisor
D =

∑

miPi− (
∑

mi)P∞, where Pi = (xi, yi) and P∞ is a point at infinity, can
be represented by two polynomials (U(x), V (x)) [16],

U(x) =
∏

i

(x + xi)
mi , V (xi) = yi,

deg V < degU ≤ 2, V 2 + hV + f ≡ 0 mod U.

The degU of a reduced divisor is called weight. We denote the weight of a
reduced divisor D by w(D).

2.1 Theta Divisor and General Divisor

In the case of genus 2 hyperelliptic curves, a reduced divisor has weight smaller
than or equal to 2. A divisor is called a theta divisor1 if its weight is smaller
than 2 [12]. On the other hand, we call a divisor of weight 2 a general divisor.
A theta divisor is represented as D = (x + u0, v0), whereas a general divisor is
represented as D = (x2 + u1x + u0, v1x + v0).

Let D1 = (U1, V1), D2 = (U2, V2) ∈ JC(IF2m) be reduced divisors. The
computational cost of a divisor class doubling D3 = (U3, V3) = 2D1 and a
divisor class addition D3 = D1 +D2 depends on the conditions that D1, D2 and
D3 satisfy. We list some conditions as follows:

DBL w(D1) = 2, w(D3) = 2, gcd(h,U1) = 1,
ADD w(D1) = 2, w(D2) = 2, w(D3) = 2, gcd(U1, U2) = 1,
TDBL w(D1) = 1, w(D3) = 2, gcd(h,U1) = 1,
TADD w(D1) = 2, w(D2) = 1, w(D3) = 2, gcd(U1, U2) = 1.

1 A theta divisor is called a degenerate divisor in [9]

DBL and ADD correspond to so-called most frequent cases of a divisor class
doubling and an addition, respectively. TDBL denotes the doubling of a theta
divisor. TADD denotes the addition of a general divisor and a theta divisor.

The computational cost of TDBL and TADD is smaller than that of DBL
and ADD, respectively, because of simple representation of a theta divisor. We
summarize their cost in Table 1. M , S, and I denote the required time of mul-
tiplication, squaring, and inversion, respectively.

Table 1. Cost of group operations (genus 2, C/IF2m)

Group operations Cost

DBL [13] 1I + 22M + 5S
ADD [13] 1I + 22M + 3S

TDBL [8] 1I + 5M + 2S
TADD [13] 1I + 10M + 1S

3 Scalar Multiplication on HECC

3.1 Double-and-Add-Always Method

In order to construct HECC, it is necessary to compute scalar multiplication
dD, where d is a non-negative integer and D is a reduced divisor. Let d =
(dn−1 · · · d0)2 be the binary representation of d, where dn−1 = 1. The most
standard SPA-resistant method to compute dD is called the Double-and-Add-
Always method (DAA), shown in Algorithm 1.

Algorithm 1 Double-and-add-always Method (DAA)
Input: a non-negative integer d, a reduced divisor D ∈ JC(IF2m)
Output: dD
1. Q[0]← D
2. For i = n− 2 downto 0 do:

2.1 Q[0]← 2Q[0]
2.2 Q[1]← Q[0] + D
2.3 Q[0]← Q[di]

3. return(Q[0])

In step 2.1 and step 2.2, a divisor class doubling and a divisor class addition
are computed, respectively. If the input divisor D is a general divisor, a doubling
in step 2.1 corresponds to DBL and an addition in step 2.2 corresponds to ADD
with very high probability. On the other hand, if D is a theta divisor, ADD is
replaced by TADD. From Table 1, we estimate the computational cost of scalar
multiplication dD of both a general divisor and a theta divisor. DAA of a General
Divisor, which we call DAA GD, takes (1I + 22M + 3S) + (1I + 22M + 5S) =

2I + 44M + 8S per bit of the scalar d. On the other hand, DAA of a Theta
Divisor, which we call DAA TD, takes only (1I+10M +1S)+(1I+22M +5S) =
2I+32M +6S per bit of d [8]. Therefore the idea choosing a theta divisor as the
input divisor can achieve about 20% improvement of efficiency under I = 8M
and S = 0.1M . Its cryptographic application, however, is limited; even if we
choose a theta divisor as the base point of HECC, we must often compute scalar
multiplication of a general divisor.

DAA repeats the identical sequence of a doubling and an addition by inserting
dummy additions for di = 0 in step 2.2. Thus, an SPA attacker cannot guess
any bit information of d. The insertion of dummy operations, however, causes
the possibility of fault-based attacks.

3.2 Simultaneous Scalar Multiplication

Let us consider the sum of scalar multiplication kD1 and lD2, where k, l are non-
negative integers and D1, D2 are reduced divisors. It is necessary to compute
the sum kD1 + lD2 in HEC-DSA signature verification. The efficient method
to compute kD1 + lD2 is known as Shamir’s method. This method computes
kD1 + lD2 simultaneously instead of computing kD1 and lD2 independently, so
that it is called simultaneous scalar multiplication.

Let k = (kn−1 · · · k0)2 and l = (ln−1 · · · l0)2 be the binary representations
of k and l, respectively, where kn−1 = 1 or ln−1 = 1. The simultaneous scalar
multiplication kD1 + lD2 is shown in Algorithm 2.

Algorithm 2 Simultaneous Scalar Multiplication
Input: non-negative integers k, l and reduced divisors D1, D2

Output: kD1 + lD2

1. (pre-computation) compute D1 + D2

2. Q← kn−1D1 + ln−1D2

3. For i = n− 2 downto 0 do:
3.1. Q← 2Q
3.2. if (ki, li) 6= (0, 0) then

T ← Q + (kiD1 + liD2)
4. return Q

Algorithm 2 can reduce the number of doublings to half compared to com-
puting kD1 and lD2 separately. Furthermore we define the following terms in
order to evaluate the number of additions.

Definition 1. Let 〈kn−1 · · · k0〉 and 〈ln−1 · · · l0〉 be signed binary representations
of non-negative integers k and l, respectively. The number of i (0 ≤ i ≤ n− 1)
satisfying (ki, li) 6= (0, 0) is called Joint Hamming Weight of (k, l).

Definition 2. Let 〈kn−1 · · · k0〉 and 〈ln−1 · · · l0〉 be signed binary representa-
tions of non-negative integers k and l, respectively. The ratio of Joint Hamming
Weight of (k, l) to n is called Joint Hamming Density.

The average Joint Hamming Density is 3/4 for the binary representations of
k and l. As a result, the number of additions required in Algorithm 2 is about
3n/4 on average.

In order to speed up simultaneous scalar multiplication, Solinas gave the
efficient signed binary representation of two non-negative integers [17]. The rep-
resentation is called Joint Sparse Form (JSF), and any pair of non-negative
integers has unique JSF. The average Joint Hamming Density of JSF is 1/2,
so that simultaneous scalar multiplication with JSF can reduce the number of
additions to about n/2 on average.

4 Divisor Decomposition Technique

In this section we propose a novel technique called Divisor Decomposition Tech-
nique (DDT).

We now consider a general divisor D = (x2+u1x+u0, v1x+v0), where ui, vi ∈
IF2m for i = 0, 1. D can be decomposed into two theta divisors D1 = (x+x1, y1)
and D2 = (x+ x2, y2) if x2 + u1x+ u0 is factored to (x+ x1)(x+ x2) over IF2m .
It depends on only the reducibility of x2 + u1x + u0 over IF2m whether D can
be decomposed or not. Consequently, Tr(u0/u

2
1) = 0 is the only condition of

divisor decomposition, where Tr(c) is trace of c ∈ IF2m . We show the procedure
of DDT in Algorithm 3, where Hr(c) is half-trace of c. T and H denote the
computational cost of trace and half-trace, respectively.

Algorithm 3 Divisor Decomposition Technique (DDT)
Input: a general divisor D = (x2 + u1x + u0, v1x + v0)
Output: theta divisors D1, D2, s.t.D = D1 + D2 or FAILURE
Step Procedure Cost
1. if Tr(u0/u

2
1) = 1 return FAILURE 1I + 1M + 1S + 1T

2. x1 ← u1Hr(u0/u
2
1), x2 ← x1 + u1 1M + 1H

3. y1 ← v(x1), y2 ← v(x2) 2M
4. D1 ← (x + x1, y1), D2 ← (x + x2, y2)
5. return D1, D2

The question we have to ask here is whether DDT contributes to the efficiency
of scalar multiplication dD. As we have seen, each scalar multiplication dD1, dD2

is faster than dD. The direct computation of dD1+dD2, however, is slower than
scalar multiplication dD because Table 1 shows that TADD is not twice as fast
as ADD.

5 Joint Regular Form

In this section we propose the other novel technique called Joint Regular Form
(JRF).

We define a signed binary representation for a pair of non-negative integers
as follows.

Definition 3. Let 〈kn−1 · · · k0〉 and 〈ln−1 · · · l0〉 be signed binary representations
of k and l, respectively, satisfying k+l ≡ 1 (mod 2). 〈kn−1 · · · k0〉 and 〈ln−1 · · · l0〉
is called Joint Regular Form (JRF) of (k, l), if ki and li satisfy ki + li = ±1,
that is, (ki, li) = (0,±1) or (±1, 0) for any i.

Example 1. JRF of (52, 39) is represented as follows, where 1̄ denotes −1.

52 = 〈 1 0 1̄ 0 1 0 0 〉

39 = 〈 0 1 0 1 0 1̄ 1 〉

The Joint Hamming Density of JRF is always 1. JRF has the following properties:

– A pair of non-negative integers (k, l) satisfying k+ l ≡ 1 (mod 2) has a JRF.
– JRF of a certain length is unique.

We first prove the uniqueness of JRF.

Theorem 1. A pair (k, l) of non-negative integers has at most one Joint Regular
Form of a certain length.

Proof. Assume that there are two distinct JRFs of length n as

k = 〈kn−1 · · · k0〉 = 〈k
′

n−1 · · · k
′

0〉

l = 〈ln−1 · · · l0〉 = 〈l
′

n−1 · · · l
′

0〉.

Let j be the minimal value satisfying ki 6= k′i or li 6= l′i, and

s = 〈kn−1 · · · kj〉 = 〈k
′

n−1 · · · k
′

j〉

t = 〈ln−1 · · · lj〉 = 〈l
′

n−1 · · · l
′

j〉.

We may assume that kj 6= k′j by exchanging k and l if necessary. It follows that
kj and k′j have value 1 and −1. We assume that kj = 1 and k′j = −1 without
loss of generality. By the definition of JRF, lj = 0 and l′j = 0.

Suppose that s ≡ 1 (mod 4). kj+1 = 0 and k′j+1 = ±1 since kj = 1 and
k′j = −1. It follows that lj+1 = ±1 and l′j+1 = 0. The former indicates that
t ≡ 2 (mod 4) and the latter indicates that t ≡ 0 (mod 4). This contradiction
shows that the initial assumption must be wrong. Supposing s ≡ 3 (mod 4), the
similar contradiction occurs. ut

The most straightforward way to prove the existence of JRF for any pair of
non-negative integers (k, l) satisfying k+l ≡ 1 (mod 2) is to present an algorithm
for constructing it. We explain how to construct JRF from the least significant
bit. Let (kn−1 · · · k0)2 and (ln−1 · · · l0)2 be the binary representations of k and l,
respectively. Firstly, (k0, l0) = (0, 1) or (1, 0) by k + l ≡ 1 (mod 2).

Next, we notice (k1, l1). If (k1, l1) = (0, 0), either of the following transfor-
mations is carried out according to (k0, l0).

k1 k0

0 1
0 0
l1 l0

⇒

k1 k0

1 1̄
0 0
l1 l0

k1 k0

0 0
0 1
l1 l0

⇒

k1 k0

0 0
1 1̄
l1 l0

If (k1, l1) = (1, 1), one performs either of the following transformations according
to (k0, l0).

k1 k0

1 1
1 0
l1 l0

⇒

k1 k0
+1 0 1̄

1 0
l1 l0

k1 k0

1 0
1 1
l1 l0

⇒

k1 k0

1 0

+1 0 1̄
l1 l0

+1 means 1 is carried over to either (kn−1 · · · k2)2 or (ln−1 · · · l2)2. If (k1, l1) =
(0, 1) or (1, 0), one needs no transformation. In all cases of (k1, l1), it is possible to
satisfy the following conditions: (k0, l0) = (0,±1) or (±1, 0), and (k1, l1) = (0, 1)
or (1, 0).

By applying this transformation from the least significant bit, we construct
the signed binary representations 〈kn−1 · · · k0〉 and 〈ln−1 · · · l0〉 satisfying (ki, li) =
(0,±1) or (±1, 0) for any i. The detailed algorithm is shown in Algorithm 4.

Algorithm 4 Joint Regular Form (JRF)
Input: a pair of non-negative integers (k, l) s.t. k + l ≡ 1 (mod 2)
Output: JRF of (k, l): 〈kn−1 · · · k0〉, 〈ln−1 · · · l0〉
1. i← 0, s← k, t← l,
2. while s > 0 or t > 0 do:

2.1. ki = s mod 2, li = t mod 2
2.2. if (ki, li) = (0, 0) then

ki ← ki−1, ki−1 ← −ki−1, li ← li−1, li−1 ← −li−1, s← s/2, t← t/2
else if (ki, li) = (1, 1) then

ki ← 1− ki−1, ki−1 ← −ki−1, li ← 1− li−1, li−1 ← −li−1,
s← (s− 2ki + 1)/2, t← (t− 2li + 1)/2

else then
s← (s− ki)/2, t← (t− li)/2

2.3. i← i + 1
3. n← i
4. return 〈kn−1 · · · k0〉 and 〈ln−1 · · · l0〉

If we apply JRF of (k, l) to the simultaneous scalar multiplication kD1+ lD2,
we always compute a divisor class doubling and an addition of ±D1 or ±D2 per
bit of (k, l). Consequently, we achieves the SPA-resistant simultaneous scalar
multiplication without any dummy operation and pre-computation D1 ±D2.

Remark 1. The advantages of simultaneous scalar multiplication with JRF are
useful to not only HECC but also ECC. Lim-Lee method [14], GLV method [6],
and BRIP [15] seem to be nice applications of JRF.

6 Combination of DDT and JRF

We show that the combination of DDT and JRF achieves efficient and secure
scalar multiplication of a general divisor.

Suppose that a general divisor D can be decomposed into two theta divisors
D1 and D2 as D = D1+D2. We compute (dD1+d′D2)−D2 instead of the scalar
multiplication dD, where d′ = d+1. JRF of (d, d′) is applied to the simultaneous
scalar multiplication dD1 + d′D2. As we have discussed above, dD1 + d′D2 with
JRF computes a divisor class doubling and an addition of a theta divisor ±D1

or ±D2 per bit of (d, d′).
Indeed, JRF of (d, d′), 〈dn · · · d0〉 and 〈d

′
n · · · d

′
0〉, can be represented very

easily without Algorithm 4 as follows:

1. Let 〈dn−1 · · · d0〉 be the binary representation of d.
2. d′i = di − 1 for 0 ≤ i ≤ n− 1.
3. Append dn = 0 and d′n = 1.

The validity of this representation is clearly shown by d =
∑n−1

i=0 di2
i and d′ =

d + 1 = 2n +
∑n−1

i=0 (di − 1)2i. For example, JRF of (53, 54) is represented as
53 = 〈0110101〉 and 54 = 〈1001̄01̄0〉.

We present the detailed algorithm for theta divisors D1 and D2 in Algo-
rithm 5. Obviously Algorithm 5 always computes a divisor class doubling and
an addition of a theta divisor whether di = 0 or 1. Therefore, an SPA-attacker
cannot guess any bit information of d.

Algorithm 5 Simultaneous Scalar Multiplication with JRF (SimJRF)
Input: a non-negative integer d, theta divisors D1, D2 s.t. D = D1 + D2

Output: dD
1. D[0]← −D2, D[1]← D1

2. Q← TDBL(D2)
3. Q← TADD(Q,D1)
4. for i = n− 2 downto 0 do:

4.1. Q← DBL(Q)
4.2. Q← TADD(Q,D[di])

5. Q← TADD(Q,D[0])
6. return Q

As described in Section 4, a general divisor D cannot be always decomposed
to two theta divisors; D can be decomposed only if x2 + u1x + u0 is reducible
over IF2m , where D = (x2 + u1x + u0, v1x + v0). In order to apply DDT to
any general divisor, we utilize a divisor class doubling (DBL) and its inverse
operation, that is, a divisor class halving (HLV) [10]. If D cannot be decomposed,
one repeats i times until D′ = 2iD can be decomposed by D′ = D′1 +D′2. After
computing dD′ using SimJRF, one then repeats a divisor class halving i times
by dD = 1/2i(dD′). We summarize our efficient and secure scalar multiplication
algorithm for a general divisor in Algorithm 6.

Algorithm 6 DDT and SimJRF (DDT+SimJRF)
Input: a non-negative integer d, a general divisor D
Output: dD
1. i← 0
2. while DDT(D) outputs “FAILURE” do:

2.1. D ← DBL(D), i← i + 1
3. Q← SimJRF(D1, D2, d)
4. while i > 0 do:

4.1. Q← HLV(Q), i← i− 1
5. return Q

The iteration count i becomes 1 on average since DDT returns “FAILURE”
in probability of about 1/2. Accordingly, we require two DDT and one DBL in
step 2, and one HLV in step 4.

Remark 2. In HEC ElGamal-type decryption, a receiver A needs to compute
sAD, where sA is A’s secret key and D is a random divisor. In the case, instead
of the operations DBL and HLV, we can utilize an addition of the base point G
and a subtraction of sAG, where sAG is A’s public key.

7 Computational Efficiency

We estimate the computational cost of DDT+SimJRF proposed in Algorithm 6
and compare it to that of the Double-and-Add-Always method of a General
Divisor (DAA GD) and the Double-and-Add-Always method of a Theta Divisor
(DAA TD). The cost of divisor doublings and additions is referred to Table 1.
As we have mentioned in Section 3.1, the cost of DAA GD and DAA TD is (n−
1)(2I + 44M + 8S) and (n− 2)(2I + 32M + 6S) + 2I + 28M + 3S, respectively,
where n is the bit length of d.

In order to estimate the cost of DDT+SimJRF in Algorithm 6, we evaluate
the cost required in divisor decomposition step (step 2), SimJRF (step 3),
and compensation step (step 4) as following.

divisor decomposition step According to our analysis in Section 6, we
require two DDT, one of which returns “FAILURE”, and one DBL on average.
The estimated cost is 2(1I +1M +1S +1T)+ (3M +1H)+ (1I +22M +5S) =
3I + 27M + 7S + H + 2T .

SimJRF We estimate the cost of SimJRF through Algorithm 5. In step 1, the
inverse of a theta divisor D2 = (x + x2, y2), −D2 = (x + x2, y2 + h(x0)), is
computed, which corresponds to 1M . Step 2 and 3 are the main procedures of
SimJRF. We then require one TDBL, (n−1) DBL, and n TADD, which correspond
to (1I +5M +2S)+ (n− 1)(1I +22M +5S)+n(1I +10M +1S) = (n− 1)(2I +
32M + 6S) + 2I + 15M + 3S. Step 4 requires 1I + 10M + 1S. As a result, the
total cost of SimJRF is estimated to be (n−1)(2I +32M +6S)+3I +26M +4S.

compensation step We require one HLV as we have shown in Section 6.
According to [10], the cost of HLV is 1I +19.5M +2S+2.5SR+2H +2T , where
SR denotes the cost of square root over IF2m .

Consequently, the cost of DDT+SimJRF is estimated to be n(2I + 32M +
6S) + 5I + 40.5M + 7S + 2.5SR + 3H + 4T in total.

Suppose that the bit length of d is 160, that is, n = 160. According to [5, 10],
we may assume that the following ratios of field operations to multiplication are
satisfied: I = 8M , S = 0.1M , SR = 0.5M , H = 0.6M , and T = 0.

Table 2 summarizes the comparison of DAA GD, DAA TD, and DDT+SimJRF.
The column ’Divisor’ indicates whether each method computes scalar multipli-
cation of a general divisor or a theta divisor; the column ’Dummy’ indicates
whether each method uses any dummy operation or not. The proposed method
DDT+SimJRF is 18.7% faster than DAA GD and eliminates any dummy opera-
tion. DDT+SimJRF requires no more than 1.8% increase of computational cost
compared to DAA TD that can be used only in the limited case.

Table 2. Comparison of scalar multiplication (160bit)

Method Divisor Dummy Cost

DAA GD general use 318I + 6996M + 1272S (9667.2M)
DAA TD theta use 318I + 5084M + 951S (7723.1M)
DDT+SimJRF general NOT use 325I + 5160.5M + 967S

+2.5SR + 3H + 4T (7860.3M)

8 Conclusion and Further Work

In this paper, efficient and secure scalar multiplication of a general divisor for
genus 2 HECC over IF2m is proposed through Divisor Decomposition Technique
(DDT) and Joint Regular Form (JRF). The proposed method achieves both
about 19% improvement of efficiency compared to the double-and-add-always
method and SPA resistance without any dummy operation.

It must be emphasized that the strategy of the proposed method is applicable
to not only genus 2 HECC over IF2m . For genus 3 HECC, a general divisor whose
weight is 3 might be decomposed into either three theta divisors of weight 1
or two theta divisors of weight 2. In the former case, we must generalize the
concept of JRF to three non-negative integers. In the latter case, we need to
develop efficient DDT in which a weight 3 divisor is decomposed into two weight
2 divisors.

References

1. D.G. Cantor, “Computing in the Jacobian of a Hyperelliptic Curve”, Mathematics

of Computation, 48, 177, pp.95-101, 1987.
2. H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren,

Handbook of Elliptic Curve and Hyperelliptic Curve Cryptography, Chapman &
Hall, 2005.

3. J.-S. Coron, “Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems”, Cryptographic Hardware and Embedded Systems - CHES ’99,
LNCS 1717, pp.292-302, Springer-Verlag, 1999.

4. S. Duquesne, “Montgomery Scalar Multiplication for Genus 2 Curves”, Algorithmic

Number Theory - ANTS VI, LNCS 3076, pp.153-168, Springer-Verlag, 2004.
5. K. Fong, D. Hankerson, J. López and A. Menezes, “Field inversion and point

halving revised,” Technical Report CORR 2003-81, 2003.
http://www.cacr.math.uwaterloo.ca/techreports/2003/corr2003-18.pdf

6. R.P. Gallant, R.J. Lambert, and S.A. Vanstone, “Faster Point Multiplication on El-
liptic Curves with Efficient Endomorphisms”, Advances in Cryptology - CRYPTO

2001, LNCS 2139, pp.190-200, Springer-Verlag, 2001.
7. R. Harley, “Adding.txt, Doubling.c”, 2000.

http://cristal.inria.fr/ harley/hyper/
8. M. Katagi, T. Akishita, I. Kitamura, and T. Takagi, “Efficient Hyperelliptic Curve

Cryptosystems Using Theta Divisors”, IEICE Trans. Fundamentals, vol.E89-A,
no.1, pp.151-160, 2006.

9. M. Katagi, I. Kitamura, T. Akishita, and T. Takagi, “Novel Efficient Implementa-
tions of Hyperelliptic Curve Cryptosystems Using Degenerate Divisors”, Informa-

tion Security Application s - WISA 2004, LNCS 3325, pp.345-359, Springer-Verlag,
2004.

10. I. Kitamura, M. Katagi, and T. Takagi, “A Complete Divisor Class Halving Algo-
rithm for Hyperelliptic Curve Cryptosystems of Genus Two”, Information Security

and Privacy - ACISP 2005, LNCS 3674, pp.146-157, Springer-Verlag, 2005.
11. N. Koblitz, “Hyperelliptic Cryptosystems”, Journal of Cryptology, vol.1, pp.139-

150, Springer-Verlag, 1989.
12. S. Lang, “Abelian Varieties”, Springer-Verlag, 1983.
13. T. Lange, “Formulae for Arithmetic on Genus 2 Hyperelliptic Curves”, Applica-

ble Algebra in Engineering, Communication and Computing, vol.15, pp.295-328,
Springer-Verlag, 2005.

14. C.H. Lim and P.J. Lee, “More Flexible Exponentiation with Precomputation”,
Advances in Cryptology - CRYPTO ’94, LNCS 839, pp.95-107, Springer-Verlag,
1994.

15. H. Mamiya, A. Miyaji, and H. Morimoto, “Efficient Countermeasure against RPA,
DPA, and SPA”, Cryptographic Hardware and Embedded Systems - CHES 2004,
LNCS 3156, pp.343-356, Springer-Verlag, 2004.

16. D. Mumford, Tata Lectures on Theta II, Progress in Mathematics 43, Birkhäuser,
1984.

17. J.A. Solinas, “Low-Weight Binary Representations for Pairs of Integers”, Technical
Report CORR 2001-41, 2001.
http://www.cacr.math.uwaterloo.ca/techreports/2001/corr2001-41.ps

