
Highly Regular Right-to-Left Algorithms for
Scalar Multiplication

Marc Joye

Thomson R&D France
Technology Group, Corporate Research, Security Laboratory

1 avenue de Belle Fontaine, 35576 Cesson-Sévigné Cedex, France
marc.joye@thomson.net

Abstract. This papers introduces several binary scalar multiplication
algorithms with applications to cryptography. Remarkably, the proposed
algorithms regularly repeat the same pattern when evaluating a scalar
multiplication in an (additively written) abelian group. Furthermore,
they are generic and feature the following properties:

– no dummy operation is involved;

– no precomputation nor prior recoding is needed;

– a small number of temporary registers / code memory is required;

– the scalar is processed right-to-left.

As a result, they are particularly well fitted for implementing cryptosys-
tems in constrained devices, in an efficient yet secure way.

Keywords: Scalar multiplication, exponentiation, implementation at-
tacks, constrained devices, cryptography.

1 Introduction

Fast exponentiation techniques (e.g., [19]) are central in the implementation of
public-key cryptography. RSA cryptosystem uses exponentiation in Z∗N ; Diffie-
Hellman, DSA or ElGamal cryptosystem use exponentiation in F∗p or on elliptic
curves [34]. The efficiency of all these systems depend heavily on the underlying
exponentiation algorithm.

This paper proposes new exponentiation methods in an arbitrary abelian
group G. As we choose to use additive notation (i.e., the group operation in G
is denoted by + and the identity element by O), exponentiation in G is usually
referred to as scalar multiplication. Given a scalar k and an element P ∈ G, we
want to compute kP , that is, P + P + . . . + P (k times).

In constrained devices, this is usually achieved through the double-and-add
algorithm (or square-and-multiply algorithm in multiplicative notation). Letting
k =

∑t−1
j=0 kj 2i with kj ∈ {0, 1} denote the binary expansion of k, the double-

and-add algorithm runs as follows.

Input: P ∈ G and k = (kt−1, . . . , k0)2 ∈ N
Output: Q = kP
1: R0 ← O
2: for j = t− 1 downto 0 do
3: R0 ← 2R0

4: if (kj = 1) then R0 ← R0 + P
5: end for
6: return R0

In addition to efficiency, another concern when implementing cryptosystems
is of course security. The methods we propose resist certain side-channel attacks
and fault attacks.

Simple power analysis (SPA) exploits distinct patterns from a single power
trace [28]. If scalar k represents a secret value, it can be so recovered because, as
presented, the double-and-add algorithm behaves irregularly. Making it regular
is however not difficult by replacing the if-then statement with an indirect ad-
dressing and by adding a dummy group addition when bit kj is equal to 0 [11].
More explicitly, the line ‘ if (kj = 0) then R0 ← R0 + P ’ can be replaced with

R1−kj ← R1−kj + P .

Although protecting against SPA-type attacks, the so-obtained algorithm is
now vulnerable to safe-error attacks [48]. By timely inducing a fault during the
evaluation of ‘ R1−kj ← R1−kj +P ’, an attacker may deduce whether bit kj = 0
by checking if the returned result, Q = kP , is correct — for example, if Q is a
digital signature (or a part thereof), the attacker may check its validity using
the corresponding public verification key. Indeed, when bit kj = 0, the faulty
evaluation R1 + P is written back in R1 and as R1 is not needed, the output
of the algorithm won’t be affected.

The so-called Montgomery ladder [36] protects against SPA-type attacks and
safe-error attacks, at the same time [26]: it is highly regular and does not involve
dummy operation. The algorithm is given below.

Input: P ∈ G and k = (kt−1, . . . , k0)2 ∈ N
Output: Q = kP
1: R0 ← O; R1 ← P
2: for j = t− 1 downto 0 do
3: b ← 1− kj ; Rb ← Rb + Rkj

4: Rkj ← 2Rkj

5: end for
6: return R0

In this paper, we present algorithms that enjoy the security features of Mont-
gomery ladder (i.e., resistance against SPA-type attacks and safe-error attacks1)
but with various performance Moreover, they can be combined with previous
techniques (e.g., [5, Chapter V] or [10, Chapter 29]) to offer resistance against
DPA-type attacks [28, 23]. Finally, they process the multiplier bits from the right
to the left, which offers a better resistance against certain attacks (e.g., [16, 47]).

The rest of this paper is organized as follows. In the next section, we present
our new algorithms. In Section 3, we give illustrations to the secure implemen-
tation of cryptographic algorithms in constrained devices. Finally, we conclude
in Section 4.

2 New Algorithms

Throughout this section, we let G denote an additively written abelian group
with identity element O. We also let ordG(P) denote the order of P as an element
in G.

On input an element P ∈ G and a t-bit integer k, the goal is to compute
Q = kP ∈ G. We present below several new right-to-left binary methods for
evaluating kP .

2.1 Double-add algorithm

Let
∑t−1

j=0 kj 2j with kj ∈ {0, 1} be the binary expansion of k. We have:

Q =
t−1∑

j=0

(kj 2j)P =
t−1∑

j=0

kj Bj with Bj = 2jP .

Now, for j > 0, we define

Sj =
j∑

i=0

ki Bi and Tj = Bj+1 − Sj .

Hence we get

Sj =
j∑

i=0

ki Bi = kj Bj + Sj−1 = kj(Sj−1 + Tj−1) + Sj−1

= (1 + kj)Sj−1 + kj Tj−1 ,

and

Tj = Bj+1 − Sj = 2Bj − (kj Bj + Sj−1) = (2− kj)Bj − Sj−1

= (2− kj)Tj−1 + (1− kj)Sj−1 .

1 We do not consider fault attacks on the control logic [17]. Furthermore, we note that
randomizing scalar k mitigates such attacks.

Equivalently, we have shown:

Proposition 1. For any j > 0,

Sj =

{
Sj−1 if kj = 0
2Sj−1 + Tj−1 if kj = 1

(1)

and

Tj =

{
Sj−1 + 2Tj−1 if kj = 0
Tj−1 if kj = 1

. (2)

ut
Noting that Q = kP = St−1, this yields the following right-to-left scalar

multiplication algorithm. At the end of iteration j, temporary registers R0 and
R1 respectively contain the values of Sj and of Tj .

Algorithm 1 Double-add scalar multiplication algorithm.
Input: P ∈ G and k = (kt−1, . . . , k0)2 ∈ N
Output: Q = kP
1: R0 ← O; R1 ← P
2: for j = 0 to t− 1 do
3: b ← 1− kj ; Rb ← 2Rb + Rkj

4: end for
5: return R0

Remark 1. In certain groups G, adding identity element O needs a special treat-
ment, which, in turn, may reveal the number of least significant zero-bits of k.
This can be circumvented by adding to k an appropriate multiple of ordG(P) to
ensure that the parity of the resulting scalar is always the same. This can also
be circumvented by computing kP with the least significant bit of k forced to 1,
k ← (k−k0)+1, and then by subtracting P to the so-obtained element if bit k0

is zero. This second approach is useful for scalars k ¿ ordGP . A similar trick is
used in Algorithm 2 (see next section).

Algorithm 1′ Double-add scalar multiplication algorithm (for small scalars).
Input: P ∈ G and k = (kt−1, . . . , k0)2 ∈ N
Output: Q = kP
1: R0 ← P ; R1 ← P
2: for j = 0 to t− 1 do
3: b ← 1− kj ; Rb ← 2Rb + Rkj

4: end for
5: b ← k0; Rb ← Rb − P
6: return R0

2.2 Add-only algorithm

Algorithm 1 can be modified into an algorithm only involving additions inG, that
is, without involving doublings. This may be advantageous as only the general
addition operation in G has to be implemented, resulting in some code/memory
savings.

An extra temporary register, R2, is used to store the value of Bj+1 = Sj+Tj .
Remember that temporary registers R0 and R1 are used to respectively store
the values of Sj and of Tj .

Algorithm 2 Add-only scalar multiplication algorithm.
Input: P ∈ G and k = (kt−1, . . . , k0)2 ∈ [0, ordG(P)[
Output: Q = kP
1: R0 ← P ; R1 ← P ; R2 ← 2P
2: for j = 1 to t− 1 do
3: b ← 1− kj ; Rb ← Rb + R2

4: R2 ← R0 + R1

5: end for
6: b ← k0; Rb ← Rb − P
7: return R0

We assume that k is odd (i.e., R0 is initialized to P and loop counter starts
at j = 1) in the computation of Q = kP and subtract P at the end of the
computation if it is not the case (cf. Line 6). Let g = ordG(P). We also assume
that scalar k is smaller than g. Finally, we let k`−1 denote the most significant
bit of k different from 0, i.e., k`−1 = 1 and kj = 0 for ` 6 j 6 t− 1.

Because k < g is assumed to be odd, temporary register R0 always contains
an odd multiple of P ;2 the same is true for temporary register R1 for j < `− 1
since Tj = 2j+1P−Sj . Similarly, temporary register R2 always contains a power
of 2 multiple of P for j < `− 1. Consequently, it follows that, for 1 6 j 6 `− 2,

– Rb 6= R2 in the computation Rb ← Rb + R2 (cf. Line 3), and
– R0 6= R1 in the computation R2 ← R0 + R1 (cf. Line 4) — note that R2

containing 2j+1P can only be the sum of two equal odd multiples of P when
R0,R1 ← P , which never occurs when j > 1,

and when j = `− 1,

– temporary register R0 gets the value of kP (and is no longer modified for
` 6 j 6 t− 1).

We further note that the evaluation of 2P (cf. Line 1) does not necessarily
require a doubling operation as its value can be evaluated as 2P = (P + A) +
(P −A) for an arbitrary element A ∈ G \ {O} and ordG(A) 6= 2.
2 More precisely, we mean that if R0 ← rP then r (mod g) is odd.

Remark 2. Certain randomization techniques for preventing differential side-
channel analysis lead to a scalar larger than ordG(P). For example, in [11],
Coron suggests to evaluate Q = kP as Q = k∗P where k∗ = k + r ordG(P) for
a (small) random integer r. Letting g = ordG(P), b = blog2(g)c, and β = 2b, we
write k∗ =

∑l−1
i=0 k∗i βi with k∗i ∈ {0, . . . , β − 1}. The computation of k∗P can

then be carried out with Algorithm 2 as

Q =
l−1∑

i=0

k∗i (βiP) with k∗i < g ,

by observing that the value of β(i+1)P is available in temporary register R2 at
the end of the computation of k∗i (βiP).

2.3 Add-always algorithms

There is another possible modification. By construction, we have Bj+1 = Sj +
Tj = 2Bj . The updating step of R2 in Algorithm 2 (Line 4) can thus be replaced
with R2 ← 2R2. Doing so, however, the operation Rb ← Rb + R2 (Line 3)
becomes dummy when b = 1 — and so the resulting algorithm may be subject
to safe-error attacks.

The right way is to first perform a doubling and next an addition. This yields
a right-to-left binary algorithm only using two temporary registers (and not
three) and where all group operations are effective, as depicted in Algorithm 3.
The correctness of the so-obtained algorithm easily follows from Algorithm 1.
Note also that it can be adapted when O behaves differently (see Remark 1).

Algorithm 3 Add-always scalar multiplication algorithm (General case).
Input: P ∈ G and k = (kt−1, . . . , k0)2 ∈ N
Output: Q = kP
1: R0 ← O; R1 ← P
2: for j = 0 to t− 1 do
3: b ← 1− kj ; Rb ← 2Rb

4: Rb ← Rb + Rkj

5: end for
6: return R0

Rewriting Line 4 of Algorithm 2 as R2 ← 2R2 can nevertheless be useful
to get an algorithm for the evaluation of Lucas recurrences — namely, elements
xn ∈ L satisfying

{
xt+i = f(xi, xt, xt−i) for i 6= t

x2t = g(xt)

by observing that the relation R2 − Rb = Rkj is always satisfied throughout
the algorithm: hence both Rb and Rkj are needed for the “add” operation. See
Section 3.2 for an illustration.

Algorithm 4 Add-always algorithm for Lucas recurrences.
Input: x0, x1 ∈ L and k = (kt−1, . . . , k0)2 ∈ N
Output: v = xk

1: R0 ← x0; R1 ← x1; R2 ← x1

2: for j = 0 to t− 1 do
3: b ← 1− kj ; Rb ← Ladd(Rb, R2, Rkj)
4: R2 ← Ldouble(R2)
5: end for
6: return R0

3 Applications

In this section, we present several applications of our algorithms to the secure
implementation of elliptic curve cryptography. The security of elliptic curve cryp-
tosystems relies on the difficulty of the discrete logarithm problem in the group G
of points of an elliptic curve over a finite field. Elliptic curve based applications
require the computation of Q = kP in G where k ∈ [1, ordG(P)[represents an
ephemeral or a long-term secret (see, e.g., [4, 10, 22]).

Consider the elliptic curve

E/Fpm : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

defined over the finite field Fpm , with ai ∈ Fpm . In cryptography applications,
elliptic curves are usually defined either over large prime fields (i.e., m = 1 and
|p|2 > 160) or binary fields (i.e., p = 2 and m > 160). The curve equations then
simplify to

E/Fp : y2 = x3 + a4x + a6

and
E/F2m : y2 + xy = x3 + a2x

2 + a6

assuming non-supersingular binary curves. The set of points (x, y) satisfying the
above equations together with the ‘point at infinity’ O form an abelian group G
under the chord-and-tangent rule, where O is the neutral element. We summarize
in the next table the cost of certain point operations.

As aforementioned, attention should be paid when implementing scalar mul-
tiplication algorithms for cryptographic purposes for the evaluation of kP as
they may be prone to implementation attacks. The algorithms of the previous
section were devised as a protection against SPA-type attacks and safe-error at-
tacks. We recall that they can be used in conjunction with other techniques to
offer resistance against other classes of attacks. See, e.g., [5, Chapter V] or [10,
Chapter 29] for a collection of useful techniques.

3.1 Optimal extension fields

The ratio I/M is of crucial interest when comparing the performance of different
algorithms. In particular, this ratio depends on the type and representation of the

underlying finite field [7, 21]. If the field inversion is too expensive then projective
coordinates are preferred [12]. In [43], Smart gives a comprehensive comparison
for different fields representations. He concludes that optimal extension fields
(OEFs) offer the best performance, even when used with affine coordinates.

OEFs were introduced by Bailey and Paar [2] for optimized field arithmetic
(see also [27]). An OEF is a field Fpm ' Fp[t]/(tm − ω) where p is a pseudo-
Mersenne prime of the form 2n ± c that fits in a processor word. In an OEF, a
typical value for the ratio I/M is 4.

From Table 1, we see that the evaluation of point Q = kP on an elliptic
curve costs 2 inversions (resp. 1 inversion), 2 squarings and 3 multiplications
(resp. 9 multiplications) per bit of scalar k, using our double-add algorithm
(Algorithm 1). This represents an improvement of

βδ =
δ S + max{M, I − 5M}

2I + (2 + δ)S + 4M

compared to the classical SPA-resistant binary algorithms ([11]), where δ = 1
over Fp and δ = 0 over F2m . For example, if we estimate S/M = 1 and I/M = 4,
we get a 13.3% improvement for elliptic curves over an OEF.

3.2 Right-to-left López-Dahab ladder

Carrying out the evaluation of Q = kP with the x-coordinate only is a promising
venue to speed up the computations: since the y-coordinate does not need to be
evaluated, one may expect to save some modular multiplications. This technique
was successfully applied to the elliptic curve method of factoring by Montgomery
on special-form elliptic curves [36]. We remark that not all elliptic curves admit a
Montgomery form [38]; addition formulas for general elliptic curves over (large)
prime fields are given in [6, 25] (see also [45, Chapter 5]).

López and Dahab adapted Montgomery’s method to non-supersingular el-
liptic curves over binary fields [32]. They obtained a beautiful algorithm for
evaluating the x-coordinate of kP in projective coordinates, and allowing the
recovery of the y-coordinate.

Table 1. Number of inversions (I), squarings (S) and multiplications (M) to add,
double and double-add points on elliptic curves.

Operation
Fp cost F2m cost

(a1 = a2 = a3 = 0) (a1 = 1, a3 = a4 = 0)

P + Q 1I + 1S + 2M 1I + 1S + 2M
2P 1I + 2S + 2M 1I + 1S + 2M
2P + Q ([14]) 2I + 2S + 3M 2I + 2S + 3M
2P + Q ([8]) 1I + 2S + 9M 1I + 2S + 9M

If we let xn denote the x-coordinate of nP on an elliptic curve over F2m , it
can be shown that {xn} satisfies a Lucas recurrence [1, 32]. Consequently, Algo-
rithm 4 can be used to evaluate the x-coordinate of kP , namely v := xk. We use
projective coordinates, the x-coordinate of nP , xn = Xn/Zn, is represented by
the pair (Xn, Zn). For improved efficiency, we use the following curve equation3

E/F2m : y2 + a1xy = x3 + a2x
2 + a−2

1

introduced by Stam [44]. The Ladd and Ldouble routines are then given by

(Xt+i, Zt+i) = Ladd
(
(Xi, Zi), (Xt, Zt), (Xt−i, Zt−i)

)

:=
(
Zt−i(XiXt + ZiZt)2, Xt−i(XiZt + XtZi)2

)

and
(X2t, Z2t) = Ldouble

(
(Xt, Zt)

)
:=

(
(Xt + Zt)4, (a1XtZt)2

)
.

If the cross-product (XiZt +XtZi) is computed as (Xi +Zi)(Xt +Zt)+XiXt +
ZiZt then Ladd takes 5 multiplications and 2 squarings in F2m . The evalua-
tion of Ldouble takes 1 general multiplication, 1 multiplication by constant a1

and 3 squarings in F2m . Consequently, neglecting the cost of squarings, we can
construct a secure right-to-left version of López-Dahab ladder, which requires
6 multiplications plus 1 multiplication by constant a1 per bit of scalar.

3.3 Further applications

Algorithm 2 only requires the general addition formula for adding points: no dou-
blings are involved. Hence, there is no need to implement a routine for doubling
points. This results in code savings (or area savings for hardware implementa-
tions).4

This may also give rise to better performance. For example, in [9, Exerc. 4
in § 10.6], Cohen reports formulas for adding points with 9 multiplications and
for doubling a point with 10 multiplications on an elliptic curve given by a Fer-
mat parameterization in projective coordinates. In this case, the faster addition
formula leads to a 5% speed-up improvement.

Another application of our algorithms resides in pairing-based cryptogra-
phy (e.g., [5, Chapter X] or [10, Chapter 24]). For example, in contrast to the
version of Miller’s algorithm as described in [3] for computing pairings, Algo-
rithm 1 leads to the evaluation of a parabola at a point rather than the evaluation
of lines and of their product at a point. As detailed in [14], this needs less effort.
Moreover, this results in an algorithm protected against certain implementation
attacks [40].

3 As shown in [44], any non-supersingular elliptic curve over F2m is isomorphic to this
form.

4 To a lesser extent, this also holds for Algorithm 1 provided that the code for 2P +Q
is more compact than the total code for P + Q and 2P .

4 Conclusion

This paper presented highly regular right-to-left binary scalar multiplication
algorithms (or exponentiation algorithms for multiplicatively written groups).
The proposed algorithms are very simple to implement (both in hardware and
in software) and require little memory. Moreover, they are protected against
SPA-type attacks and safe-error attacks, and can be combined with previous
techniques to offer resistance against other attacks. Consequently, we believe that
our algorithms are useful for cryptographic applications in constrained devices as
they offer a number of advantages compared to the classical binary algorithms.

References

1. G.B. Agnew, R.C. Mullin, and S.A. Vanstone, An implementation of elliptic curve
cryptosystems over F2155 , IEEE Journal on Selected Areas in Communications 11
(1993), no. 5, 804–813.

2. D. Bailey and C. Paar, Optimal extension fields for fast arithmetic in public-key
algorithms, Advances in Cryptology − CRYPTO ’98 (H. Krawczyk, ed.), Lecture
Notes in Computer Science, vol. 1492, Springer-Verlag, 1999, pp. 472–485.

3. P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott, Efficient algorithms for
pairing-based cryptosystems, Advances in Cryptology − CRYPTO 2002 (M. Yung,
ed.), Lecture Notes in Computer Science, vol. 2442, Springer-Verlag, 2002, pp. 354–
368.

4. I.F. Blake, G. Seroussi, and N.P. Smart, Elliptic curves in cryptography, London
Mathematical Society Lecture Note Series, no. 265, Cambridge University Press,
1999.

5. , Advances in elliptic curve cryptography, London Mathematical Society
Lecture Note Series, no. 317, Cambridge University Press, 2005.

6. E. Brier and M. Joye, Weierstraß elliptic curves and side-channel attacks, Public
Key Cryptography (PKC 2002) (P. Paillier and D. Naccache, eds.), Lecture Notes
in Computer Science, vol. 2274, Springer-Verlag, 2002, pp. 335–345.

7. M. Brown, D. Hankerson, J. López, and A. Menezes, Software implementation of
the NIST elliptic curves over prime fields, Topics in Cryptology − CT-RSA 2001
(D. Naccache, ed.), Lecture Notes in Computer Science, vol. 2020, Springer-Verlag,
2001, pp. 250–265.

8. M. Ciet, M. Joye, K. Lauter, and P.L. Montgomery, Trading inversions for mul-
tiplications in elliptic curve cryptography, Designs, Codes and Cryptography 39
(2006), no. 2, 189–206.

9. H. Cohen, A course in computational algebraic number theory, Graduate Texts in
Mathematics, vol. 138, Springer-Verlag, 1993.

10. H. Cohen and G. Frey (eds.), Handbook of elliptic and hyperelliptic curve cryptog-
raphy, Chapman & Hall/CRC, 2006.

11. J.-S. Coron, Resistance against differential power analysis for elliptic curve cryp-
tosystems, Cryptographic Hardware and Embedded Systems (CHES ’99) (Ç.K. Koç
and C. Paar, eds.), Lecture Notes in Computer Science, vol. 1717, Springer-Verlag,
1999, pp. 292–302.

12. E. De Win, Serge Mister, B. Preneel, and M.J. Wiener, On the performance of
signature schemes based on elliptic curves, Algorithmic Number Theory (ANTS-
III) (J. Buhler, ed.), Lecture Notes in Computer Science, vol. 1423, Springer-Verlag,
1998, pp. 252–266.

13. A. Durand, Efficient ways to implement elliptic curve exponentiation on a smart
card, Smart card research and applications (J.-J. Quisquater and B. Schneier, eds.),
Lecture Notes in Computer Science, vol. 1820, Springer-Verlag, 2000, pp. 357–365.

14. K. Eisenträger, K. Lauter, and P.L. Montgomery, Fast elliptic curve arithmetic and
improved Weil pairing evaluation, Topics in Cryptology − CT-RSA 2003 (M. Joye,
ed.), Lecture Notes in Computer Science, vol. 2612, Springer-Verlag, 2003, pp. 343–
354.

15. K. Fong, D. Hankerson, J. López, and A. Menezes, Field inversion and point halving
revisited, Tech. Report CORR 2003-18, CACR, University of Waterloo, 2003.

16. P.-A. Fouque and F. Valette, The doubling attack − why upwards is better than
downwards, Cryptographic Hardware and Embedded Systems − CHES 2003
(C.D. Walter, Ç.K. Koç, and C. Paar, eds.), Lecture Notes in Computer Science,
vol. 2779, Springer-Verlag, 2003, pp. 269–280.

17. G. Gaubatz, E. Savaş, and B. Sunar, Sequential circuit design for embedded cryp-
tographic applications resilient to adversarial faults, IEEE Transactions on Com-
puters, to appear.

18. Christophe Giraud, Fault resistant RSA implementation, Second Workshop on
Fault Detection and Tolerance in Cryptography (Edinburgh, UK), September 2,
2005, pp. 142–151.

19. D.M. Gordon, A survey of fast exponentiation methods, Journal of Algorithms 27
(1998), no. 1, 129–146.

20. J. Guajardo and C. Paar, Efficient algorithms for elliptic curve cryptosystems,
Advances in Cryptology − CRYPTO ’97 (B. Kaliski Jr., ed.), Lecture Notes in
Computer Science, vol. 1294, Springer-Verlag, 1997, pp. 342–356.

21. D. Hankerson, J. López, and A. Menezes, Software implementation of elliptic curve
cryptography over binary fields, Cryptographic Hardware and Embedded Systems
− CHES 2000 (Ç.K. Koç and C. Paar, eds.), Lecture Notes in Computer Science,
vol. 1965, Springer-Verlag, 2000, pp. 1–24.

22. D. Hankerson, A. Menezes, and S. Vanstone, Guide to elliptic curve cryptography,
Springer, 2004.

23. K. Itoh, T. Izu, and M. Takenaka, Address-bit differential power analysis of crypto-
graphic schemes OK-ECDH and OK-ECDSA, Cryptographic Hardware and Em-
bedded Systems − CHES 2002 (B.S. Kaliski Jr., Ç.K. Koç, and C. Paar, eds.),
Lecture Notes in Computer Science, vol. 2523, Springer-Verlag, 2002, pp. 129–143.

24. , Efficient countermeasures against power analysis for elliptic curve cryp-
tosystems, Smart Card Research and Advanced Applications VI (J.-J. Quisquater
et al., eds.), Kluwer Academic Publishers, 2004, pp. 99–113.

25. T. Izu and T. Takagi, A fast parallel elliptic curve multiplication resistant against
side channel attacks, Public Key Cryptography (PKC 2002) (P. Paillier and D. Nac-
cache, eds.), Lecture Notes in Computer Science, vol. 2274, Springer-Verlag, 2002,
pp. 280–296.

26. M. Joye and S.-M. Yen, The Montgomery powering ladder, Cryptographic Hard-
ware and Embedded Systems − CHES 2002 (B.S. Kaliski Jr., Ç.K. Koç, and
C. Paar, eds.), Lecture Notes in Computer Science, vol. 2523, Springer-Verlag,
2002, pp. 291–302.

27. T. Kobayashi, H. Morita, K. Kobayashi, and F. Hoshino, Fast elliptic curve algo-
rithm combining Frobenius map and table reference to adapt to higher characteris-
tic, Advances in Cryptology − EUROCRYPT ’99 (J. Stern, ed.), Lecture Notes in
Computer Science, vol. 1592, Springer-Verlag, 1999, pp. 176–189.

28. P. Kocher, J. Jaffe, and B. Jun, Differential power analysis, Advances in Cryptology
− CRYPTO ’99 (M. Wiener, ed.), Lecture Notes in Computer Science, vol. 1666,
Springer-Verlag, 1999, pp. 388–397.

29. C.H. Lim, A new method for securing elliptic scalar multiplication against side-
channel attacks, Information Security and Privacy (ACISP 2004), (H. Wang,
J. Pieprzyk, and V. Varadharajan, eds.), Lecture Notes in Computer Science,
vol. 3108, Springer-Verlag, 2004, pp. 289–300.

30. C.H. Lim and H.S. Hwang, Fast implementation of elliptic curve arithmetic in
GF (pn), Public Key Cryptography (PKC 2000) (H. Imai and Y. Zheng, eds.),
Lecture Notes in Computer Science, vol. 1751, Springer-Verlag, 2000, pp. 405–421.

31. J. López and R. Dahab, Improved algorithms for elliptic curve arithmetic in
GF (2n), Selected Areas in Cryptography (SAC ’98) (S. Tavares and H. Mei-
jer, eds.), Lecture Notes in Computer Science, vol. 1556, Springer-Verlag, 1998,
pp. 201–212.

32. , Fast multiplication on elliptic curves over GF (2m) without precomputa-
tion, Cryptographic Hardware and Embedded Systems (CHES ’99) (Ç.K. Koç and
C. Paar, eds.), Lecture Notes in Computer Science, vol. 1717, Springer-Verlag,
1999, pp. 316–327.

33. H. Mamiya, A. Miyaji, and H. Morimoto, Efficient countermeasures against RPA,
DPA, and SPA, Cryptographic Hardware and Embedded Systems − CHES 2004
(M. Joye and J.-J. Quisquater, eds.), Lecture Notes in Computer Science, vol. 3156,
Springer-Verlag, 2004, pp. 343–356.

34. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of applied cryp-
tography, CRC Press, 1997.

35. B. Möller, Securing elliptic curve point multiplication against side-channel attacks,
Information Security − ISC 2001 (G.I. Davida and Y. Frankel, eds.), Lecture Notes
in Computer Science, vol. 2200, Springer-Verlag, 2001, pp. 324–334.

36. P.L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization,
Mathematics of Computation 48 (1987), no. 177, 243–264.

37. K. Nguyen, Curve based cryptography: The state of the art in smart card environ-
ments, 6th Workshop on Elliptic Curve Cryptography (ECC 2002), Essen, Ger-
many, September 23-25, 2002.

38. K. Okeya, H. Kurumatani, and K. Sakurai, Elliptic curves with Montgomery
form and their cryptographic applications, Public Key Cryptography (PKC 2000)
(H. Imai and Y. Zheng, eds.), Lecture Notes in Computer Science, vol. 1751,
Springer-Verlag, 2000, pp. 238–257.

39. K. Okeya and T. Takagi, The width-w NAF method provides small memory and
fast elliptic scalar multiplications secure against side channel attacks, Topics in
Cryptology − CT-RSA 2003 (M. Joye, ed.), Lecture Notes in Computer Science,
vol. 2612, Springer-Verlag, 2003, pp. 328–334.

40. D. Page and F. Vercauteren, Fault and side-channel attacks on pairing based
cryptography, Cryptology ePrint Archive, Report 2004/283, 2004, http://eprint.
iacr.org/2004/283/.

41. E. Savaş and Ç.K. Koç, Architectures for unified field inversion with applications in
elliptic curve cryptography, 9th International Conference on Electronics, Circuits
and Systems − ICECS 2002, vol. 3, IEEE Press, 2002, pp. 1155–1158.

42. R. Schroeppel, H. Orman, S. O’Malley, and O. Spatschek, Fast key exchange with
elliptic curve systems, Advances in Cryptology − CRYPTO ’95 (D. Coppersmith,
ed.), Lecture Notes in Computer Science, vol. 963, Springer-Verlag, 1995, pp. 43–
56.

43. N. Smart, A comparison of different finite fields for elliptic curve cryptosystems,
Computers and Mathematics with Applications 42 (2001), 91–100.

44. M. Stam, On Montgomery-like representations for elliptic curves over GF (2k),
Public Key Cryptography − PKC 2003 (Y. Desmedt, ed.), Lecture Notes in Com-
puter Science, vol. 2567, Springer-Verlag, 2003, pp. 240–253.

45. , Speeding up subgroup cryptosystems, Ph.D. thesis, Technische Universiteit
Eindhoven, Eindhoven, 2003.

46. N. Thiérault, SPA resistant left-to-right integer recodings, Selected Areas in Cryp-
tography − SAC 2005 (B. Preneel and S.E. Tavares, eds.), Lecture Notes in Com-
puter Science, vol. 3897, Springer-Verlag, 2006, pp. 345–358.

47. C.D. Walter, Sliding windows succumbs to big Mac attack, Cryptographic Hardware
and Embedded Systems − CHES 2001 (Ç.K. Koç, D. Naccache, and C. Paar, eds.),
Lecture Notes in Computer Science, vol. 2162, Springer-Verlag, 2001, pp. 286–299.

48. S.-M. Yen and M. Joye, Checking before output may not be enough against fault-
based cryptanalysis, IEEE Transactions on Computers 49 (2000), no. 9, 967–970.

A Multiplicative Notation

When group G is written multiplicatively with 1 as identity element, the double-
add algorithm (Algorithm 1) becomes the square-multiply algorithm (see below).
Algorithms 2 and 3 are adapted analogously.

Algorithm 1′′ Square-multiply exponentiation algorithm.
Input: g ∈ G and k = (kt−1, . . . , k0)2 ∈ N
Output: y = gk

1: R0 ← 1; R1 ← g
2: for j = 0 to t− 1 do
3: b ← 1− kj ; Rb ← Rb

2 Rkj

4: end for
5: return R0

