
Two New Techniques of Side-Channel
Cryptanalysis

Alex Biryukov and Dmitry Khovratovich

University of Luxembourg
{alex.biryukov,dmitry.khovratovich}@uni.lu

Abstract. We describe two new techniques of side-channel cryptanal-
ysis which we call the impossible collision attack and the multiset colli-
sion attack. These are inspired by the state-of-the-art cryptanalytic tech-
niques of impossible differential attacks [BBS99] and partial-function col-
lision attacks [GM00] respectively. Using these techniques on an example
of the AES we show that one has to mask all the rounds of a 128-bit key
AES in order to prevent such attacks. For example these attacks can be
used to break a recent proposal by Schramm et al. [SP06] of high order
masking for the AES, since it protects only 3 external rounds.

1 Introduction

This paper was motivated by a recent work by Handschuh-Preneel [HP06] in
which they have shown how to break through 4 rounds of DES masked with
unique masking method [AG03] using differential cryptanalysis. Another mo-
tivation comes from the fact that masking methods like [AG03] or algebraic
masking bring a high toll on the performance of the underlying cryptographic
algorithm (either in terms of high memory requirements for tables, or in terms
of slowdown for table-recalculation or complicated algebraic masking). Thus it
is a natural question for the designer: how many rounds of a cipher need to be
masked so that side-channel leakage from internal unmasked rounds becomes
useless to the attacker. For example in the case of the AES one may think that
masking two rounds at the top and at the bottom would be enough, since two
rounds of this cipher have complete diffusion (i.e. each output bit is influenced
by all the input bits). A prudent implementation would add an extra round for
the safety-margin, and in fact one such proposal which masks three rounds from
each end of the cipher has been proposed recently [SP06].

In this paper we describe two new tools for side-channel cryptanalysis, namely
the impossible collision attack and the multiset collision attack. As one may
infer from their names these are variations of the collision side-channel at-
tack [SLFP04, LMV04] and are inspired by the state-of-the-art techniques of
block-cipher cryptanalysis such as impossible differential attacks [BBS99] and
partial-function collisions attacks [GM00] respectively. In all our attacks we use
a standard collision attack assumption that the attacker can detect identical
calculations being performed in different executions from similarity of the power
consumption patterns of these executions.



Before we describe the new techniques we show a very efficient collision attack
which needs only 70-80 measurements in order to break AES implementations
with perfect masking of two top and bottom rounds. This attack is surprisingly
efficient if one compares it with the other advanced collision attacks on unmasked
implementations of the AES that require about 40 measurements.

Then we show how to attack AES with three round perfect masking (ex. the
one from [SP06]) using impossible collision attack. This attack requires 219−220

measurements and 227 offline curve comparisons for a full key recovery. The
main idea is to detect an absence of collisions, which leaks information about
the propagation of differentials inside the cipher. Such information in its turn is
very useful in order to filter out the wrong key guesses.

Finally we show attacks using the multiset collisions techniques on three
and four rounds of masking. The distinguisher for three rounds of masking has
complexity of about 218 measurements. The attack on the four rounds is probably
of theoretical interest only since it requires 227 − 228 measurements and 250

offline computation steps, but it would be feasible for a determined attacker. The
benefit of the multiset approach over the impossible collisions is that detection
of collisions in sets is much more robust to errors than detection of single byte
collisions/differences.

These results show that in the case of 128-bit key AES all the rounds have to
be masked for high security level, for 192-bit key AES 10 out of 12 rounds have
to be masked and for 256-bit 10 out of 14 have to be masked. For a medium level
of security 8 rounds of masking in total seem to be a minimum. Complexities of
our attacks (in terms of required measurements and off-line computations) are
presented in Table 1.

This paper is organized as follows: in Section 2 we give a brief overview of
the side-channel attacks and countermeasures. In Section 3 we describe a gen-
eral framework for the collision side-channel attacks. In Section 4 we describe a
simple collision attack on 2-rounds of masking and then we present an impossi-
ble collision attack on 3 rounds of masking. In Section 5 we present a multiset
collision attack based on Gilbert-Minier distinguisher for AES. In Section 7 we
give our conclusions.

2 Brief Overview of Side-Channel Attacks and
Countermeasures

Power attacks are based on measuring the power consumption of a device which
performs some computations with the secret values, which the attacker tries to
find. Whenever the internal value depends on the secret key the measurement
may leak information about it. Although different leakage models were proposed
[Mes00, BCO04, SSI05] the one that is based on the Hamming weight of the com-
puted data is the most widely used. One may assume that the power consumption
at any given moment is a normally distributed random variable with a mean de-
pending on the Hamming weight of the processed data. This assumption is the
basis of a technique called differential power analysis (DPA) [KJJ99, Mes00].



Further research has shown that some devices may leak more than a Ham-
ming weight. More precisely, it is sometimes possible to determine whether a
computed byte is the same in two different measurements. This attack uses par-
tial internal collisions and thus it is called a collision attack [SWP03, SLFP04,
LMV04].

The main idea is to encrypt/sign/hash different plaintexts and look for pairs
with colliding bytes. If, say, in the AES, there is a partial collision after Mix-
Columns transformation then by detecting the collision we obtain information
about a subkey of this round. The number of collisions needed for the attack
depends on the structure of the set of plaintexts. Schramm et al. in their attack
on the AES managed to recover the full key after only 40 measurements (com-
pared to thousands in some DPA attacks). On the other hand they assumed
that an attacker has perfect ability to detect collisions, i. e., they assumed that
probability of errors in collision detection is zero.

Side-channel techniques described above work only with deterministic im-
plementation by default. Any randomization added to the implementation may
defeat these methods. Let us imagine that all internal values are masked by some
previously computed random values, which will be removed before the final step.
Then any leakage gives us information about a masked value but not about the
real one. Formally, we still know nothing about the processed values.

If masking is not completely random (say, inputs of all S-boxes of a round are
masked by the same mask), which is sometimes the case, then one becomes able
to obtain information about internal values [KJJ99, GT02, ABG04, WW04]
via higher order DPA attacks. Furthermore, the implementation of uniformly
random independent masking for all the rounds and each S-box in a round is in
most cases too expensive.

In the case of the AES several mathematical as well as engineering masking
methods were proposed. One of the most efficient methods [OMPR05] is based
on the algebraic representation of an AES S-box. The S-box function, which is
usually described as a function on GF (256), may be interpreted as a function
on GF (16) × GF (16). This is called ”using composite fields” while the mask-
ing method is known as ”algebraic masking”. The inversion operation, which is
the crucial point of the S-box transformation, can be implemented much more
efficiently whenever we deal with smaller fields.

The complexity of many masking methods is prohibitively expensive either
in terms of required memory or in terms of slowdown effect compared to the
unmasked version or both. A thorough research on this topic may be found in
Schramm’s PhD thesis [Sch06]. We just cite that the implementation of alge-
braic masking method would require either 50 times as many computations as
unmasked AES requires or about 64KB ROM for saving precomputed masked
tables. The latter method is not completely suitable because these tables should
be recomputed quite often; otherwise this will lead to successful higher order
DPA.

It is also pointed out [Sch06] that the best trade-off between the amount of
memory and the number of operations is to compute the masked table on the fly



whenever it is needed. Nevertheless, masking all the rounds of the AES is still
too costly, which is the reason to mask only a few first and a few last rounds.
In the high-order resistant AES implementation by Schramm and Paar only the
first three and the last three rounds are masked [SP06].

3 General Framework of Collision Attacks

Overall. Let f be an arbitrary non-injective function. Then a pair of different
inputs a and b such that f(a) = f(b) (i.e. a pair that provides non-injectiveness)
is called a collision for f .

Although the notion of collision in cryptography is most often related to the
design of hash-functions, it has been recently used to describe a specific class
of side-channel attacks. In addition to being quite different from the DPA-style
attacks, this class of attacks benefits from the usage of the birthday paradox.

More precisely, let V be an intermediate variable of an algorithm A imple-
mented in a device:

V = f(P,K),

where P is an input of A and K is a secret parameter. Let us also assume that
information about V leaks via the measurement of power consumption. Say, it
is easy to detect the case

f(P1,K) = f(P2,K), (1)

which is exactly a collision for f .
As soon as an adversary detects such collisions he obtains information about

K. This fact may be easily described in the language of probability theory.
At first collision attacks were proposed for the DES [SWP03], where one

could use non-injectiveness of the S-boxes. Then they were extended to the AES
and other ciphers [SLFP04, LMV04, HP06]. In the AES, the non-injectiveness of
MixColumns subfunctions is used. More precisely, each output byte of a round
is a function of four input bytes. Evidently, there exist collisions even if only two
input bytes are varied and two others are kept constant.

Detecting the difference. As soon as we are able to detect equality of values and
thus collisions of type (1), we are likely to detect the inequality as well. Detec-
tion of impossibility of a collision in a certain byte resembles the cryptanalytic
technique called ”cryptanalysis with impossible differentials” [BBS99].

As only one of every 28 byte pairs collide, we expect to detect differences
much more often than collisions. We will show in Section 4.2 and Appendix that
mistaking differences for collisions might greatly reduce the probability of the
attack to succeed.

Accuracy of the method. Schramm et al. in their attack on the AES [SLFP04]
assumed perfect collisions detection. We expect that it is often not the case
in the real world so in our attacks we allow some errors of both types (false



positives and false negatives) to occur. Evidently, the number of measurements
and the success of the attack depends on probabilities of these errors. We provide
mathematical background on these issues in the Appendix and obtain formulas
for the number of measurements and amount of data as the functions of the
errors.

In order to eliminate the noise and thus reduce the probability of errors a
standard approach would be to use averaging (by repeating the same measure-
ment several times). The effect of variation in clock speed can be mitigated since
it is often possible to distinguish rounds and even locate the moments of S-box
computations. Furthermore we can compare several power consumption curves
and find the best match using the FFT technique [WW04].

4 Impossible Collision Attack

In this section we show attacks on AES with two and three rounds of masking.
We do not care which masking method is used in these rounds, we assume that
it is perfect and no information is leaked from these rounds. We assume that the
remaining inner rounds are unprotected, i.e. there are no software countermea-
sures in these rounds (the attack is robust against hardware countermeasures,
such as random power noise (random peaks of power) or variable internal clock).
These are the same assumptions as in [HP06].

4.1 Collision Attack on AES with 2 Perfectly Protected Rounds

If one considers unique masking method (UMM) or other costly masking tech-
nique for the AES at first sight it makes sense to mask only two top and two
bottom rounds, since the AES (unlike the DES) has complete diffusion after just
two rounds (i.e. change in a single bit influences all 128 bits). However in this
section we describe a very efficient attack on the AES with only 2 top and 2
bottom round masking.

In this section we will perform a differential cryptanalysis [BS90] of the first
two rounds of the AES, trying to predict differences at the input of the third
round. Our goal is to make this as efficient as possible in order to minimize the
number of queries to the encryption oracle and thus to minimize the number
of measurements. As usual in differential cryptanalysis we consider only the
propagation of differences and we call an S-box active if it gets non-zero input
difference, otherwise we call an S-box passive. A pattern of difference propagation
through several rounds of a cipher is called a differential characteristic, and a
collection of characteristics with the same input and output differences, but with
unrestricted behaviour in the intermediate rounds is called a differential.

We will use a differential which starts with four active S-boxes at the 1st
round. We choose those active S-boxes to appear in positions which arrive in
one column after the ShiftRows transformation. Then with probability 2−6

four active S-boxes will collapse to three (one byte out of four getting a zero
difference). After the second round the three active bytes are expanded into 12



active bytes and there will still remain 4 passive bytes. This differential can be
schematically described as 4 → 3 → 12. We will use these bytes for the detection
of collisions. This propagation is illustrated on the right in Figure 1.

4

1

4

16

p = 2−22

p = 1

p = 1

Round 1

Round 2

Round 3

plaintext

difference

4

3

12

p = 2−6

p = 1

Fig. 1. Differentials for 3 and 2 rounds of the AES.

A naive implementation would require 2 · 26 measurements for 26 pairs of
text until we detect a pair which has the differential property of 4 passive bytes
(happens by chance with probability 2−32). However we can use a standard trick
from differential cryptanalysis and pack the texts into structures. The attacker
will prepare a set of 24 texts which share the same random constant in the bytes
corresponding to the passive S-boxes at the 1st round, and different randomly
chosen values for the four active bytes. Then the attacker considers all possible
∼ 28 pairs in this set. Thus in these structures of 24 texts there will be about
four right pairs among about 256 wrong ones. If we can perfectly detect collisions
at the input of the 3rd round then we will remain only with the right pairs (if
we detect four collisions for the bytes corresponding to some column, this pair
can only be a right pair). Each right pair reduces the key-space by 8 bits, and
thus with four such pairs we know the 32-bit chunk of the key corresponding
to the four active S-boxes of the first round. We can repeat this attack in four
other locations completely recovering the subkey of the 1st round and thus the
secret key of the AES as well. This attack needs less than 100 measurements. If
we supplement the attack with partial exhaustive search of 232 complexity the
number of measurements becomes less than 75. Interestingly this complexity is
close to the one obtained in collision attacks on unmasked AES implementations
(40 measurements).

As a result of this attack it is clear that at least 3 rounds of AES have to
be masked at both ends. It may also seem sufficient. Nevertheless in the next



subsection we show how to penetrate through 3 rounds of masking for AES.
However this requires a new side-channel attack technique.

4.2 Impossible Collision Attack on 3 Rounds of AES with Masking

Now we are in a scenario when three rounds of AES are masked at the top and
at the bottom.

Let us see what happens if we use the differential as shown on the left side
of Figure 1: 4 → 1 → 4 → 16. We see that by the properties of AES diffusion
the four active bytes which enter the 3rd round, will be spread to four different
columns and after application of the MixColumns all 16 bytes of the internal
state of AES will be active. That means that we are guaranteed that there will
be no collisions at the input to the 4th round. Thus it seems that we can not
use the collision detection technique anymore, since there will be no collisions.
However we can try to use precisely this property in order to build the attack.
The pairs which do not follow the differential will occasionally have collisions in
some bytes, at the input of the 4-th round. If we can reliably detect those byte
collisions we can immediately discard all such pairs, since we know that there can
be no collisions in a right pair. This idea is very similar to how wrong pairs are
filtered in impossible differential cryptanalysis. Since we use not the collisions
but absence of them as a distinguisher, we call this technique an impossible
collision attack.

Probability that at least one byte out of 16 is the same (at the input of the
4th round) in a pair of AES encryptions is 1−(255/256)16 ≈ 1/16. This is clearly
a very weak filter, 15 out of every 16 wrong pairs will go through and thus we
need some way to amplify the filtration. For each pair that is being tested we
can construct its variation, in which we keep the values that enter active S-boxes
intact, and vary only the constants that enter the passive S-boxes. After 16 such
trials the chance for a wrong pair to survive all the tests is about 0.36. We
repeat the test for the remaining pairs again and again, etc. At the end we will
be left only with the right pair which exhibits no collisions. Given a right pair
we recover 22 bits of subkey information of the 1st round similar to an attack
from the previous section. In order to use the measurements more efficiently we
will again pack the data into structures, but this time of size 212, each structure
providing 223 pairs and thus about two right pairs (probability of the 1st round
differential is 2−22). We will need 27–28 such structures since filtration is much
slower than in the previous section.

The total complexity of this attack is as follows. We will need about 27–28

times more structures than in the previous attack, since our filtration is weaker.
Thus we will need a total of 219–220 measurements. The analysis phase will have
complexity of about 16 · 223 = 227 curve comparisons.

This attack is relatively robust to the errors in which we miss collisions, since
we still will have a chance to filter such pair in next trials. However this attack
is sensitive to the errors of the second kind in which we miss the difference and
detect a collision where there is none. Such error can filter out a right pair and



thus we need to ensure that the set of pairs contains enough right pairs, so that
at least one remains after the filtration process.

In the appendix we derive the formula which relates the error probability
with the total number of required pairs and the probability of the differential.

5 Multiset Collision Attack on 4 Masked Rounds

5.1 Three round distinguisher

Our idea is to use an efficient 3-round distinguisher1 for the AES proposed by
Gilbert and Minier in [GM00].

We use the following notation for bytes of the AES internal state:
a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33


Let us denote by y the byte a00 in the first round input, and by C the block

of three bytes a10, a20, a30 in the same column. Now fix the other bytes to any
12-tuple of constant values. Let us also denote by s the byte a00 in the input to
the fourth round. Then the following proposition holds.

Proposition 1 ([GM00]). The value of s is fully determined by a secret key K,
the byte y, the set C, and 12 fixed bytes. Furthermore, its value may be expressed
as a key-dependent function of one byte-value function of y and four byte-value
functions of C:

s = FK(fK(y), g1
K(C), g2

K(C), g3
K(C), g4

K(C)). (2)

3 roundsy

C

s
of the AES

Due to the birthday paradox, a pool of 216 distinct sets C contains triplets
C ′ and C ′′ such that gi

K(C ′) = gi
K(C ′′), i = 1, 4, which lead to the following

1 It is natural to try to apply Square attack distinguisher to side-channel attacks,
however one quickly discovers that detection of a balanced property requires very
high precision from the attacker in the course of many measurements, and thus is
not robust to even small amounts of noise.



equality:
sC′

[y] ≡ sC′′
[y]. (3)

Gilbert and Minier also noted that much fewer than 256 different y is usually
enough for verifying this property. For our purposes only 6 different y’s will
suffice. Indeed, a wrong pair of triplets collides in one point (byte) of the function
s with probability 2−8 so 6 y’s will filter all wrong pairs, except for a fraction of
2−48.

Thus we obtain a distinguisher for three rounds of the AES that works as
follows. An adversary chooses a set of 6 · 216 ≈ 218.5 plaintexts with 216 different
C’s and 6 y’s for each set C. Then he encrypts those texts and checks for collisions
in the input of fourth round. A right pair provides 6 collisions while on average
no wrong pair (out of 231) will survive this test. Complexity of this distinguisher
is comparable to the complexity of our impossible collision attack, however it
seems more robust, since it detects collisions rather than the absence of them
and can be easily strengthened by increasing the size of the set. This flexibility
can be very useful in the presence of the countermeasures. Now we will show
how to use this distinguisher to construct an attack on the four masked rounds.

5.2 Attack

To pass through four masked rounds we add a round in the beginning. Now we
have to guess 4 bytes of the first subkey that affect y and C. We propose two
approaches to detect whether a tested subkey is the right subkey. The first one
requires 232 measurements and 244.5 offline steps. The second one requires fewer
measurements but the overall complexity is substantially higher.

Attack 1. We encrypt all the 232 plaintexts that vary only in bytes a00, a11, a22,
a33 of the first round and save measurements. Thus before the second round we
have 232 intermediate states that vary only in the first column. Let us denote
this set by D.

As we are able to detect collisions, we divide D by 28 distinct groups (let us
denote them in Bi, i = 1, 256) with regard to corresponding power consumption
curves. A pair of plaintexts from the same group is highly likely to collide in s.

Next for each key guess of bytes k00, k11, k22, k33 we do the following.

– Choose from D 216 distinct sets Dc = (P1, P2, . . . , P6) such that c is the
common C-triplet for Pi, and y byte is equal to i. Thus every Dc is exactly
a verifying set that we use for 3-round distinguisher with 6 different y’s.

– For each Dc fill the vector Vc = (j1, j2, . . . , j6) such that Pi ∈ Bji .
– Search for vectors Vc′ = Vc′′ . Such a pair implies a functional collision of

type (3). A right key guess will lead to at least one such pair.

Complexity 1. The first two steps require 6 · 216 1-round AES transformations
if we do them straightforwardly. To reduce the complexity we first decrypt the
y ◦ C columns (6 · 216 ones) using the zero subkey. Thus we obtain Dc for the
zero subkey.



To avoid the most of recomputations we arrange the set of subkeys such
that the computation of new Dc’s requires fewer operations. A good example is
provided by the Gray code [Knu04] where the next codeword differs only in a
single bit. Thus we need only 6 · 216 bit flips for each new subkey. The usage of
specific data structures might give us 216 byte complexity.

In the last step we have to find a colliding pair of vectors V . We sort them
and then search for the pairs. Overall we need about 216 simple operations
for each key guess, i.e. 248 offline steps or about 243 one AES round steps to
recover the 32-bit chunk of the key. In order to complete the key recovery we
can repeat the attack for other byte positions 3 times, thus finding 96 bits of the
first round subkey and complete the attack by 232 exhaustive search steps. Thus
the complexity of the off-line part is about 244.5 one AES round steps. For the
online part we need about 232 measurements. Due to high on-line and off-line
complexity this attack is mainly of theoretical interest, though it is on the verge
of practicality for a determined attacker.

Attack 2. Now we encrypt 229.5 (1/6th of the number of measurements used
by the previous attack) distinct plaintexts (we follow the notations for the first
attack) that vary only in bytes a00, a11, a22, a33 of the first round.

For each key guess of bytes k00, k11, k22, k33 we do the following.

– Choose also 216 distinct sets Dc but of different cardinality. On average each
Dc contains m = 25.5 plaintexts. The problem is that the set of y’s depends
on a Dc. Nevertheless, we expect that for each pair c′, c′′ there are about
m2/256 = 8 common y’s.

– For each Dc = (P1, P2, . . . , Pm) fill the vector

Vc =
(
〈y1, j1〉, 〈y2, j2〉, . . . , 〈ym, jm〉

)
such that
• If we encrypt Pi using subkey k then the value of y-byte (input to the

second round) is yi;
• Pi ∈ Bji

.
– Search for pairs such that common y’s imply common j’s. This means we

found a functional collision of type (3). A right key guess will lead to at least
one such pair.

Complexity 2. Now we estimate the number of operations for each key guess.
We use the same technique to reduce the complexity of the first two steps.

The only difference is that we first have to decrypt all the possible columns
because we do not know what y’s we will need further. We also have to filter
this set of 216 · 28 = 224 diagonals by our predefined set of plaintexts (D), since
only 1/6 of the diagonals will be present in our measurement sets. Thus the
complexity for the zero subkey is about 230 byte-operations while for the other
ones we need 224 bit operations or 221 byte ones.

Unfortunately, the problem of Vc vector matching is somewhat more com-
plicated. For each value of c only about 40 plaintexts would be present in our



measurement set (i.e. we get 216 Vc vectors with 40 random entries ”turned on”
in each). Due to the birthday paradox any pair of vectors would typically have
about 6 common indexes. If all the yi’s at common locations coincide — this
is a multiset collision that we are looking for. If at least one of the coordinates
differs — the pair is a wrong pair. The problem is that common index locations
differ for different pairs. Thus a naive algorithm would be to try all possible
(216)2 = 232 pairs of vectors which would bring the total complexity of the
attack to about 264 steps.

A faster approach would be as follows: for the pair c′, c′′ which produce a
multiset collision there exist at least 6 common index locations in which the yi’s
are the same. Thus if we try about 40 index locations at random one of them will
likely be the index location in which the right pair has a common index and is
colliding. At a specific index location i only about 216/6 = 213.5 constants c will
be active (i.e. will have a corresponding measurement). We can thus distribute
the measurements in location i into 28 buckets according to the yi. Each value
will appear about 25.5 times. Only the measurements that fell in one bucket need
to be further checked for the presence of collisions at other common locations.
Here we can simply check all possible pairs in a bucket in 211 vector comparisons
which require about 8 simple operations till we get the next common location
at which in most cases there will be a c ontradiction. We have 28 buckets to
check, thus the total complexity for one key guess is 40 · 28 · 211 · 8 = 227 simple
comparisons, or 222 one AES round steps. Due to a high off-line complexity this
attack is mainly of theoretical interest.

6 Attacks on the bottom rounds

As soon as an adversary is allowed to decrypt ciphertexts he may perform an
attack on the bottom round of AES. Although the last round does not contain
MixColumns transformation, the number of S-box layers we pass through is
the same.

Futhermore, AES might (and is encouraged to) be implemented such that
the decryption steps are exactly the same as those of encryption. This is gained
by swapping MixColumns ↔ AddRoundKey and swapping SubBytes ↔
ShiftRows. Such an implementation is of the same security against a decrypting
adversary as well as encrypting one.

Thus all the listed attacks may be succesfully applied also to the bottom
rounds with the same complexity.

7 Conclusion

In this paper we have shown two new techniques of side-channel cryptanalysis
based on collision detection: an impossible collision attack and a multiset colli-
sion attack. Using these techniques we show how to break AES implementations
with 2, 3 and 4 round masking at both ends. One example of such implemen-
tation is [SP06]. This shows that in total at least 10 AES rounds out of 10, 12,



or 14 (depending on the key-size) have to be masked in order to prevent such
attacks. The overall complexities (in terms of required measurements and off-line
computations) are presented in Table 1. The off-line complexities of single and
impossible collision attacks are measured in curve comparisons while those of
the other attacks are measured in one AES round executions.

Method Complexity Masked Attack

Measurements Off-line rounds

Simple collisions 26–27 27 2 Full key recovery

Impossible collisions 219–220 227 3 Full key recovery

MultiSet collisions 218.5 220 3 Distinguisher

MultiSet collisions 232 244.5 4 Full key recovery

MultiSet collisions 229–230 254 4 32 key bits recovery

Table 1. Complexities of our attacks on partially masked AES implementations.

Acknowledgements

We wish to thank Jean-Sébastien Coron for fruitful discussions and anonymous
referees for their helpful comments. Dmitry Khovratovich is supported by PRP
”Security & Trust” grant of the University of Luxembourg.

References

[ABG04] Mehdi-Laurent Akkar, Régis Bevan, and Louis Goubin, Two Power Anal-
ysis Attacks against One-Mask Methods, FSE 2004, LNCS, vol. 3156,
Springer, 2004, pp. 332–347.

[AG03] Mehdi-Laurent Akkar and Louis Goubin, A Generic Protection against
High-Order Differential Power Analysis, FSE 2003, LNCS, vol. 2887,
Springer, 2003, pp. 192–205.

[BBS99] Eli Biham, Alex Biryukov, and Adi Shamir, Cryptanalysis of Skipjack
Reduced to 31 Rounds Using Impossible Differentials, EUROCRYPT 1999,
LNCS, vol. 1592, Springer, 1999, pp. 12–23.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier, Correlation Power
Analysis with a Leakage Model, CHES 2004, LNCS, vol. 3156, Springer,
2004, pp. 16–29.

[BS90] Eli Biham and Adi Shamir, Differential Cryptanalysis of DES-like Cryp-
tosystems, CRYPTO 1990, LNCS, vol. 537, Springer, 1990, pp. 2–21.

[GM00] Henri Gilbert and Marine Minier, A Collision Attack on 7 Rounds of
Rijndael, AES Candidate Conference, 2000, pp. 230–241.

[GT02] Jovan Dj. Golic and Christophe Tymen, Multiplicative Masking and Power
Analysis of AES, CHES 2002, LNCS, vol. 2523, Springer, 2002, pp. 198–
212.



[HP06] Helena Handschuh and Bart Preneel, Blind Differential Cryptanalysis for
Enhanced Power Attacks, Selected Areas of Cryptology 2006, in appear,
2006.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun, Differential Power Anal-
ysis, CRYPTO 1999, LNCS, vol. 1666, Springer, 1999, pp. 388–397.

[Knu04] Donald E. Knuth, The Art of Computer Programming, Volume 4A: Enu-
meration and Backtracking, ch. Generating all n-tuples, 2004.

[LMV04] Hervé Ledig, Frédéric Muller, and Frédéric Valette, Enhancing Collision
Attacks, CHES 2004, LNCS, vol. 3156, Springer, 2004, pp. 176–190.

[Mes00] Thomas S. Messerges, Using Second-order Power Analysis to Attack DPA
Resistant Software, CHES 2000, LNCS, vol. 1965, Springer, 2000, pp. 238–
251.

[OMPR05] Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent Ri-
jmen, A Side-Channel Analysis Resistant Description of the AES S-Box,
FSE 2005, LNCS, vol. 3557, Springer, 2005, pp. 413–423.

[Sch06] Kai Schramm, Advanced Methods in Side Channel Cryptanalysis, Ph.D.
thesis, University of Bochum, 2006.

[SLFP04] Kai Schramm, Gregor Leander, Patrick Felke, and Christof Paar, A
Collision-Attack on AES: Combining Side Channel- and Differential-
Attack, CHES 2004, LNCS, vol. 3156, Springer, 2004, pp. 163–175.

[SP06] Kai Schramm and Christof Paar, Higher Order Masking of the AES, CT-
RSA 2006, LNCS, vol. 3860, Springer, 2006, pp. 208–225.

[SSI05] Daisuke Suzuki, Minoru Saeki, and Tetsuya Ichikawa, DPA Leakage Mod-
els for CMOS Logic Circuits, CHES 2005, LNCS, vol. 3659, Springer,
2005, pp. 366–382.

[SWP03] Kai Schramm, Thomas J. Wollinger, and Christof Paar, A New Class of
Collision Attacks and Its Application to DES, FSE 2003, LNCS, vol. 2887,
Springer, 2003, pp. 206–222.

[WW04] Jason Waddle and David Wagner, Towards Efficient Second-Order Power
Analysis, CHES 2004, LNCS, vol. 3156, Springer, 2004, pp. 1–15.

A Amount of data as a function of error probability

Let us denote by p the probability of the differential (= 2−22 in our case) and
by M the number of tested pairs. Thus we can approximate the number of right
pairs by pM . After a test about αpM good pairs and βM bad pairs survive,
where α is the probability of a right pair to survive while β is that of a wrong
pair (we will show how to estimate them later).

Now recall that we do the variation so each pair has, say, t sisters, which has
the same right/wrong property. After a test we have about αtpM good pairs and
βtM bad pairs survived. A simple sufficient condition for the attack to succeed
is the elimination of the wrong pairs2 while at least one right pair{

βtM < 1;
αtpM = 1.

(4)

2 Note that one may not need complete elimination of the wrong pairs. As soon as the
faction of right/wrong pairs doubles we can claim that we have gained a single bit
of key information.



Exponentiating the second expression by the logα β and dividing it to the
first one, one may easily obtain the condition on M :

M >

(
1
p

)logβ/α β

.

It implies simple conditions on α and β:

β < α ≤ 1, (5)

which has an obvious interpretation. There is no information gain if the inequal-
ity does not hold.

A formulae for the number of measurements (t) may be easily obtained
from (4):

t = max(log1/β M, log1/α(pM)).

Now we show how to estimate α and β a priori. Imagine we evaluated a priori
errors of detecting collisions in a single byte. We are interested in two of them:

αB — the probability of a difference in a single byte to be recognized; (6)
βB — that of a collision in a single byte to be missed. (7)

Schramm et al. in [Sch06] have the first one to be 1 while the second one is
zero. We show how to deal with a more complicated case. Let ci of all wrong pairs
collide in i bytes (i = 1, 16). To survive, no collisions should be detected while all
differences should be recognized. Thus every wrong pair with i collisions survives
with the probability βi

B ·α
16−i
B . Finally,

∑
ciβ

i
Bα16−i

B of wrong pairs survive. This
coefficient is exactly β so we have the following equality:

β =
∑

ciβ
16
B α16−i

B =
∑

(1−1/256)i(1/256)16−iβi
Bα16−i

B =
(

255
256

βB +
αB

256

)16

.

As a right pair survives with the probability α16
B , (5) may be rewritten as

follows: (
255
256

βB +
αB

256

)16

< α16
B ⇐⇒ βB < αB .

As a result, the sufficient condition on the attack to succeed is the fact that
the probability of a difference in a single byte to be recognized is more than that
of a collision to be missed.


