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Abstract. Since their introduction in constructive cryptographic ap-
plications, pairings over (hyper)elliptic curves are at the heart of an
ever increasing number of protocols. Software implementations being
rather slow, the study of hardware architectures became an active re-
search area. In this paper, we first study an accelerator for the ηT pairing
over F3[x]/(x97 + x12 + 2). Our architecture is based on a unified arith-
metic operator which performs addition, multiplication, and cubing over
F397 . This design methodology allows us to design a compact coprocessor
(1888 slices on a Virtex-II Pro 4 FPGA) which compares favorably with
other solutions described in the open literature. We then describe ways
to extend our approach to any characteristic and any extension field.

Keywords: ηT pairing, finite field arithmetic, elliptic curve, hardware accel-
erator, FPGA.

1 Introduction

Introduced in cryptography for code-breaking purpose [11, 22], the Weil and
Tate pairings are at the heart of an ever increasing number of protocols since
the work of Joux [16] who first discovered their constructive properties. The
interested reader should refer to the survey by Dutta, Barua, and Sarkar for
further details [9]. According to [14, 20], when dealing with general curves pro-
viding common levels of security, the Tate pairing seems to be more efficient
than the Weil pairing. Let E be a supersingular elliptic curve over Fpm (see
Theorem V.3.1 of [28] for a definition), where p is a prime and m a positive
integer, and let E(Fpm) denote the group of its points. Let ` > 0 be an inte-
ger relatively prime to p. The embedding degree (or security multiplier) is the
least positive integer k satisfying pkm ≡ 1 (mod `). Let E(Fpm)[`] denote the
`-torsion subgroup of E(Fpm), i.e. the set of elements P of E(Fpm) that satisfy
[`]P = O, where O is the point at infinity of the elliptic curve. Let P ∈ E(Fpm)[`]
and Q ∈ E(Fpkm)[`], let f`,P be a rational function on the curve with divisor
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`(P )−`(O) (see [28] for an account on divisors), there exists a divisor DQ equiv-
alent to (Q) − (O), with a support disjoint from the support of f`,P . Then the
Tate pairing of order ` is the map e` : E(Fpm)[`] × E(Fpkm)[`] → F∗

pkm defined

by e`(P,Q) = f`,P (DQ)(p
km−1)/` (we give here the definition from [3], slightly

different from the initial one given in [11]). It satisfies the following properties:

– Non-degeneracy. For all P ∈ E(Fpm)[`] \ {O}, there is some point Q ∈
E(Fpkm)[`] such that e`(P,Q) 6= 1.

– Bilinearity. For all P, P1, P2 ∈ E(Fpm)[`] and Q, Q1, Q2 ∈ E(Fpkm)[`],
e`(P1+P2, Q) = e`(P1, Q)e`(P2, Q) and e`(P,Q1+Q2) = e`(P,Q1)e`(P,Q2).
Hence, for all P ∈ E(Fpm)[`] and Q ∈ E(Fpkm)[`], and for all a ∈ Z,
e`([a]P,Q) = e`(P, [a]Q) = e`(P,Q)a.

In [3], Barreto et al. proved that this pairing can be computed as e`(P,Q) =

f`,P (Q)
pkm−1

` , where f`,P is evaluated on a point rather than on a divisor.
In this paper, we deal with the characteristic three case and consider Eb, a

supersingular elliptic curve over F3m : Eb : y2 = x3 − x + b, with b ∈ {−1, 1}.
According to [3], curves over fields of characteristic three often offer the best
possible ratio between security level and space requirements.

Different ways for computing the Tate pairing can be found in [3, 10,12, 21].
In [2], Barreto et al. introduced the ηT pairing which extended and improved the
Duursma-Lee techniques [10]. To do it, they first need to consider the following
distortion map ψ : Eb(F3m)→ Eb(F36m) defined, for all R ∈ Eb(F3m) by ψ(R) =
ψ(xr, yr) = (−xr + ρ, yrσ), where σ and ρ belong to F36m and respectively
satisfy σ2 = −1 and ρ3 = ρ+ b (that concept of distortion map was introduced
in [31]). We define the modified Tate pairing ê by ê(P,Q) = e(P,ψ(Q)) for all
P, Q ∈ E(F3m)[`].

Moreover, following [17], we construct F36m as an extension of F3m using
the basis (1, σ, ρ, σρ, ρ2, σρ2), which is equivalent to considering the tower F3m ,
F32m ' F3m [y]/(y2+1) and F36m ' F32m [z]/(z3−z−b). Hence, the computations
over F36m are replaced by computations over F3m .

The ηT pairing is defined by ηT (P,Q) = fT,P (ψ(Q)), for some T ∈ Z and
for all P and Q ∈ E(F3m)[`]. To get a well-defined, non-degenerate, bilinear
pairing, a final exponentiation is required: namely ηT (P,Q)W in our case, where
W = (33m−1)(3m+1)(3m−b3m+1

2 +1). Moreover, the ηT pairing is related to the
modified Tate pairing by (ηT (P,Q)W )3T 2

= ê(P,Q)Z , where T = −b3m+1
2 − 1

and Z = −b3m+3
2 . If v denotes ηT (P,Q)W , the modified Tate pairing can be

computed as follows

ê(P,Q) = v−2 ·
(
v3(m+1)/2

· 3m√
v3(m−1)/2

)−b

.

The algorithm given in [2] for computing the ηT pairing halves the num-
ber of iterations used in the approach by Duursma and Lee [10] but has the
drawback of using inverse Frobenius maps. In [7] Beuchat et al. proposed a
modified ηT pairing algorithm in characteristic three that does not require any
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inverse Frobenius map. Moreover, they designed a novel arithmetic operator im-
plementing addition, cubing, and multiplication over F397 which performs in a
fast and cheap way the final exponentiation ηT (P,Q)W [6]. In this paper, we ex-
tend this approach to the computation of the full ηT pairing (i.e. including the
final exponentiation). In Section 2, we present a compact implementation of the
ηT pairing over the field F397 . Then, we show in Section 3 that our approach can
be generalized to any characteristic p and degree-m irreducible polynomial f(x)
over Fp. That generalization is an interesting issue since larger extension degrees
could probably be considered in a close future for guaranteeing the security of
pairing-based cryptosystems.

2 Calculation of the ηT Pairing in Characteristic Three

The bilinearity of ηT (P,Q)W ensures that:

ηT (P,Q)W =
3m

√√√√(ηT

([
3

m−1
2

]
P,Q

)3
m+1

2
)W

.

Beuchat et al. proposed an algorithm for the calculation of ηT (P,Q)3
(m+1)/2

in characteristic three without any inverse Frobenius map [7]. Therefore, in-
expensive pre- and post-processing steps allow one to perform the original ηT

pairing. Recall that, for (xp, yp) ∈ Eb(F3m), [3](xp, yp) = (x9
p − b,−y9

p) (see for
instance [3]). Thus, the computation of

[
3(m−1)/2

]
P involves only 2m−2 cubings

and (m − 1)/2 additions over F3m . The 3m-th root over F36m is a straightfor-
ward operation requiring only seven additions (or subtractions) over F3m (see for
instance [7]). The final exponentiation is carried out according to a novel algo-
rithm introduced by Shirase, Takagi, and Okamoto in [26]. This scheme involves
additions, cubings, multiplications, and a single inversion over F3m .

In this section we will consider the field F397 = F3[x]/(x97 +x12 +2) and the
curve y2 = x3−x+1 over F397 (i.e. b = 1; a straightforward adaptation makes it
possible to address the b = −1 case). This choice of parameters allows us to easily
compare our work against the many pairing accelerators for m = 97 described
in the open literature. Instead of embedding dedicated hardware to perform
the inversion over F397 according to the Extended Euclidean Algorithm (EEA),
Beuchat et al. [6] proposed an algorithm based on Fermat’s little theorem and on
Itoh and Tsujii’s work [15] for F397 . It involves 96 cubings and 9 multiplications.
Algorithm 1 summarizes the computation of the full pairing. It is worth noticing
that ηT (P,Q)W can be computed only by means of additions (or subtractions),
multiplications, and cubings over F397 . In the following, we describe the imple-
mentation of Algorithm 1 on a Virtex-II Pro 4 Field-Programmable Gate Array
(FPGA) and compare our pairing accelerator against results published by other
researchers.
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Algorithm 1 Computation of ηT (P,Q)W for b = 1 [7].
Input: P = (xp, yp) and Q = (xq, yq) ∈ E(F3m)[l]. The algorithm requires R0 and

R1 ∈ F36m , as well as r0 ∈ F3m and d ∈ F3 for intermediate computations.

Output: ηT (P, Q)(3
3m−1)(3m+1)(3m+1−3(m+1)/2).

1: for i = 0 to m−1
2
− 1 do

2: xp ← x9
p − 1; yp ← −y9

p;
3: end for
4: yp ← −yp; d← 1;
5: r0 ← xp + xq + d;
6: R0 ← −ypr0 + yqσ + ypρ;
7: R1 ← −r2

0 + ypyqσ − r0ρ− ρ2;
8: R0 ← (R0R1)

3;
9: for i = 0 to m−1

2
− 1 do

10: yp ← −yp; xq ← x9
q; yq ← y9

q ; d← (d− 1) mod 3;
11: r0 ← xp + xq + d;
12: R1 ← −r2

0 + ypyqσ − r0ρ− ρ2;
13: R0 ← (R0R1)

3;
14: end for
15: R0 ← R

(33m−1)(3m+1)(3m+1−3(m+1)/2)
0 ;

16: R0 ← 3m√
R0;

17: return R0;

2.1 An Accelerator for the ηT Pairing Calculation

Beuchat et al. [6] designed a unified arithmetic operator able to perform addition,
multiplication, and cubing over F3[x]/(f(x)), where f(x) = x97 + x12 + 2. The
operator is based on the array multiplier architecture proposed by Shu, Kwon,
and Gaj in [27] (see [5, 29] for an introduction to array multipliers). Since such
multipliers process D coefficients of an operand at each clock cycle, they mainly
consist of D Partial Product Generators (PPGs), a D-operand adder, and an
accumulator. Figure 1 illustrates the architecture of this operator for D = 3; it
is controlled by eleven bits labelled ci. Let a(x) and b(x) belong to F3[x]/(f(x)).
In order to compute a(x) × b(x), one has to load a(x) in the shift register R0,
and b(x) in registers R1 and R2. Multiplication is then carried out in dm/De =
d97/3e = 33 clock cycles. The first iteration computes p(x) = a96b(x) (c4 = c6 =
c7 = c8 = 1, c10 = 0). Then, we update p(x) as follows:

p(x)← x3p(x) mod f(x) + a3i+2x
2b(x) mod f(x) +

a3i+1xb(x) mod f(x) + a3ib(x),

where i ranges from 31 downto 0. Addition is somewhat more complex and we
will use the toy example proposed in [6] to illustrate how the operator works.
Let us assume we have to compute −a(x) + b(x). We respectively load a(x)
and b(x) in registers R2 and R1 and define a control word stored in R0 so
that d03i = 2, d03i+1 = 1, and d03i+2 = 0. We will thus compute (2a(x) +
b(x) + 0 · a(x)) mod f(x) = (−a(x) + b(x)) mod f(x). Beuchat et al. [6] noticed
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that a(x)3 = ν0(x) + ν1(x) + ν2(x), where ν0(x), ν1(x), and ν2(x) belong to
F397 (see Appendix B). Thus, cubing requires the addition of three operands as
well as some wiring to compute the ci(x)’s. It suffices to load a(x) in registers
R1 and R2. Depending on the control word stored in R0, the operator returns
a(x)3 or −a(x)3. In order to efficiently implement successive cubings, a feedback
mechanism allows one to load R1 and R2 with the result of a cubing (multiplexers
controlled by c0 and c2 on Figure 1).

c8

c4

c9 c10

c6

1

c2 c3

p(x)
×x3

×x2

ν2(x)

ν1(x)

ν0(x)

×x
m

o
d

f(
x
)

m
o
d

f(
x
)

m
o
d

f(
x
)

P
P

G
P

P
G

P
P

G

d03i

d03i+1

d03i+2

d2(x)

d1(x)

d0(x)

Shift Load

Enable

Load

R2

R1

R0

0

0

1

1 1

0

register

0

Shift

1

0

1

0

1

0

c0 c1 c7

c5

Fig. 1. Operator for addition, multiplication, and cubing over F3[x]/(x97 + x12 + 2)
introduced in [6]. Boxes with rounded corners involve only wiring.

Figure 2 describes the architecture of our ηT pairing coprocessor, which is
mainly based on the hardware accelerator for the final exponentiation introduced
in [6]. It consists of a single processing element (unified operator for addition,
multiplication, and cubing), registers implemented by means of a dual-port RAM
(six Virtex-II Pro SelectRAM+ blocks), and a control unit which consists of a
Finite State Machine (FSM) and an instruction memory (ROM). The main
difference with [6] lies in the control unit and the register file: in order to deal
with the computation of the ηT pairing, our coprocessor needs a slightly more
complex FSM as well as eight additional registers to store control words for
additions and cubings of the pairing calculation. Each instruction consists of four
fields: a control word which specifies the functionality of the processing element,
address and write enable signal for port B of the dual-port RAM, address for
port A of the dual-port RAM, and a counter which indicates how many times
the instruction must be repeated. This approach makes it possible for instance
to execute the consecutive steps appearing in the multiplication over F397 with
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a single instruction. Note that our implementation of the ηT pairing for m = 97
and D = 3 does not require the 26 values of the counter. It is therefore possible
to encode the required values with fewer bits in order to reduce the width of the
instructions.

Since the implementation of the final exponentiation on such an architec-
ture has already been discussed in [6], we will focus here on the computation

of ηT

([
3(m−1)/2)

]
P,Q

)3(m+1)/2

. It is now well known that the tower field rep-
resentation and Karatsuba-Ofman’s algorithm allows one to replace a multi-
plication over F36m by 18 multiplications and 58 additions over F3m (see for
instance [6, 17]). Further optimizations are however possible in the case of the
ηT pairing calculation. Multiplying R0 = −ypr0 + yqσ + ypρ by R1 = −r20 +
ypyqσ−r0ρ−ρ2 involves for instance only 8 multiplications and 9 additions over
F3m (see Algorithm 4 in Appendix A for details). As pointed out by Bertoni et
al [4], the multiplication over F36m occurring in the main loop of the pairing
calculation (Algorithm 1) requires 13 multiplications over F3m .
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Fig. 2. Architecture of the ηT pairing accelerator.

The implementation of Algorithm 1 on this architecture takes 895 instruc-
tions which are executed in 32618 clock cycles (229 instructions for the compu-
tation of ηT (3(m−1)/2P,Q)3

(m+1)/2
; 666 instructions for the final exponentiation

and the 3m-th root over F36m). The inversion over F397 is performed by means
of 96 cubings and 9 multiplications over F397 [6]. Eighteen control words, stored
in the dual-port RAM, manage all additions and cubings involved in the compu-
tation of the full pairing. Table 1 summarizes the operations over F3m needed in
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the computation of ηT (P,Q)W . The last column indicates the number of clock
cycles during which only load/store operations are performed. When m = 97,
our coprocessor is for instance idle during 1704 clock cycles (i.e. 5.2% of the
total computation time).

Table 1. Operations over F3m involved in the computation of ηT (P, Q)W .

Additions Cubings Multiplications Inversion Idle

Point tripling m−1
2

2m− 2 – – 5

Pairing 25m− 6 5m + 1 15 · m−1
2

+ 8 – 14m− 4

Final exp. 477 3m + 3 78 1 344
3m√ 7 – – – 1

Total 51 · m−1
2

+ 503 10m + 2 15 · m−1
2

+ 86 1 14m + 346

2.2 Results and Comparisons

The architecture described by Figure 2 was captured in the VHDL language and
prototyped on a Xilinx Virtex-II Pro 4 device (XC2VP4-6FF672). Both synthe-
sis and place-and-route steps were performed with ISE WebPACK 8.2.03i. Our
processor requires 1888 slices and 6 memory blocks. Since a Virtex-II Pro 4 does
not have enough I/Os for parallel communications with a computer, the number
of slices reported here includes shift registers to receive/send data in a serial
fashion. The clock frequency of 147 MHz allows one to compute ηT (P,Q)W ac-
cording to Algorithm 1 in 222µs. Table 2 provides the reader with a comparison
against architectures proposed by other researchers for p = 3 and m = 97.

Grabher and Page designed a coprocessor dealing with arithmetic over F3m ,
which is controlled by a general purpose processor [13]. The ALU embeds an
adder, a subtracter, a multiplier (with D = 4), a cubing unit, and a cube root
operator based on the method highlighted by Barreto [1]. This architecture oc-
cupies 4481 slices and allows one to perform the Duursma-Lee algorithm and
its final exponentiation in 432.3µs. The main advantage is maybe that the con-
trol can be compiled using a re-targeted GCC tool-chain and other algorithms
should easily be implemented on this architecture. Our approach leads however
to a much simpler control unit and allows us to divide the number of slices by
2.3.

Another implementation of the Duursma-Lee algorithm was proposed by
Kerins et al. in [17]. It features a parallel multiplier over F36m based on Karatsuba-
Ofman’s scheme. Since the final exponentiation requires a general multiplication
over F36m , the authors can not take advantage of the optimizations described
in this paper and in [4] for the pairing calculation. Therefore, the hardware ar-
chitecture consists of 18 multipliers and 6 cubing circuits over F397 , along with,
quoting [17], “a suitable amount of simpler F3m arithmetic circuits for perform-
ing addition, subtraction, and negation”. Since the authors claim that roughly
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100% of available resources are required to implement their pairing accelerator,
the cost can be estimated to 55616 slices [27]. The approach proposed in this
paper reduces the area and the computation time by 29 and 3.8 respectively.

Beuchat et al. described a fast architecture for the computation of the ηT

pairing [7]. The authors introduced a novel multiplication algorithm over F36m

which takes advantage of the constant coefficients of R1. Thus, this design must
be supplemented with a coprocessor for final exponentiation and the full pairing
accelerator requires around 18000 LEs on a Cyclone II FPGA [6]. The compu-
tation of the pairing and the final exponentiation require 4849 and 4082 clock
cycles respectively. Since both steps are pipelined, we can consider that a new
result is returned after 4849 clock cycles if we perform a sufficient amount of
consecutive full ηT pairings. In order to compare our accelerator against this
architecture, we implemented it on an Altera Cyclone II EP2C35F672C6 FPGA
with Quartus II 6.0 Web Edition. Our design occupies 2846 LEs and the maxi-
mal clock frequency of 125 MHz allows one to compute a pairing in 261µs. The
architecture proposed in this paper is therefore 8 times slower, but 6.3 times
smaller. Note that the critical path is located in the control unit: the glue logic
generated by Quartus II to interconnect M4K memory blocks storing the in-
structions seems to slow the whole design down. It is possible to further pipeline
the control unit and to compute the full pairing in 222µs.

In order to study the trade-off between circuit area and calculation time of
the ηT pairing, Ronan et al. wrote a C program which automatically generates a
VHDL description of a coprocessor and its control unit according to the number
of multipliers over F3m to be included and the parameter D [25]. An architecture
embedding three multipliers processing D = 8 coefficients at each clock cycle
computes for instance a full pairing in 178µs. Though 1.25 times faster, this
design requires five times the amount of slices of our pairing accelerator. Our
approach offers a better compromise between area and calculation time.

3 Arithmetic over Fpm

The unified operator for arithmetic over F3[x]/(x97 + x12 + 2) introduced in [6]
allows us to present in this paper the smallest FPGA-based pairing accelerator in
the open literature. However, in order to guarantee the security of pairing-based
cryptosystems in a near future, larger extension degrees will probably have to
be considered, thus raising the question of designing such a unified operator for
other extension fields. We wrote a C++ program which automatically gener-
ates a synthesizable VHDL description of a unified operator according to the
characteristic and the irreducible polynomial f(x).

3.1 Addition, Multiplication, and Frobenius Map over Fpm

The architecture of the operators generated by our program is directly inspired
from the unified operator given in Figure 1 and can be adapted to any prime
characteristic p and any irreducible polynomial f(x) of degree m.
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Table 2. Comparisons against FPGA-based accelerators over F397 . The parameter D
refers to the number of coefficients processed at each clock cycle by a multiplier.

Grabher and Kerins Beuchat
Page [13] et al. [17] et al. [6, 7]

Algorithm Duursma-Lee Duursma-Lee ηT pairing

FPGA Virtex-II Pro 4 Virtex-II Pro 125 Cyclone II EP2C35

Multiplier(s) 1 (D = 4) 18 (D = 4) 9 (D = 3)

Area 4481 slices 55616 slices ∼ 18000 LEs

Clock cycles 59946 12866 4849

Clock frequency 150 MHz 15 MHz 149 MHz

Calculation time 432.3 µs 850 µs 33 µs

Ronan et al. [25]
Proposed

architecture

Algorithm ηT pairing ηT pairing ηT pairing

FPGA Virtex-II Pro 100 Virtex-II Pro 100 Virtex-II Pro 4

Multiplier(s) 3 (D = 8) 2 (D = 8) 1 (D = 3)

Area 10000 slices 7491 slices 1888 slices

Clock cycles 15113 17190 32618

Clock frequency 70.4 MHz 70.4 MHz 147 MHz

Calculation time 178 µs 203 µs 222 µs

Addition over Fp[x]/(f(x)) is performed in the same way as in the operator
over F397 presented in [6]: the digits of the two operands are all added in parallel,
thus requiring m additions over Fp. In the current version of the generator, those
additions over Fp are implemented as simple look-up tables addressed by the bits
of the two operands, particularly suited for small values of p (typically p = 2
to 7). For higher characteristics, it will be necessary to resort to more complex
methods for modular addition [24].

Also as in the original operator, multiplication over Fp[x]/(f(x)) relies on a
parallel-serial algorithm, with D digits of the multiplier being processed at each
iteration. The generation of the partial products, which consists in multiplying
all the digits of the multiplicand with each digit of the multiplier, requires m
multiplications over Fp in parallel for each of the D partial products. Here also,
the multiplications over Fp are directly tabulated, as this is the best solution
for small characteristics. Once the D partial products are computed, the D − 1
most significant ones along with the accumulator are then multiplied by xk

(where k ranges from 1 to D) and reduced modulo f(x). After the modular
reductions, the D partial products and the accumulator are added thanks to a
binary tree of adders over Fpm . Consequently, in order to optimize the critical
path of this multioperand adder, one should choose a parameter D of the form
2n − 1 (typically D = 3, 7, 15 or 31).

Concerning the Frobenius map, which consists in raising the operand a(x) to
the pth power, our generator first computes the normal form of a(x)p mod f(x),
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for a generic polynomial a(x), by reducing the following expression modulo f(x):

a(x)p mod f(x) =
m−1∑
i=0

ap
i x

ip mod f(x) =
m−1∑
i=0

aix
ip mod f(x).

This general expression of the Frobenius map can then be seen as a sum of
elements of Fpm . The coefficients of those polynomials can be directly matched
to the coefficients of the operand, possibly multiplied by a constant. As presented
in [6], it is possible to reuse the partial product generation hardware of the mul-
tiplication in order to compute those polynomials, only some extra wiring being
required for the permutation of the coefficients. The sum of all the polynomials
can then be computed by the final multi-operand adder.

In order to decrease the number of partial products necessary to compute the
Frobenius map, a simple decomposition technique can be applied to share the
maximum amount of hardware between these partial products. In case this is
still not enough, a second technique can further pack the partial products, at the
expense of some additions over Fp. The intuition behind these two techniques is
given in a simple example in Appendix B.

3.2 Inverse Frobenius Map

Although the algorithm we present here for the ηT pairing over F3m does not re-
quire to compute any inverse Frobenius map (i.e. p

√
a(x)), some other algorithms

still rely on this function. To also support those algorithms, the generic unified
operator proposed in this paper is available in two flavors: namely either only ad-
dition, multiplication and Frobenius map as presented in the previous section,
or a four-in-one operator with extra hardware for the inverse Frobenius map.
This function is computed exactly in the same way as the Frobenius map: first,
the normal form of p

√
a(x) mod f(x) is obtained by solving the m-dimensional

linear system given by the equation
(

p
√
a(x)

)p

mod f(x) = a(x). The result is
then expressed as a sum of polynomials, each one being a permutation of the co-
efficients of the operand a(x) multiplied by a constant. Note that the reduction
techniques presented for the Frobenius map also apply in the case of the inverse
map.

3.3 Inversion over Fpm

Recall that, in the case of F397 [6], our pairing accelerator performs the inver-
sion required for the final exponentiation according to Fermat’s little theorem
and Itoh and Tsujii’s work [15] by means of 96 cubings and 9 multiplications.
We propose here a generalization of this algorithm to any characteristic and
extension degree.



Arithmetic Operators for Pairing-Based Cryptography 11

General algorithm. The inversion scheme summarized in Algorithm 2 is often
applied for inversion in optimal extension fields [8]. Starting with an element a
of Fpm , we first raise it to the power of the base-p repunit (pm−1− 1)/(p− 1) to
obtain r. This particular powering can be achieved using only m− 2 Frobenius
maps and a few multiplications over Fpm as detailed below.

By applying another Frobenius map to r and then multiplying the result by
a, we successively obtain

s = a(pm−p)/(p−1), and
t = a(pm−1)/(p−1).

Since t 6= 0 and tp−1 = apm−1 = 1, t ∈ Fp and we define u as tp−2 = t−1.
Therefore, the final product gives us the result s · u = s · (s · a)−1 = a−1.

Algorithm 2 Inversion over Fpm .
Input: A prime number p, a positive integer m, and a ∈ Fpm , a 6= 0.
Output: a−1 ∈ Fpm .

1: r ← a(pm−1−1)/(p−1);
2: s← rp;
3: t← s · a;
4: u← tp−2;
5: return s · u;

Several cases need to be considered, depending on the characteristic p:

– When p = 2, we do not have to compute t and u, as s = a(pm−p)/(p−1) =
a2m−2 = a−1. Thus, the inversion only requires to compute r and one extra
Frobenius map, the operator directly returning s.

– When p = 3, we have u = tp−2 = t. Compared to the case p = 2, this only
requires two additional multiplications over F3m for the products t = s · a
and a−1 = s · t.

– In the general case p > 3, we also have to explicitly compute t−1 as tp−2

by means of blog2(p− 2)c+ wt(p− 2)− 1 successive multiplications (where
wt(k) is the Hamming weight of the binary representation of k).

However, in the case p ≥ 3, remarking that t, u ∈ Fp, we propose several
modifications of the shift register of our unified operator (register R0 in Figure 1)
in order to simplify the computation of the products involving t and u.

The first modification, referred to as (A) in the following, consists in adding
an extra control bit and a multiplexer to select the value of the coefficient d03i

of the shift register between its normal value (the third-to-most significant coef-
ficient of the multiplier) and the order-0 coefficient of the multiplier. Indeed, as
u ∈ Fp, all its coefficients ui are zero for all i 6= 0. Therefore, we only need u0

to compute the final multiplication s · u = s · u0. As our multiplier operates in
a most-significant-coefficient-first fashion, instead of performing the full multi-
plication over Fpm , this multiplexer allows us to bypass the whole shift register
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mechanism and compute the product s · u in a single iteration of the multiplier.
This modification also allows simpler computation of tp−2 in the case p > 3.

Also in this case p > 3, we can modify further the shift register in order to
include the computation of tp−2 = t−1 at the level of the multiplexer introduced
by modification (A). In the following, this modification will be referred to as
(B). As u = t−1 = t−1

0 , we can tabulate the inversion over Fp, and, loading t in
the shift register R0, select the coefficient d03i = t−1

0 thanks to the multiplexer.
Loading s in the parallel register R2, we can then directly perform the final
product s · t−1 = a−1.

Addition chains to compute a(pm−1−1)/(p−1). As already shown in [32]
and [23], additions chains can prove to be perfectly suited to raise elements of
Fpm to particular powers, such as the radix-p repunit (pm−1−1)/(p−1) required
by our inversion algorithm.

An addition chain S of length l is a sequence of l pairs of integers S =
((j1, k1), . . . , (jl, kl)) such that 1 ≤ ji ≤ ki < i for all 1 ≤ i ≤ l. We can then
construct another sequence (n0, . . . , nl) satisfying{

n0 = 1, and
ni = nji + nki , for all 1 ≤ i ≤ l.

S is said to compute nl, the last element of the sequence. For more details, see
for instance [19].

Moreover, we can see that we have, for n ≤ n′

a(pn+n′−1)/(p−1) = a(pn−1)/(p−1) ·
(
a(pn′−1)/(p−1)

)pn

.

Consequently, given an addition chain S of length l for m−1, we can compute
the required a(pm−1−1)/(p−1) as shown in Algorithm 3. This algorithm simply
ensures that, for each iteration i, we have zi = a(pni−1)/(p−1), where (n0, ..., nl)
is the integer sequence associated with the addition chain S, verifying nl = m−1.

Algorithm 3 Computation of a(pm−1−1)/(p−1) over Fpm .
Input: A prime number p, a positive integer m, a ∈ Fpm , and an addition chain

S = ((j1, k1), . . . , (jl, kl)) for m− 1.

Output: a(pm−1−1)/(p−1) ∈ Fpm .
1: z0 ← a;
2: for i = 1 to l do
3: zi ← zji · z

pji

ki
;

4: end for
5: return zl;

Each iteration of the loop requires ji Frobenius maps and one multiplication
over Fpm , which gives a total cost of at least m − 2 Frobenius maps and l
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multiplications. If S is a Brauer-type addition chain (i.e. ki = i − 1 for all
1 ≤ i ≤ l), the number of Frobenius maps is exactly m−2 [19]. With the intent of
minimizing the number of operations, we have adapted some efficient algorithms
from the literature [30] to find the shortest Brauer-type addition chain for any
value of m−1. It is to be noted that Brauer-type chains are proved to be optimal
for m − 1 up to and including 12508 [19], which is an acceptable limitation of
our method for the time being.

Cost analysis. The overall cost of our inversion scheme is summarized in Ta-
ble 3, according to the characteristic p and the possible modification of the uni-
fied operator. In this table, l represents the length of the shortest Brauer-type
addition chain for m − 1, and c(k) denotes the quantity blog2(k)c + wt(k) − 1,
the number of multiplications required to compute tk.

Table 3. Overall cost of the inversion algorithm.

p Mod. Mult. over Fpm Mult. over Fp Frobenius maps
(bm/Dc cycles) (1 cycle) (1 cycle)

p = 2 – l 0 m− 1

p = 3
– l + 2 0 m− 1

(A) l + 1 1 m− 1

p > 3
– l + c(p− 2) + 2 0 m− 1

(A) l + 1 c(p− 2) + 1 m− 1
(B) l + 1 1 m− 1

Table 4 provides the reader with a comparison between Algorithm 2 and
the EEA in characteristic three. We assume that the accelerator embeds a single
unified operator and carries out the pairing calculation according to Algorithm 1.
Recall that the EEA performs an inversion over F3m in 2m clock cycles [18].
Then, Table 1 and the previous cost analysis allow us to find out the number
of clock cycles and to give examples for D = 3 and 7. Our results indicate that
supplementing our coprocessor with dedicated hardware for the EEA would only
improve performance by less than 1%. Furthermore, an EEA-based inversion over
F397 occupies 2210 slices on a Virtex-II Pro FPGA [18] and would more than
double the area of the accelerator.

3.4 Results

Our VHDL code generator as well as the general formulas from Table 4 allowed
us to estimate the cost of the full ηT pairing computation for several extension
fields. Table 5 summarizes these estimations. Note that the reported figures do
not take the control unit into account. However, this should not impact on the
critical path.
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Table 4. Relationship between the choice of an inversion algorithm and the calculation
time of a full pairing according to Algorithm 1. The cost of the multiplication over F3

is neglected: only full F3m multiplications are considered.

(a) Arithmetic over F397 (l = 7).

Inversion Clock cycles for the full pairing

Algorithm Cost General formula D = 3 D = 7

Algo. 2 96 cubings, 9 mult. 5723 + 815 · d97/De 32618 17133

Algo. 2, mod. (A) 96 cubings, 8 mult. 5723 + 814 · d97/De 32585 17119

EEA 2 ·m = 194 clock cycles 5821 + 806 · d97/De 32419 17105

(b) Arithmetic over F3193 (l = 8).

Inversion Clock cycles for the full pairing

Algorithm Cost General formula D = 3 D = 7

Algo. 2 192 cubings, 10 mult. 10571 + 1536 · d193/De 110411 53579

Algo. 2, mod. (A) 192 cubings, 9 mult. 10571 + 1535 · d193/De 110346 53551

EEA 2 ·m = 386 clock cycles 10765 + 1526 · d193/De 109955 53493

Table 5. Estimated area, frequency, and full pairing computation time for various
extension fields (such as considered in [1,6] and values for the parameter D (Virtex-II
Pro family).

Polynomial D = 3 D = 7

x97 + x12 + 2 1402 slices – 147 MHz – 222 µs 2189 slices – 117 MHz – 146 µs

x97 + x16 + 2 1392 slices – 151 MHz – 216 µs 2246 slices – 116 MHz – 148 µs

x193 + x64 + 2 2811 slices – 126 MHz – 877 µs 4450 slices – 108 MHz – 495 µs

4 Conclusion

We proposed a compact implementation of the ηT pairing in characteristic three
over F3[x]/(x97 + x12 + 2). Our architecture is based on a unified arithmetic
operator which leads to the smallest circuit proposed in the open literature,
without impacting too severely on the performances. We also showed that our
approach can be generalized to any characteristic p and degree-m irreducible
polynomial f(x) over Fp. Moreover, our VHDL code generator allows one to
rapidly explore the trade-off between computation time and circuit resource
usage for a large set of architectural parameters (e.g. p, m, f(x)).

However, even though we now have automatic tools to generate unified opera-
tors, the main difficulty still lies in the scheduling of all the instructions required
for the ηT pairing calculation. The next step will therefore be to develop an
ad-hoc compiler for architectures based on such unified operators.
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A Computation of the ηT Pairing

We consider here the first multiplication over F36m of the ηT pairing calculation
(Algorithm 1). Let A = (a0, a1, a2, a3, a4, a5) ∈ F36m . We have to compute a0 +
a1σ+a2ρ+a3σρ+a4ρ

2 +a5σρ
2 = (−ypr0 + yqσ+ ypρ)(−r20 + ypyqσ− r0ρ−ρ2).

We assume here that b = 1. Since σ2 = 1 and ρ3 = ρ+ 1, we obtain:

a0 = ypr
3
0 − ypy

2
q , a2 = −yp, a4 = 0,

a1 = −y2
pyqr0 − yqr

2
0, a3 = −yqr0 + y2

pyq, a5 = −yq.

This multiplication over F36m is carried out according to Algorithm 4 which
requires 8 multiplications and 9 additions over F3m . Note that the number of
additions may depend on the architecture of the coprocessor.

Algorithm 4 First multiplication of the ηT pairing calculation.
Require: R0 = −ypr0 + yqσ + ypρ and R1 = −r2

0 + ypyqσ − r0ρ− ρ2 ∈ F36m .
Ensure: A = R0R1 ∈ F36m .
1: e0 ← r0r0; e1 ← yqr0; e2 ← ypr0;
2: e3 ← e0e2; (e3 = ypr3

0)
3: e4 ← ypyq;
4: e5 ← e4yq; (e5 = ypy2

q)
5: e6 ← e4yp; (e5 = y2

pyq)
6: e7 ← −e2 + yq; (e7 = −ypr0 + yq)
7: e8 ← −e0 + e4; (e8 = −r2

0 + ypyq)
8: e9 ← e7e8; (e9 = (−ypr0 + yq)(−r2

0 + ypyq))
9: a1 ← e9 − e3 − e5; a0 ← e3 − e5 − yp;

10: a3 ← −e1 + e6; a2 ← −yp; a4 ← 0; a5 ← −yq;

B Techniques for Reducing Partial Products in the
Frobenius Map

For our unified operators to be able to compute Frobenius maps, we implement
this function as a sum of elements of Fpm . With p = 3 and f(x) = x97 +x12 +2,
we obtain a(x)p mod f(x) = µ0(x) + µ1(x) + µ2(x) + 2 · µ3(x), with

µ0(x) = a0 + a65x + a33x
2 + . . . + a96x

94 + a64x
95 + a32x

96,
µ1(x) = a89 + 0 + 0 + . . . + a88x

94 + 0 + 0,
µ2(x) = a93 + 0 + 0 + . . . + a92x

94 + 0 + 0,
µ3(x) = 0 + a61x + 0 + . . . + 0 + a60x

95 + 0
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Hence, the Frobenius map in this extension field can be mapped as the sum
of four polynomials µ0(x) to µ3(x), the first three with the weight 1 and the
last one with the weight 2. Directly implementing our unified operator from
this expression therefore would require at least D = 4. However, as noticed by
Beuchat et al. [6], for each degree i for which the coefficient for xi in µ3(x)
is not zero, the corresponding coefficients in µ1(x) and µ2(x) are always null.
Rewriting 2 as 1 + 1, we can then distribute 2 · µ3(x) and merge it to µ1(x) and
µ2(x) to obtain the following expression, requiring only D = 3 partial product
generators: a(x)p mod f(x) = ν0(x) + ν1(x) + ν2(x), withν0(x) = a0 + a65x + a33x

2 + . . . + a96x
94 + a64x

95 + a32x
96,

ν1(x) = a89 + a61x + 0 + . . . + a88x
94 + a60x

95 + 0,
ν2(x) = a93 + a61x + 0 + . . . + a92x

94 + a60x
95 + 0.

This technique was fully automatized and implemented in our generator,
which can minimize the number of partial products necessary to compute Frobe-
nius maps in any extension field Fp[x]/(f(x)). However, in some cases where it is
not possible to decrease the number of required partial products to an acceptable
value, the generator can also insert adders over Fp in order to share each par-
tial product between several polynomials with the same weight. For instance, in
our example, we can rewrite the expression of a(x)p mod f(x) with only D = 2
partial products as: a(x)p mod f(x) = π0(x) + π1(x), with{

π0(x) = ν0(x),
π1(x) = ν1(x) + ν2(x).

Similar techniques can also be applied to the inverse Frobenius map p
√
a(x).


