
How to Maximize the Potential of FPGA
Resources for Modular Exponentiation

Daisuke Suzuki

Mitsubishi Electric Corporation, Information Technology R&D Center,
5-1-1 Ofuna Kamakura, Kanagawa, 247-8501, Japan
Suzuki.Daisuke@bx.MitsubishiElectric.co.jp

Abstract. This paper describes a modular exponentiation processing
method and circuit architecture that can exhibit the maximum perfor-
mance of FPGA resources. The modular exponentiation architecture pro-
posed by us comprises three main techniques. The first technique is to
improve the Montgomery multiplication algorithm in order to maximize
the performance of the multiplication unit in FPGA. The second tech-
nique is to improve and balance the circuit delay. The third technique is
to ensure and make fast the scalability of the effective FPGA resource.
We propose a circuit architecture that can handle multiple data lengths
using the same circuits. In addition, our architecture can perform fast
operations using small-scale resources; in particular, it can complete 512-
bit modular exponentiation in 0.26 ms by means of XC4VF12-10SF363,
which is the minimum logic resources in the Virtex-4 Series FPGAs. Also,
the number of SLICEs used is approx. 4000 to make a very compact de-
sign. Moreover, 1024-, 1536- and 2048-bit modular exponentiations can
be processed in the same circuit with the scalability.

1 Introduction

The fast hardware implementation of public-key cryptosystems has been exten-
sively researched thus far; in particular, a circuit architecture using Montgomery
multiplication [1] has often been proposed [2–19]. There are two main arguments
concerning these researches. The first refers to an efficient architecture that the
standard complementary metal oxide semiconductor (CMOS) gates are supposed
to form, and the second refers to an architecture limited to the specified devices
such as a field programmable gate array (FPGA).

The latter argument originates from the fact that the FPGA architecture has
advanced significantly over the last ten years. In current FPGAs, basic compo-
nents such as a multiplexer (MUX), shift register and two-input adder, large-
capacity dual-port memory, and multiplier are pre-mounted as hardware macros,
along with the RAM-based lookup table (LUT) and flip-flop (FF) to construct
the user logic. A circuit architecture that is efficient at the CMOS gate level is
not necessarily efficient in an FPGA; therefore, the above mentioned architecture
using pre-mounted hardware macros has been proposed.

In 2004, Xilinx (an FPGA vendor) introduced the Virtex-4 Series FPGAs
[22]. These are equipped with a functional block, instead of a conventional mul-
tiplication unit, as a hardware macro, and they support dynamic changes in the
multiple-pattern multiplicative summation (henceforth called the “digital signal
processing (DSP) function”). Some applications of this DSP function have al-
ready been reported, such as the fast finite impulse response (FIR) filter and an
image processing; however, we believe that no cryptographic algorithms using
this function have yet been reported excluding a simple usage such as [19].

This paper describes a modular exponentiation processing method and circuit
architecture that can derive the maximum performance from this DSP function.
The modular exponentiation architecture proposed by us comprises three main
techniques. The first technique is to improve the Montgomery multiplication
algorithm in order to maximize the performance of the DSP function. The per-
formance of this DSP function depends on its operating frequency and operation
rate. In order to maximize its performance, it is necessary to improve the algo-
rithm such that the DSP function works at the maximum operating frequency
and consumes the least time. The second technique is to improve and balance
the circuit delay. The operating frequency is specified by the circuit path having
the maximum delay in the conventional synchronous circuit. This paper maxi-
mizes the performance of the DSP function by optimizing the division method
of pipeline processing operations and the circuit layout taking into consideration
the FPGA characteristics. The third technique is to ensure and improve the scal-
ability of the effective FPGA resources. We propose a circuit architecture that
can handle multiple data lengths using the same small-scale circuits. In addition,
the architecture proposed by us can perform fast operations using small-scale
resources; in particular, it can complete 512-bit modular exponentiation in 0.26
ms by using XC4VF12-10SF363, which is the minimum logic resources in the
Virtex-4 Series FPGAs. Moreover, 1024-, 1536- and 2048-bit modular exponen-
tiations can be processed in the same circuit with the scalability.

2 Features of Virtex-4 Series FPGAs

This section describes the architecture and performance of the Virtex-4 Series
FPGAs that are described and used in this paper. The following descriptions are
limited to only the relevant issues with regard to this paper. For more informa-
tion, refer to [22–24].

2.1 Internal Configuration

First, we explain the architecture of the Virtex-4 Series FPGA. As shown at
the top of Fig. 1, this FPGA comprises an 18 Kbit dual-port memory group
called Block RAM (henceforth called “BRAM”), a hardware macro group called
XtremeDSP (henceforth called “DSP48”) to provide the above mentioned DSP
function, and a configurable logic block (CLB) as a basic block for the implemen-
tation of user logic [22, 23]. The schematic representation of the CLB’s internal

SLICEL

(Logic Only)

SLICEM

(Logic or Distributed RAM or

Shift register)

SliceX1Y0

CLB

Block

RAM

(or FIFO)

Xtreme

DSP

CIN

CIN

SliceX0Y0

Fast

Connections

to neighbors

Sw
itc
h
M
at
ri
x

Carry &

Control

COUT

SliceX1Y1

LUT
D Q

Carry &

Control

COUT

SliceX0Y1

D Q

LUT , Distributed RAM

or SRL16

SHIFTIN

SHIFTOUT

Fig. 1. Internal configuration of Virtex-4

configuration is shown at the bottom of Fig. 1. The CLB comprises four blocks
called SLICE. Each SLICE is divided into a pair of blocks, namely, SLICEL and
SLICEM. The former comprises LUTs, FFs, MUXs, and carry logics for addi-
tion processing. The latter includes the SLICEL functions and it is also equipped
with the operation mode for the 16×1-bit (maximum) single-port memory with
the LUT function (henceforth called “distributed RAM”) or the 16×1-bit (max-
imum) variable shift register (henceforth called “SRL16”).

Fig. 2 shows a schematic representation of the internal configuration of
DSP48. The DSP48 is designed to support dynamic changes in a 42-pattern
multiplicative summation by switching the control signals (OPMODE) [23]. Con-
trolling the ash-colored MUXs in Fig. 2 during the configuration operation allows
us to change the latency of the signal conductors. The maximum operating fre-
quency of the DSP48 depends on the speed grade of the FPGA and the latency
set above, and the operation is valid at a maximum frequency of 400 MHz in the
lowest speed grade (-10) [24] 1. A detailed description is provided in the next
section.

2.2 Characteristics of Basic Functions

We first examine the performance of the FPGA functions before examining the
Montgomery multiplication, modular exponentiation processing method, and all
the circuits. The multiple circuit architectures are generally supposed to perform
1 The maximum operating frequency of the digital clock manager (DCM) in an FPGA

is also 400 MHz, which is the threshold operating frequency in the speed grade of
FPGA.

>>17

>>17

0

C

A

B

BCIN

BCOUT PCOUT

P

OPMODE PCIN

A || B

18

18

36

48

48

36

48

7

Fig. 2. Internal configuration of DSP48

latency = 3 latency = 2 latency = 0

(Combinational)

Fig. 3. Examples of the latency in DSP48

Table 1. Delay time of adders composed by carry logics in SLICEMs

Functions of adder No. of LUTs used Circuit delay

8-bit 2-input addition 8 LUTs 2.201 ns
16-bit 2-input addition 16 LUTs 2.734 ns
32-bit 2-input addition 32 LUTs 3.564 ns
8-bit 3-input addition 14 LUTs 4.044 ns
16-bit 3-input addition 29 LUTs 4.407 ns
32-bit 3-input addition 65 LUTs 5.188 ns

a specific processing operation; currently, these are being used to determine
which circuit architecture is advantageous to form the circuit in the FPGA.
Otherwise, it is important to check if the examined circuit architecture is actually
within available constraints.

First, we describe the performance of DSP48, which is important with regard
to this paper. When three circuit architectures with different latencies are com-
pared as shown in Fig. 3, their maximum operating frequencies from left to right
are observed to be 400 MHz, 253 MHz, and 226 MHz (4.41ns) or less according
to [24]. The value of the third circuit in this figure is described with “or less”
because it is combined with the DSP48 and does not include the FF setup time
and hold time necessary to actually operate within 4.41 ns and the wiring delay.

Therefore, in order to maximize the performance of the DSP48, we need to
optimize the hardware architecture under the conditions that the clock frequency
of DSP48 is 400MHz and the latency is 3 or more cycles.

Next, we describe the performance of the addition processing that is required
for performing the Montgomery multiplication and modular exponentiation. Ta-
ble 1 lists the results for certain adders evaluated using different parameters:
the number of LUTs used and their circuit delay. These adders are composed by
using the carry logics in SLICEs. The number of LUTs used increases in pro-
portion to the bit length and the number of inputs. On the contrary, the circuit
delay does not increase in proportion to the number of LUTs. This is because the
carry propagation delay of the carry logic is very small (approximately 0.09 ns),
while the wiring delay (approximately 1-2 ns) between the LUTs and the FF
setup time (approximately 0.5-1.4 ns) are significantly greater. Therefore, the

circuit delay tends to increase significantly in the 3-input addition that utilizes
a greater number of LUTs than the 2-input addition.

Based on the results in Table 1, it is assumed that the addition limit operable
at the maximum operating frequency of 400 MHz may be approximately 8-bit
2-input addition. Another interpretation of the results in Table 1 is that 32-bit
2-input addition is operable at approximately 250 MHz.

Based on the above descriptions, the partial circuit structured as a hardware
macro has a potentially higher processing performance. However, it is verified
that it is difficult to structure the user logic using the LUT in order to operate
it at the maximum operating frequency. This trade-off is a design problem.

3 Proposed Architecture

This section describes the method for structuring the modular exponentiation
circuits by using our proposed DSP functions.

3.1 Design Policy

Based on the characteristics of the basic functions of the Virtex-4 Series FP-
GAs described in Section 2, we evaluated the circuit architecture to satisfy the
following requirements as the overall design policy.

(1) To allow the DSP48 to operate at a maximum operating frequency of 400
MHz.

(2) To design the circuits such that the DSP48 operation does not stall during
the Montgomery multiplication.

(3) To enable multiple bit lengths such as 512 bits and 1024 bits to be processed
using the same circuits for Montgomery multiplication.

(4) To set the bus width of the input/output signals to less than 36 bits in order
to simplify the control of the operation results.

(5) To implement the circuits even on the minimum device of Virtex-4 Series.

Items (1) and (2) are essential from the viewpoint of realizing the maximum
performance of DSP48. Item (3) ensures scalability. Since the goal is to form
the FPGA, the circuits may be reconfigured according to the bit length in or-
der to achieve scalability. However, it is known that the FPGA circuits have a
reconfiguration time of some milliseconds; therefore, this reconfiguration cannot
be carried out based on the operating system. In addition, scalability must be
ensured in the same circuit even when using functions that support dynamic
changes in the operation patterns of the DSP48. Item (4) ensures the effective
use of the FPGA resources. Assuming that the intermediate values such as the
pre-operation results of modular exponentiation and the operation results of
Montgomery multiplication are controlled within the FPGA, an effective cir-
cuit architecture may be created by employing a large memory capacity BRAM.
Data can be processed at up to 36 bits per BRAM. Thus, many BRAMs are

required to structure the system that data of large bus width is stored as it is.
On the contrary, data can be stored in up to 512 depth per BRAM for 36-bit
input/output operations. Therefore, the BRAM characteristics can be applied
when the operation results are controlled as the stream data in the direction of
depth with the narrow bus width. Further, the circuit having large bus width
may always reduce its final performance from the viewpoint of the circuit loca-
tion and wiring. The above viewpoints pertain to Item (4). With regard to Item
(5), we believe that it is not necessary to use the large-scale FPGA and most
of its resources only for cipher operations. On the other hand, it is difficult to
quantitatively indicate which detailed circuit scale is generally permitted. Fi-
nally, we determined that it is possible to form the circuit with the minimum
number of logics in the Virtex-4 Series FPGAs. In this case, the device name is
XC4VF12, the number of SLICEs is 5472, the number of DSP48s is 32, and the
number of BRAMs is 36.

3.2 Processing Method

This section describes the detailed processing method for Montgomery multipli-
cation and modular exponentiation.

Montgomery Multiplication For the DSP48 to be operable at the maximum
operating frequency under the conditions specified in the previous section, it
must have some latency during the operations. Therefore, the processing method
for Montgomery multiplication was improved on the basis of the Montgomery
multiplication algorithm for pipeline processing operations in [3, 4]. Algorithm 1
shown below explains the Montgomery multiplication algorithm, as specified in
[4].

Next, we describe the method for improving Algorithm 1 considering the fea-
tures of Virtex-4. The processing method for Montgomery multiplication pro-
posed in this paper is a combination of Algorithm 1 and the Multiple Word

Algorithm 1 Modular Multiplication with Quotient Pipelining [4]
Setting: radix : 2k; delay parameter : d; no. of blocks : n; multiplicand : A; multiplier

: B; modulus : M , M > 2, gcd(M, 2) = 1, (−MM ′ mod 2k(d+1)) = 1, M̃ =
(M ′ mod 2k(d+1))M, 4M̃ < 2kn = R, M ′′ = (M̃ +1)/2k(d+1), 0 ≤ A, B ≤ 2M̃, B =
Pn+d

i=0 (2k)ibi, bi ∈ {0, 1, · · · , 2k − 1}, for i ≥ n and bi = 0
Input: A, B, M ′′

Output: MM(A, B) = Sn+d+2 ≡ ABR−1 mod M , 0 ≤ Sn+d+2 ≤ 2M̃
1: S0 := 0; q−d := 0; · · · ; q−1 := 0;
2: for i = 0 to n + d do
3: qi := Si mod 2k;
4: Si+1 := Si/2k + qi−dM ′′ + biA;
5: end for
6: Sn+d+2 := 2kdSn+d+1 +

Pd−1
j=0 qn+j+12

kj ;
7: return Sn+d+2;

Radix-2 Montgomery Multiplication (MWR2MM); the latter is a processing
method for Montgomery multiplication explained in [7], and is the method for
which the processing unit and flow are optimized for the Virtex-4.

The Montgomery multiplication algorithm proposed in this paper is described
below as Algorithm 2. First, the settings of Algorithm 2 are explained. Since the
DSP48 has a 17-bit shift function, the radix is set to 2k = 217. Next, the delay
parameter must be determined by the required cycle before settling qi+1; the
smaller the value of the delay parameter, the lesser is the number of cycles
required for the total Montgomery multiplication. In Algorithm 2, it is assumed
that α-piece DSP48s are used for data processing. Here, the bit length of M is set
to h and the bit length of A and B is set to h′. At this stage, Algorithm 1 provides
the relational expression of h′ = h+k(d+1)+1. The number of words n is defined
as n = ⌈h′/k⌉. Note that the bit length of one word is k = 17. Also, the number
of words r processed by one DSP48 is defined as r = 2⌈(⌈n/α⌉)/2⌉. This implies
that one DSP48 is applied to process only r words from the total number of
words n. Note that the number of words r is set to an even number. The number
of words processed by α-piece DSP48s is αr and the words over n are processed
after the dataset by zero padding. The parameter (for example, α = 17) specified
in the parentheses in Algorithm 2 is a setting in the Montgomery multiplication
circuits that will be explained in detail in the following section.

Next, we explain the correspondence between Algorithms 1 and 2. Here,
|| in Algorithm 2 indicates a bit concatenation. In Algorithm 2, the multiple-
length multiplication of biA in Algorithm 1 is first calculated using the DSP48
(MUL AB). This operation requires n multiplications. Here, it is assumed that
one DSP48 performs r multiplications, and following which another DSP48 re-
ceives a carry to continue the subsequent multiplications. Therefore, this implies
that α-piece DSP48s perform the required minimum number of n multiplica-
tions by dividing them into r multiplications in common per unit. The DSP48,
which provides a carry, begins performing the multiple-length multiplication
(MUL MQ) corresponding to qi−dM

′′ in the next step of Algorithm 1. In the
manner as MUL AB, this DSP48 performs r multiplications, following which
another DSP48 receives a carry to continue the subsequent multiplications.

The above mentioned processing operations obtain the output values pj and
uj in Algorithm 2 from the α-piece DSP48s. It is necessary to perform the
two types of multiple-length addition operations (ADD PU and ADD VS), as
described in Algorithm 2, in order to obtain individual outputs. These processing
operations are performed by an adder implemented with the LUT outside the
DSP48. At this time, as shown in Algorithm 2, it is supposed that one loop of each
addition completes 2 words (34 bits) to require the number of loops αr/2 that
are equivalent to half a multiple-length multiplication above. Note that the value
r is an even number in the setting above. In other words, the DSP48 carries out
the “single word multiplication” at the maximum operating frequency and the
adder with the LUT performs the “double word addition” at half the maximum
operating frequency, thus maintaining the total throughput. This operation is
henceforth called the “SMDA.” The advantage of SMDA is that the user logic can

Algorithm 2 Modified Algorithm 1 for Virtex-4
Setting: radix: 2k(= 217), delay parameter : d(= 1), no. of DSP48s : α(=17), 2 < M <

2h (h ∈ {512, 1024, 1536, 2048}), 0 ≤ A, B < 2h′
, h′ = h+k(d+1)+1 no. of words

at A and B: n = ⌈h′/k⌉, no. of words processed by one DSP48 : r = 2⌈(⌈n/α⌉)/2⌉
(r ∈ {2, 4, 6, 8}), A =

Pαr−1
j=0 (2k)jaj , B =

Pn+d
j=0 (2k)jbj , M ′′ =

Pαr−1
j=0 (2k)jmj ,

Si =
Pαr−1

j=0 (2k)js(i,j), aj , bj , mj , s(i,j) ∈ {0, 1, · · · , 2k − 1}, for j ≥ n, aj = bj = 0
for j ≥ ⌈h/k⌉ and mj = 0.

Input: A, B, M ′′

Output: MM(A, B) = Sn+3 ≡ ABR−1 mod M , 0 ≤ Sn+3 ≤ 2M̃
1: S0 := 0; q−1 := 0;
2: for i = 0 to n + 1 do
3: carry := 17′b0; cv := 1′b0; cs := 1′b0;

/* Multiple-length multiplication: MUL AB */
4: for j = 0 to αr − 1 do
5: carry|| pj := biaj + carry;
6: end for

/* Multiple-length multiplication: MUL MQ */
7: for j = 0 to αr − 1 do
8: if j = 0 then
9: carry|| v0 := qi−dmj + p0;

10: else
11: carry|| ui := qi−dmj + carry;
12: end if
13: end for

/* Calculation qi: ADD V0S1 */
14: qi+1 := v0 + s(i,1);

/* Multiple-length addition: ADD PU */
15: for j = 0 to αr/2 − 1 do
16: if j = 0 then
17: cv||v1||v0 := (p1||17′b0) + (u1||v0);
18: else
19: cv||v2j+1||v2j := (p2j+1||p2j) + (u2j+1||u2j) + cv;
20: end if
21: end for

/* Multiple-length addition: ADD VS */
22: for j = 0 to αr/2 − 1 do
23: cs||s(i+1,2j+1)||s(i+1,2j) := (v2j+1||v2j) + (s(i,2j+2)||s(i,2j+1)) + cs;
24: end for
25: end for
26: Sn+3 := Sn+2||s(n+1,0);
27: return Sn+3;

be designed under the actual constraints while deriving the maximum potential
performance of DSP48. As described in Table 1, approximately 32-bit 2-input
addition can operate at 200 MHz (5 ns), which is half the operating frequency
of 400 MHz. However, Table 1 indicates that it is difficult to perform 3-input
addition at 200 MHz. Therefore, it is assumed that Algorithm 2 uses the pipeline
processing operation to divide the two multiple-length addition operations after
every 2-input addition.

Next, we explain the branch operation in Algorithm 2. The branch operation
is introduced in the case where j = 0 in MUL MQ and ADD PU in order to
reduce the necessary latency until qi+1 is settled. The addition for p0, which
was calculated in MUL AB, is performed simultaneously with the multiplication
for the least significant word in MUL MQ. Since the multiplication for the least
significant word does not require the addition with a carry, this operation can be
performed only by modifying the operation mode of DSP48. Next, v0 is settled
at the output of MUL MQ. Therefore, the operation required to settle qi+1 is
an addition with s(i,1), such that qi+1 is settled with a smaller latency than that
for a calculation of v0 in MUL MQ. The latency required to settle qi+1 affects
the delay parameter in Algorithm 2. The Montgomery multiplication circuits
described in the following section are operable with d = 1.

Sliding-window Exponentiation The sliding window [21] is one of the fast
modular exponentiation algorithms in which the processing operation of multiple-
bit exponentiations is performed; it is an improved m-ary exponentiation algo-
rithm. The modular exponentiation is described below with the sliding window
exponentiation as Algorithm 3. Generally, the hardware modular exponentia-
tion is often carried out using the binary exponentiation [20]. However, since
the Virtex-4 Series to be formed in this case has several large-capacity mem-
ory blocks as hardware macros, we attempted to form the Virtex-4 Series with
the sliding window such that the resources were effectively utilized. All modular
exponentiations in Algorithm 3 are based on the assumption that they are ap-
plied to the Montgomery multiplication described in Algorithm 2. The memory
capacity required to store X2i+1 from Algorithm 2 is 2w−1 × n × k bits.

The modular exponentiation circuit explained in this paper was configured
with the window size set to w = 5. This is because the maximum processing time
is the least in 512-bit modular exponentiation. The Montgomery multiplication
circuits described in this paper are designed to be operable in the same circuits
for the maximum 2048-bit modulus. In this case, at least 2 BRAMs are necessary
to store X2i+1.

3.3 Hardware Architecture

This section describes the detailed circuit architecture required to process Algo-
rithms 2 and 3.

Montgomery Multiplier First, we explain the circuit architecture required
to process the Montgomery multiplication in Algorithm 2; the basic circuit is

Algorithm 3 Modular exponentiation with sliding-window exponentiation [21]
Input: M ′′, X, RR = R2 mod M , E = (et, et−1, · · · , e1, e0)2
Output: Y ≡ XE mod M
1: X1 := MM(X, RR); CR := MM(1, RR); X2 := MM(X1, X1);
2: for i = 1 to 2w−1 − 1 do
3: X2i+1 := MM(X2i−1, X2);
4: end for
5: SR := CR;
6: for i = t to 0 do
7: if ei=0 then
8: SR:= MM(SR, SR); i:= i − 1;
9: else

10: Searching maximum odd-number binary digit string (ei, ei−1, · · · , el)2 within
window size, i − l + 1 ≤ w

11: for j = 0 to i − l do
12: SR:= MM(SR, SR);
13: end for
14: SR:= MM(X(ei,ei−1,···,el)2 , SR); i := l − 1;
15: end if
16: end for
17: Y := MM(1, SR);
18: return Y ;

shown in Fig. 4. Input data A and M” are inputted from the left every 34-
bits (two words) and are stored into the specified DMEMs. Data M” is only
stored immediately after implementing the modular exponentiation. Therefore,
only data A is updated after every Montgomery multiplication. The DMEM is
implemented with a distributed RAM having the SLICE function and it is used
as a single-port memory of 8 (depth) × 34 (bit width). In this case, the capacity
of DMEN can correspond to the modulus size up to 2048 bit. When aj(0 ≤ j ≤
r−1) is stored into the leftmost DMEM, the lower connecting circuit performs the
processing operations according to Algorithm 2. The leftmost DSP48 performs
the first r of the αr multiplications in MUL AB and MUL MQ. This operation
is performed by switching the OPMODE signal, which is shown in Fig. 2 to two
patterns. Table 2 shows the sequence of r multiplications and their corresponding
OPMODE values.

The second DSP48 from the left side switches the two patterns of the multi-
plicative summation to perform the next r multiplications in the same manner.
Table 2 shows the sequence of these r multiplications and their corresponding
OPMODE values. The third and following DSP48s perform the operation in the
same sequence as those in the second DSP48.

The ADD PU processing operation is performed in the circuits including the
adders and LA1 (latency adjuster) shown at the center of Fig. 4. The two-step
positive/negative FFs are placed on the left path of the circuits and the one-
step negative FF is placed on the right path. This is because it is necessary to
adjust the latency of lower-located words. This state allows two words as the

LA1 LA1 LA1 LA1

LA1 LA2 LA1 LA2

DMEM DMEM

34

17

17

18

48

1717

17

17 17

17 17

17

17 17 17

17 17

1

1

or

cv

cs

DMEM : 1-port 16x34 memory

with Distributed RAM

LA : Latency Adjuster with

SRL16-based shift registers

(variable-length) : FF with negedge clk1x

: FF with posedge clk2x

: FF with posedge clk1x

: Adder with SLICE

: MUL_AB, MULMQ

(DSP48)

: ADD_PU

: ADD_VS

0 ||

0 ||

0 ||
S
R
L
16

: ADD_V0S1

or

L

s
(n+1, 0)
s
(n+2, 0)

L

s
(n+2, 1)

L

s
(n+2, r)

L

s
(n+2, r+1)

p
j p

j+1
u
j

u
j+1

v
j v

j+1

s
(i, j+1)

s
(i, j+2)

carry

carry

p
0

qi-d

bi

qi-d

v
0s

(i,1)

aj+1 || aj mj+1 || mj

bi

Fig. 4. Montgomery multiplier using DSP48

result of the MUL AB operation transmitted from the DSP48 to be entered
simultaneously into the adder with the negative clock (clk1x). Currently, the
result of the MUL AB operation is directly stored into the LA1 by resetting
the LA1 output value to 0. Next, the result of the MUL MQ operation is used
to perform the addition with the result of the MUL AB operation that has
been pre-stored in LA1. The difference in the input time between the results of
MUL AB and MUL MQ operations is a r/2 cycle depending on the modulus
size.

The carry propagation in the addition must handle two cases: re-propagation
to the same adder or propagation to the neighboring adder. The adders are
located linearly due to the characteristics of the FPGA. When a carry FF is
held in common, it is necessary to wire two adders to extend the circuit delay.
In the circuits shown in Fig. 4, the different carry FFs are placed after every two
cases in order to improve the circuit delay.

The lower circuits shown in Fig. 4 perform the ADD VS processing operation.
In the output timing of the result of the ADD PU operation, the circuits perform
simultaneous simultaneous additions for two words s(i,2j+1) and s(i,2j+2) that are
transmitted from LA1 and LA2, respectively. At this stage, it should be ensured
that s(i,2j+2) outputs data from LA1 at the right of the figure only in the first
cycle, following which it outputs data from LA1 at the left. Among the lower FFs
shown in Fig. 4, the FF connected to the output port is controlled to transmit 0

Table 2. Multiplication sequence of DSP48

512 bit mode (r = 2)
Count Leftmost DSP48 2nd DSP48 from left

Operation OPMODE Remarks Operation OPMODE Remarks
0 bia0 7’h35 Reset C qi−2m2 + carry 7’h55 Carry is received

from leftmost DSP48
1 bia1 + carry 7’h65 - qi−2m3 + carry 7’h65 -
2 qi−1m0 + p0 7’h35 p0 is stored into C bia2 + carry 7’h55 Carry is received

from leftmost DSP48
3 qi−1m1 + carry 7’h65 - bia3 + carry 7’h65
4 bi+1a0 7’h35 Reset C qi−1m2 + carry 7’h55 Carry is received

from leftmost DSP48
· ·

2048 bit mode (r = 8)
Count Leftmost DSP48 2nd DSP48 from left

Operation OPMODE Remarks Operation OPMODE Remarks
0 bia0 7’h35 Reset C qi−2m8 + carry 7’h55 Carry is received

from leftmost DSP48
1 bia1 + carry 7’h65 - qi−2m9 + carry 7’h65 -

· ·
6 bia6 + carry 7’h65 - qi−2m14 + carry 7’h65 -
7 bia7 + carry 7’h65 - qi−2m15 + carry 7’h65 -
8 qi−1m0 + p0 7’h35 p0 is stored into C bia8 + carry 7’h55 Carry is received

from leftmost DSP48
9 qi−1m1 + carry 7’h65 - bia9 + carry 7’h65

· ·
14 qi−1m6 + carry 7’h65 - bia14 + carry 7’h65
15 qi−1m7 + carry 7’h65 - bia15 + carry 7’h65
16 bi+1a0 7’h35 Reset C qi−1m8 + carry 7’h55 Carry is received

from leftmost DSP48
· ·

with the synchronous reset function until Sn+3 is entered completely. This will
be explained later.

In Fig. 4, LA1 and LA2 are the shift registers whose latency is changeable
from 1 to 4 and from 2 to 5, respectively. Further, LA1 and LA2 support the
0 resetting function. These units comprise variable-length shift registers based
on SRL16. In this case, LA1 and LA2 can correspond to the modulus size up
to 2048 bit. The circuit delay of SRL16 is larger than that of the conventional
LUT. In order to improve this circuit delay, the FF output data is used and the
relative position constraint is set to the components (Fig. 5). Since the latency
value is a constant when the modulus size is determined, the signal to control
the latency can be set to “false path.”

ADD V0S1 operation is performed in the upper left circuit shown in Fig. 4.
This circuit has the FF of clock clk2x at the input port; however, the addition is
performed according to the standard of clk1x 2 . The data path of this circuit is
17-bit 2-input addition and 1-step 2-1 MUX. This circuit operates at 200 MHz.
The SRL16 in this circuit is required for adjusting the qi+1 latency and load
signal to the DSP48 in the proper timing.

Modular Exponentiator Fig. 6 shows the overview of our modular exponen-
tiator using Fig. 4. The modular exponentiator comprises the following compo-
nents:

(a) IF MEN, 2-port BRAM (512 (depth) × 34 (bit width)), external interface
memory;

2 This is the multi-cycle path for the FF output data with the clock “clk2x”.

SRL16latency

for 2 , 3 or 4

data_in[0]

LUT
clear

F5

MUX

sel

（for clear and latency=1)

data_out[0]

SLICEM

SRL16latency

for 2,3,4 or 5

SLICEM

<latency>

(1 , 2 , 3 or 4)

LA1

data_in[1]

SRL16latency

for 2,3,4 or 5

data_in[0]

2.634 ns

data_out[1]

data_out[0]

clear

SLICEL

LA2

CLB

<latency>

(2 , 3 ,4 or 5)

4

1

1

1

4

4

1

1

1

1

1

1

Fig. 5. Latency adjuster and relative position constraint

(b) A MEN, 2-port BRAM (1024×17) × 2, template memory:
(c) B MEN, 2-port BRAM (512×34), template memory;
(d) X MEN, 2-port BRAM (1024×17) × 2, Xi storage memory ;
(e) E MEN, 1-port BRAM (2048×5), exponent encode result storage memory;
(f) S TRANS, circuits to convert the output signal of the Montgomery multi-

plication circuit into 34-bit stream data;
(g) MEX CTL, control circuits for modular exponentiation circuits;
(h) MM ENGINE, Montgomery multiplication circuits in Fig. 4 and their con-

trol circuits.

Item (a) facilitates the clock synchronization with the outside circuits such
as CPU bus interface. The capacity of X MEN in Item (c) can correspond to the
modulus size up to 2048 bit even if Algorithm 3 is processed with w = 5.

The output signal of the MM ENGINE is 578 bits; however, the effective
output value is only 34 bits since Sn+3 in a single cycle and others are controlled
to be 0. Therefore, the output signal can be converted into 34-bit stream data by
performing the XOR processing operation every 34 bits. This method can form
the circuit more effectively than the method that selects data in the multiplexer
and the circuit is operable at 200 MHz.

The output signal of S TRANS is stored with B MEM into A MEM or
X MEM as necessary. When more than 34 bits of data are simultaneously up-
dated in A MEM or X MEM, it starts to read and transmit data required for
DMEM of the Montgomery multiplication circuits. The number of cycles re-
quired from the start of the output signal of S TRANS to the start of the next
Montgomery multiplication is 3r/2 + 3 at the standard frequency of 200 MHz.
Further, the processing time from the start of the Montgomery multiplication
to the start of the output signal of S TRANS is (n + 1)r + 8.

Considering all the supporting modulus size, the modular exponentiator
shown in Fig. 6 is designed with the window size w = 5 in Algorithm 2. At
this stage, the maximum number of Montgomery multiplications required for
the modular exponentiation is t + ⌈(t + 1)/5⌉ + 20 according to Algorithm 2.

MM_ENGINE

<<<17

S_TRANS

MEX_CTL

IF_MEM

X_MEMA_MEM

: BRAM

E_MEM

578

34

34

34

34

34 34

34

34

34

: XOR

17

34

34

Fig. 6. Overview of our modular exponentiator

The exponent encoding operation in Algorithm 3 repeats the data search
every bit. As a result, the encoding operation requires a number of cycles equiv-
alent to the number of exponent bits. This processing operation is performed
simultaneously with the calculation of X2i+1 in Algorithm 3. The calculation
of X2i+1 requires more cycles than the exponent encoding operation. Therefore,
the exponent encoding operation time does not affect the total operation time.

4 Performances Evaluation

The performances of the trial circuits are described below. Table 3 lists the
results on XC4VFX12-10SF363 as a target device. The logic synthesis and the
place-and-route are based on Simplify Pro 8.6.2 and ISE 8.1.03i, respectively.

The critical path of clk2x (400 MHz) is a selective signal of the MUX that is
to be connected to the input ports A and B of the DSP48 shown in Fig. 4. The
number of logic steps is one 2-1 MUX only. However, since the circuits are placed
on a boundary with the hardware macros, their locating and wiring constraints
are more difficult than those of conventional logic. Further, the large fan-out of
the selective signal causes a significantly increase in the circuit delay. Ref. [25]
describes a technique to improve the timing in such circuits; however, our trial
circuits in this paper, which include this technique, are designed to make the
fan-out of selective signal less than 4 in order to improve the timing.

The critical path of clk1x (200 MHz) is a path of the adders for ADD PU
and ADD VS. This improves the timing by using some techniques described in
Section 3.3.

It is revealed from Table 3 that our circuit designs allow 512-bit modular
exponentiation to be performed in approximately 0.26 ms on XC4VF12-10SF363,

Table 3. Performances of our modular exponentiator

No. of SLICEs used 3937/5472
No. of BRAMs used 7/36
No. of DSP48s used 17/32

Critical path of 400-MHz operating circuits 2.493 ns
Critical path of 200-MHz operating circuits 4.988 ns

Max. operation time of 512-bit modular exponentiation 0.261 ms
Max. operation time of 1024-bit modular exponentiation 1.71 ms
Max. operation time of 1536-bit modular exponentiation 5.45 ms
Max. operation time of 2048-bit modular exponentiation 12.6 ms

Table 4. Comparison with Previous Implementations

Architecture [8] [11] This work

Target device XC40250XV XC2V3000-6 XC4VFX12-10

Process 0.35 µm 0.12/0.15 µm 0.09 µm

Additional Basic function 18Kbit BRAM, 18Kbit BRAM,
FPGA function (: LUT, FF, Carry logics, 18x18 multiplier DSP48

Distributed RAM)

Scalability N N Y

512 bit MEX time (Max.) 2.93 ms (Avr.) 0.59 ms (Max.) 0.261 ms

512 bit MEX area 3413 CLBs ∗1 8235 SLICEs, 3937 SLICEs,
32 Multipliers 17 DSP48s

1024 bit MEX time (Max.) 11.95 ms (Avr.) 2.33 ms (Max.) 1.71 ms

1024 bit MEX area 6633 CLBs ∗1 14334 SLICEs, 3937 SLICEs,
62 Multipliers 17 DSP48s

∗1 These CLBs are resources that correspond to SLICEs today.

which is the minimum logic resources of the Virtex-4 series. We believe that this
is the fastest FPGA modular exponentiator. Further, the number of SLICEs
used is approximately 4000, which leads to a very compact design. In addition,
1024-, 1536- and 2048-bit modular exponentiations can be processed in the same
circuit due to its scalability.

We now compare our circuit designs with the previously reported ones. The
purpose of this comparison is not to discuss the advantages and disadvantages
of the circuit processing performance and circuit area since this is difficult to do
so for circuits formed using different devices. This comparison is performed in
order to observe the relation between the development of the FPGA architecture
and the implementations of cipher circuits. Table 4 lists the performances of our
circuit designs and two other designs. We selected these two designs since we
determined that they were the most suitable to the FPGA architecture in each
generation. The target FPGA described in [8] has functions such as the LUT,
FF, adder logic, and distributed memory. Further, the target FPGA described in
[11] has the multiplication function and BRAM as hardware macros along with
the above mentioned functions. Our target FPGA has the DSP function instead
of the multiplication function.

The improved performance of hardware macros contributes to faster cipher
processing operations by designing the circuits other than the hardware macros
in the form of SMDA, as explained in this paper. In addition, the operation
patterns of DSP48 are useful to ensure scalability with the trade-off of circuits
with few dynamically changeable functions. We conclude that the Virtex-4 ar-
chitecture is at least effective for cipher processing operations due to the use of
the modular exponentiator in comparison with the conventional FPGA archi-
tectures.

5 Conclusion

This paper describes the architecture of modular exponentiators, which effec-
tively use typical hardware macros such as the DSP function of an FPGA, and
we proposed the processing method and hardware architecture. Further, we eval-
uated the performances of the Virtex-4 series XC4VFX12-10SF363 as a target
device and observed that the operation time of the 512-bit modular exponen-
tiation is 0.261 ms. We believe that this is the fastest modular exponentiator
available in FPGA. Further, the number of SLICEs used is approximately 4000
so that they can be formed even on the minimum logic FPGA in the Virtex-4
Series. In addition, 1024-, 1536-, and 2048-bit modular exponentiations can be
processed in the same circuit.

As future studies, we enhance our modular exponentiator for the Virtex-5
and Spartan-3A Series, apply our Montgomery multiplier to elliptic curve cryp-
tosystem, and evaluate modular exponentiation combined with a CPU integrated
into an FPGA.

References

1. P. L. Montgomery,“Modular Multiplication without Trial Division,” Mathematics
of Computation, Vol. 43, No. 170, pp. 519-521, 1985.

2. C. D. Walter, “Systolic Modular Multiplication,” IEEE Transactions on Computers,
Vol. 42, No. 3, pp. 376-378, 1993.

3. S. E. Eldridge and C. D Walter “Hardware Implementation of Montgomery’s Mod-
ular Multiplication Algorithm,” IEEE Transactions on Computers, Vol. 42, No. 6,
pp. 693-699, 1993.

4. H. Orup, “Simplifying Quotient Determination in High-Radix Modular Multiplica-
tion,” Proc. of the 12th IEEE Symposium on Computer Arithmetic, pp. 193-199,
1995.

5. T. Blum, and C. Paar, “Montgomery Modular Exponentiation on Reconfigurable
Hardware, Proc. of the 14th IEEE Symposium on Computer Arithmetic, pp. 70-77,
1999.

6. C. D Walter, “Montgomery’s Multiplication Technique: How to Make It Smaller
and Faster,” CHES’99, LNCS 1717, pp. 80-93, Springer-Verlag, 1999.

7. A. F. Tenca and Ç.K. Koç, “A Scalable Architecture for Montgomery Multiplica-
tion,” CHES’99, LNCS 1717, pp. 94-108, Springer-Verlag, 1999.

8. T. Blum and C. Paar, ‘High-Radix Montgomery Modular Exponentiation on Recon-
figurable Hardware,” IEEE Transaction on Computers, Vol. 50, No. 7, pp. 759-764,
2001.

9. A. F. Tenca, G. Todorov, and Ç. K. Koç, “High-Radix Design of a Scalable Modular
Multiplier,” CHES 2001, LNCS 2162, pp. 185-201, Springer-Verlag, 2001.

10. H. Nozaki, M. Motoyama, A. Shimbo, and S. Kawamura, “Implementation of RSA
Algorithm Based on RNS Montgomery Multiplication,” CHES 2001, LNCS 2162,
pp. 364-376, Springer-Verlag, 2001.

11. S. H. Tang, K. S. Tsui and P. H. W. Leong, “Modular Exponentiation using Par-
allel Multipliers,” Proc. of the 2003 IEEE International Conference on Field Pro-
grammable Technology (FPT 2003), pp. 52-59, 2003.

12. A. Satoh and K. Takano, “A Scalable Dual-Field Elliptic Curve Cryptographic
Processor,” IEEE Transactions on Computers, Vol. 52, No. 4, pp.449-460, 2003.

13. C. McIvor, M. McLoone and J. V. McCanny, “FPGA Montgomery Multiplier Ar-
chitectures - A Comparsion,” Proc. of the 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM 2004) pp. 279-282, 2004.

14. C. McIvor, M. McLoone and J. V. McCanny, “High-Radix Systolic Modular Multi-
plication on Reconfigurable Hardware,” Proc. of the 2005 IEEE International Con-
ference on Field Programmable Technology (FPT 2005), pp. 13-18, 2005.

15. E. A. Michalski, D. A. Buell, “A Scalable Architecture for RSA Cryptography
on Large FPGAs,” Proc. of the 16th IEEE International Conference on Field Pro-
grammable Logic and Applications (FPL 2006) pp. 145-152, 2006.

16. R. V. Kamala and M. B. Srinivas, “High-Throughput Montgomery Modular Mul-
tiplication,” Proc. of the 14th IFIP International Conference on Very Large Scale
Integration (VLSI-SoC 2006), pp. 58-62, 2006.

17. K. Sakiyama, B. Preneel and I. Verbauwhede “A Fast Dual-Field Modular Arith-
metic Logic Unit and Its Hardware Implementation,” Proc. of the 2006 IEEE In-
ternational Symposium on Circuits and Systems (ISCAS 2006), pp. 787-790, 2006.

18. K. Sakiyama, E. De Mulder, B. Preneel and I. Verbauwhede “A Parallel Processing
Hardware Architecture for Elliptic Curve Cryptosystems,” Proc. of the 2006 IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP
2006), Vol. 3, pp. III-904-III-907, 2006.

19. The OpenCiphers Project, http://openciphers.sourceforge.net/oc/, 2005.
20. D. E. Knuth, “The Art of Computer Programming, Volume 2, Seminumerical Al-

gorithms, Third Edition,” Addison-Wesley, 1997.
21. Ç. K. Koç, “Analysis of Sliding Window Techniques for Exponentiation,” Com-

puters and Mathematics with Applications, Vol. 30, No. 10, pp. 17-24, 1995.
22. Xilinx, “Virtex-4 User Guide UG070 (v1.6)”.
23. Xilinx, “XtremeDSP for Virtex-4 FPGAs User Guide UG073 (v2.3)”.
24. Xilinx, “Virtex-4 Data Sheet: DC and Switching Characteristics DS302 (v2.0)”.
25. Xilinx, “Alpha Blending Two Data Streams Using a DSP48 DDR Technique

XAPP706 (v1.0)”.

