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Abstract. With the establishment of the AES the need for new block
ciphers has been greatly diminished; for almost all block cipher appli-
cations the AES is an excellent and preferred choice. However, despite
recent implementation advances, the AES is not suitable for extremely
constrained environments such as RFID tags and sensor networks. In
this paper we describe an ultra-lightweight block cipher, present. Both
security and hardware efficiency have been equally important during the
design of the cipher and at 1570 GE, the hardware requirements for
present are competitive with today’s leading compact stream ciphers.

1 Introduction

One defining trend of this century’s IT landscape will be the extensive deploy-
ment of tiny computing devices. Not only will these devices feature routinely in
consumer items, but they will form an integral part of a pervasive — and unseen
— communication infrastructure. It is already recognized that such deployments
bring a range of very particular security risks. Yet at the same time the cryp-
tographic solutions, and particularly the cryptographic primitives, we have at
hand are unsatisfactory for extremely resource-constrained environments.

In this paper we propose a new hardware-optimized block cipher that has
been carefully designed with area and power constraints uppermost in our mind.
Yet, at the same time, we have tried to avoid a compromise in security. In
achieving this we have looked back at the pioneering work embodied in the
DES [34] and complemented this with features from the AES finalist candidate
Serpent [4] which demonstrated excellent performance in hardware.

At this point it would be reasonable to ask why we might want to design a
new block cipher. After all, it has become an “accepted” fact that stream ciphers
are, potentially, more compact. Indeed, renewed efforts to understand the design
of compact stream ciphers are underway with the eSTREAM [15] project and
several promising proposals offer appealing performance profiles. But we note a
couple of reasons why we might want to consider a compact block cipher. First,
a block cipher is a versatile primitive and by running a block cipher in counter



mode (say) we get a stream cipher. But second, and perhaps more importantly,
the art of block cipher design seems to be a little better understood than that
of stream ciphers. For instance, while there is a rich theory under-pinning the
use of linear feedback shift registers [29] it is not easy to combine these building
blocks to give a secure proposal. We suspect that a carefully designed block
cipher could be a less risky undertaking than a newly designed stream cipher.
Thus, we feel that a block cipher that requires similar hardware resources as a
compact stream cipher could be of considerable interest.

It is important to realise that in developing a new block cipher, particularly
one with aggressive performance characteristics, we are not just looking for inno-
vative implementation. Rather, the design and implementation of the cipher go
hand-in-hand and this has revealed several fundamental limits and inherent con-
tradictions. For instance, a given security level places lower bounds on the block
length and key length. Just processing a 64-bit state with an 80-bit key places
fundamental lower limits on the amount of space we require. We also observe
that hardware implementation — particularly compact hardware implementa-
tion — favours repetition. Even minor variations can have an unfortunate effect
on the space required for an implementation. Yet, at the same time, the cryptan-
alyst also favours repetition and seeks mathematical structures that propagate
easily across many rounds. How much simple, repetitive structure can we include
without compromising its security?

In this paper we describe the compact block cipher1 present. After a brief
survey of the existing literature, the rest of the paper is organised in a stan-
dard way. present is described in Section 3 with the design decisions described
in Section 4. The security analysis follows in Section 5 along with a detailed
performance analysis in Section 6. We close the paper with our conclusions.

2 Existing Work

While there is a growing body of work on low-cost cryptography, the number of
papers dealing with ultra-lightweight ciphers is surprisingly limited. Since our
focus is on algorithm design we won’t refer to work on low-cost communication
and authentication protocols. Some of the most extensive work on compact im-
plementation is currently taking place within the eSTREAM project. As part of
that initiative, new stream ciphers suitable for efficient hardware implementation
have been proposed. While this work is ongoing, some promising candidates are
emerging [7, 19]. While the trade-offs are complex, implementation papers [18]
suggest that around 1300-2600 gate equivalents (GE) would be required for the
more compact ciphers within the eSTREAM project.

With regards to block ciphers it is well-known that DES was designed with
hardware efficiency in mind. Given the very limited state of semiconductor cir-
cuits in the early 1970s, it is not surprising that DES possesses very competitive
implementation properties. Work on DES reveals an implementaton of around

1 The name reflects its similarity to Serpent and the goal of fitting everywhere; the
very nature of ubiquitous computing.
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Fig. 1. A top-level algorithmic description of present.

3000 GE [42] while a serialized implementation can be realized with around 2300
GE [37]. The key length of DES limits its usefulness in many applications and
makes proposals such as DESXL (2168 GE) of some considerable interest [37].

For modern block ciphers, the landmark paper of [16] gives a very thorough
analysis of a low-cost implementation of the AES [35]. However, the resources
required for this cipher are around 3600 GE, which is an indirect consequence
of the fact that Rijndael was designed for software efficiency on 8- and 32-
bit processors. Implementation requirements for the Tiny Encryption Algorithm

tea [43, 44] are not known, but a crude estimate is that tea needs at least 2100
GE and xtea needs2 at least 2000 GE. Four dedicated proposals for low-cost
implementation are mCrypton [30], hight [22], sea [41], and cgen [40], though
the latter is not primarily intended as a block cipher. mCrypton has a precise
hardware assessment and requires 2949 GE, hight requires around 3000 GE
while sea with parameters comparable to present requires around 2280 GE.

3 The Block Cipher present

present is an example of an SP-network [33] and consists of 31 rounds. The
block length is 64 bits and two key lengths of 80 and 128 bits are supported. Given
the applications we have in mind, we recommend the version with 80-bit keys.
This is more than adequate security for the low-security applications typically
required in tag-based deployments, but just as importantly, this matches the
design goals of hardware-oriented stream ciphers in the eSTREAM project and
allows us to make a fairer comparison. The security claims and performance
attributes of the 128-bit version are provided in an appendix.

2 These figures and others in Section 2 are “back-of-an-envelope” where we assume
the following requirements: 32-bit XOR = 80 GE, 32-bit arithmetic ADD = 148 GE,
192-bit FF = 1344 GE, SHIFT = 0 GE. All estimated figures lack any control logic
which might significantly increase the required area.



Each of the 31 rounds consists of an xor operation to introduce a round
key Ki for 1 ≤ i ≤ 32, where K32 is used for post-whitening, a linear bitwise
permutation and a non-linear substitution layer. The non-linear layer uses a
single 4-bit S-box S which is applied 16 times in parallel in each round. The
cipher is described in pseudo-code in Figure 1, and each stage is now specified
in turn. The design rationale are given in Section 4 and throughout we number
bits from zero with bit zero on the right of a block or word.

addRoundKey. Given round key Ki = κi
63 . . . κi

0 for 1 ≤ i ≤ 32 and current
state b63 . . . b0, addRoundKey consists of the operation for 0 ≤ j ≤ 63,

bj → bj ⊕ κi
j .

sBoxlayer. The S-box used in present is a 4-bit to 4-bit S-box S : F
4
2 → F

4
2.

The action of this box in hexadecimal notation is given by the following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

For sBoxLayer the current state b63 . . . b0 is considered as sixteen 4-bit words
w15 . . . w0 where wi = b4∗i+3||b4∗i+2||b4∗i+1||b4∗i for 0 ≤ i ≤ 15 and the output
nibble S[wi] provides the updated state values in the obvious way.

pLayer. The bit permutation used in present is given by the following table.
Bit i of state is moved to bit position P (i).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

The key schedule. present can take keys of either 80 or 128 bits. However
we focus on the version with 80-bit keys. The user-supplied key is stored in a
key register K and represented as k79k78 . . . k0. At round i the 64-bit round key
Ki = κ63κ62 . . . κ0 consists of the 64 leftmost bits of the current contents of
register K. Thus at round i we have that:

Ki = κ63κ62 . . . κ0 = k79k78 . . . k16.

After extracting the round key Ki, the key register K = k79k78 . . . k0 is updated
as follows.
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Fig. 2. . The S/P network for present.

1. [k79k78 . . . k1k0] = [k18k17 . . . k20k19]
2. [k79k78k77k76] = S[k79k78k77k76]
3. [k19k18k17k16k15] = [k19k18k17k16k15] ⊕ round_counter

Thus, the key register is rotated by 61 bit positions to the left, the left-most
four bits are passed through the present S-box, and the round_counter value
i is exclusive-ored with bits k19k18k17k16k15 of K with the least significant bit of
round_counter on the right. The key schedule for 128-bit keys is presented in
an appendix.

4 Design Issues for present

Besides security and efficient implementation, the main goal when designing
present was simplicity. It is therefore not surprising that similar designs have
been considered in other contexts [21] and can even be used as a tutorial for
students [20]. In this section we justify the decisions we took during the design of
present. First, however, we describe the anticipated application requirements.

4.1 Goals and environment of use

In designing a block cipher suitable for extremely constrained environments, it is
important to recognise that we are not building a block cipher that is necessarily
suitable for wide-spread use; we already have the AES [35] for this. Instead, we
are targeting some very specific applications for which the AES is unsuitable.
These will generally conform to the following characteristics.

– The cipher is to be implemented in hardware.



– Applications will only require moderate security levels. Consequently, 80-
bit security will be adequate. Note that this is also the position taken for
hardware profile stream ciphers submitted to eSTREAM [15].

– Applications are unlikely to require the encryption of large amounts of data.
Implementations might therefore be optimised for performance or for space
without too much practical impact.

– In some applications it is possible that the key will be fixed at the time of
device manufacture. In such cases there would be no need to re-key a device
(which would incidentally rule out a range of key manipulation attacks).

– After security, the physical space required for an implementation will be the
primary consideration. This is closely followed by peak and average power
consumption, with the timing requirements being a third important metric.

– In applications that demand the most efficient use of space, the block cipher
will often only be implemented as encryption-only. In this way it can be used
within challenge-response authentication protocols and, with some careful
state management, it could be used for both encryption and decryption of
communications to and from the device by using the counter mode [36].

Taking such considerations into account we decided to make present a 64-
bit block cipher with an 80-bit key3. Encryption and decryption with present

have roughly the same physical requirements. Opting to support both encryption
and decryption will result in a lightweight block cipher implementation that is
still smaller than an encryption-only AES. Opting to implement an encryption-
only present will give an ultra-lightweight solution. The encryption subkeys
can be computed on-the-fly.

The literature contains a range of attacks that manipulate time-memory-data
trade-offs [6] or the birthday paradox when encrypting large amounts of data.
However such attacks depend solely on the parameters of the block cipher and
exploit no inner structure. Our goal is that these attacks be the best available
to an adversary. Side-channel and invasive hardware attacks are likely to be a
threat to present, as they are to all cryptographic primitives. For the likely ap-
plications, however, the moderate security requirements reflect the very limited
gain any attacker would make in practice. In a risk assessment, such attacks are
unlikely to be a significant factor.

4.2 The permutation layer

When choosing the mixing layer, our focus on hardware efficiency demands a
linear layer that can be implemented with a minimum number of processing
elements, i.e. transistors. This leads us directly to bit permutations. Given our
focus on simplicity, we have chosen a regular bit-permutation and this helps to
make a clear security analysis (see Section 5).

3 Appendix II gives an option for 128-bit keys but we do not expect it to be used.



4.3 The S-box.

We use a single 4-bit to 4-bit S-box S : F
4
2 → F

4
2 in present. This is a direct

consequence of our pursuit of hardware efficiency, with the implementation of
such an S-box typically being much more compact than that of an 8-bit S-box.
Since we use a bit permutation for the linear diffusion layer, AES-like diffusion
techniques [12] are not an option for present. Therefore we place some addi-
tional conditions on the S-boxes to improve the so-called avalanche of change.
More precisely, the S-box for present fullfils the following conditions, where we
denote the Fourier coefficient of S by

SW
b (a) =

∑

x∈F
4
2

(−1)〈b,S(x)〉+〈a,x〉.

1. For any fixed non-zero input difference ∆I ∈ F
4
2 and any fixed non-zero

output difference ∆O ∈ F
4
2 we require

#{x ∈ F
4
2 |S(x) + S(x + ∆I) = ∆O} ≤ 4.

2. For any fixed non-zero input difference ∆I ∈ F
4
2 and any fixed output differ-

ence ∆O ∈ F
4
2 such that wt(∆I) = wt(∆O) = 1 we have

{x ∈ F
4
2 |S(x) + S(x + ∆I) = ∆O} = ∅.

3. For all non-zero a ∈ F
4
2 and all non-zero b ∈ F4 it holds that |SW

b (a)| ≤ 8.

4. For all a ∈ F
4
2 and all non-zero b ∈ F4 such that wt(a) = wt(b) = 1 it holds

that SW
b (a) = ±4.

As will become clear in Section 5, these conditions will ensure that present

is resistant to differential and linear attacks. Using a classification of all 4-bit
S-boxes that fulfill the above conditions [27] we chose an S-box that is particular
well-suited to efficient hardware implementation.

5 Security Analysis

We now present the results of a security analysis of present.

5.1 Differential and linear cryptanalysis

Differential [3] and linear [32] cryptanalysis are among the most powerful tech-
niques available to the cryptanalyst. In order to gauge the resistance of present

to differential and linear cryptanalysis we provide a lower bound to the number
of so-called active S-boxes involved in a differential (or linear) characteristic.



Fig. 3. The grouping of S-boxes in present for the purposes of cryptanalysis. The
input numbers indicate the S-box origin from the preceeding round and the output
numbers indicate the destination S-box in the following round.

Differential cryptanalysis. The case of differential cryptanalysis is captured
by the following theorem.

Theorem 1. Any five-round differential characteristic of present has a mini-

mum of 10 active S-boxes.

While Theorem 1 will be formally proved in Appendix III, we make the
following observations. We divide the 16 S-boxes into four groups (see Figure 3)
and by examining the permutation layer one can then establish the following.

1. The input bits to an S-box come from 4 distinct S-boxes of the same group.
2. The input bits to a group of four S-boxes come from 16 different S-boxes.
3. The four output bits from a particular S-box enter four distinct S-boxes, each

of which belongs to a distinct group of S-boxes in the subsequent round.
4. The output bits of S-boxes in distinct groups go to distinct S-boxes.

The proof of Theorem 1 in Appendix III follows from these observations. By
using Theorem 1 any differential characteristic over 25 rounds of present must
have at least 5 × 10 = 50 active S-boxes. The maximum differential probability
of a present S-box is 2−2 and so the probability of a single 25-round differential
characteristic is bounded by 2−100. Advanced techniques allow the cryptanalyst
to remove the outer rounds from a cipher to exploit a shorter characteristic.
However even if we allow an attacker to remove six rounds from the cipher, a
situation without precedent, then the data required to exploit the remaining 25-
round differential characteristic exceeds the amount available. Thus, the security
bounds are more than we require. However, we have practically confirmed that
the bound on the number of active S-boxes in Theorem 1 is tight.

Practical confirmation. We can identify characteristics that involve ten S-
boxes over five rounds. The following two-round iterative characteristic involves
two S-boxes per round and holds with probability 2−25 over five rounds.

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

→ 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 = ∆.



A more complicated characteristic holds with probability 2−21 over five rounds.

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 0

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A

→ 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

→ 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

→ 0 0 0 0 0 0 0 0 0 0 8 8 0 0 8 8

→ 0 0 3 3 0 0 0 0 0 0 3 3 0 0 3 3.

While the probability of this second characteristic is very close to the bound
of 2−20, it is non-iterative and of little practical value. Instead we have exper-
imentally confirmed the probability of the two-round iterative differential. In
experiments over 100 independent sub-keys using 223 chosen plaintext pairs, the
observed probability was as predicted. This seems to suggest that for this par-
ticular characteristic there is no accompanying significant differential. However,
determining the extent of any differential effect is a complex and time-consuming
task even though our preliminary analysis has been encouraging.

Linear cryptanalysis. The case of the linear cryptanalysis of present is
handled by the following theorem where we analyse the best linear approximation
to four rounds of present.

Theorem 2. Let ǫ4R be the maximal bias of a linear approximation of four

rounds of present. Then ǫ4R ≤ 1
27 .

The theorem is formally proved in Appendix IV, and we can use it directly to
bound the maximal bias of a 28-round linear approximation by

26 × ǫ74R = 26 × (2−7)7 = 2−43.

Therefore under the assumption that a cryptanalyst need only approximate 28
of the 31 rounds in present to mount a key recovery attack, linear cryptanalysis
of the cipher would require of the order of 284 known plaintext/ciphertexts. Such
data requirements exceed the available text.

Some advanced differential/linear attacks. The structure of present al-
lows us to consider some dedicated forms of attacks. However none have yielded
an attack that requires less text than the lower bound on text requirements for
linear cryptanalysis. Among the dedicated attacks we considered was one using
palindromic differences, since symmetrical differences are preserved with prob-
ability one over the diffusion layer, and some advanced variants of differential-
linear attacks [28]. While the attacks seemed promising over a few rounds, they
very quickly lost their practical value and are unlikely to be useful in the crypt-
analysis of present. We also established that truncated differential cryptanal-

ysis [23, 24] was likely to have limited value, though the following two-round



truncated extension holds with probability one.

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

→ 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 3 [ iterate the two-round characteristic ]

→
...

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

→ 0 0 0 ? 0 0 0 ? 0 0 0 ? 0 0 0 3

→ δ0 δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10 δ11 δ12 δ13 δ14 δ15 where all δi ∈ {0, 1}.

Even when used to reduce the length of the differential characteristics already
identified, the data requirements still remain excessive.

5.2 Structural attacks

Structural attacks such as integral attacks [25] and bottleneck attacks [17] are well-
suited to the analysis of AES-like ciphers [12, 13, 38]. Such ciphers have strong
word-like structures, where the words are typically bytes. However the design of
present is almost exclusively bitwise, and while the permutation operation is
somewhat regular, the development and propagation of word-wise structures are
disrupted by the bitwise operations used in the cipher.

5.3 Algebraic attacks

Algebraic attacks have had better success when applied to stream ciphers than
block ciphers. Nevertheless, the simple structure of present means that they
merit serious study. The present S-box is described by 21 quadratic equations
in the eight input/output-bit variables over GF (2). This is not surprising since
it is well-known that any four bit S-box can be described by at least 21 such
equations. The entire cipher can then described by e = n×21 quadratic equations
in v = n × 8 variables, where n is the number of S-boxes in the encryption
algorithm and the key schedule. For present we have n = (31 × 16) + 31 thus
the entire system consists of 11, 067 quadratic equations in 4, 216 variables.

The general problem of solving a system of multivariate quadratic equations
is NP-hard. However the systems derived for block ciphers are very sparse since
they are composed of n small systems connected by simple linear layers. Never-
theless, it is unclear whether this fact can be exploited in a so-called algebraic
attack. Some specialised techniques such as XL [10] and XSL [11] have been pro-
posed, though flaws in both techniques have been discovered [8, 14]. Instead the
only practical results on the algebraic cryptanalysis of block ciphers have been
obtained by applying the Buchberger and F4 algorithms within Magma [31].
Simulations on small-scale versions of the AES showed that for all but the very
smallest SP-networks one quickly encounters difficulties in both time and mem-
ory complexity [9]. The same applies to present.



Fig. 4. The datapath of an area-optimized version of present-80.

Practical confirmation. We ran simulations on small-scale versions using the
F4 algorithm in Magma. When there is a single S-box, i.e. a very small block size
of four bits, then Magma can solve the resulting system of equations over many
rounds. However, by increasing the block size and adding S-boxes, along with
an appropriate version of the linear diffusion layer, the system of equations soon
becomes too large. Even when considering a system consisting of seven S-boxes,
i.e. a block size of 28 bits, we were unable to get a solution in a reasonable
time to a two-round version of the reduced cipher. Our analysis suggests that
algebraic attacks are unlikely to pose a threat to present.

5.4 Key schedule attacks

Since there are no established guidelines to the design of key schedules, there
is both a wide variety of designs and a wide variety of schedule-specific at-
tacks. The most effective attacks come under the general heading of related-key

attacks [2] and slide attacks [5], and both rely on the build-up of identifiable
relationships between different sets of subkeys. To counter this threat, we use a
round-dependent counter so that subkey sets cannot easily be “slid”, and we use
a non-linear operation to mix the contents of the key register K. In particular,

– all bits in the key register are a non-linear function of the 80-bit user-supplied
key by round 21,

– that each bit in the key register after round 21 depends on at least four of
the user-supplied key bits, and

– by the time we arrive at deriving K32, six bits are degree two expressions of
the 80 user-supplied key bits, 24 bits are of degree three, while the remaining
bits are degree six or degree nine function of the user-supplied key bits.

We believe these properties to be sufficient to resist key schedule-based attacks.

6 Hardware performance

We implemented present-80 in VHDL and synthesized it for the Virtual Sil-
icon (VST) standard cell library based on the UMC L180 0.18µ 1P6M Logic



process. We used Mentor Graphics Modelsim SE PLUS 5.8c for simulation and
Synopsys Design Compiler version Y-2006.06 for synthesis and power simula-
tion. The foundry typical values (of 1.8 Volt for the core voltage and 25◦C for the
temperature) were used and the suggested wireload model was applied for the
power simulation. Note that this is suitable for designs around 10,000 GE so the
power results will be pessimistic for significantly smaller designs. Figure 4 shows
the datapath of an area-optimized encryption-only present-80, which performs
one round in one clock cycle i.e. a 64-bit width datapath. Note that during the
design phase of present we use the same S-box 16 times rather than having 16
different S-boxes and this eases a further serialization of the design, i.e. with a
4-bit width datapath. Our implementation requires 32 clock cycles to encrypt a
64-bit plaintext with an 80-bit key, occupies 1570 GE and has a simulated power
consumption of 5µW.

module GE % module GE %

data state 384.39 24.48 KS: key state 480.49 30.61
s-layer 448.45 28.57 KS: S-box 28.03 1.79
p-layer 0 0 KS: Rotation 0 0
counter: state 28.36 1.81 KS: counter-XOR 13.35 0.85
counter: combinatorial 12.35 0.79 key-XOR 170.84 10.88
other 3.67 0.23

sum 1569.93 100

Table 1. Area requirement of present

The bulk of the area is occupied by flip-flops for storing the key and the data
state, followed by the S-layer and the key-XOR. Bit permutations are simple
wiring and will increase the area only when the implementation is taken to
the place&route-step. Note that the main goal of our implementation was a
small footprint in hardware, however, we also synthesized a power-optimized
implementation. For an additional 53 GE we attain a power consumption of
only 3.3µW and present-128 would occupy an estimated area of 1886 GE.
Beside a very small footprint present has a rather high throughput giving
good energy-per-bit. A comparison with other ciphers follows in Table 2.

7 Conclusions

In this paper we have described the new block cipher present. Our goal has
been an ultra-lightweight cipher that offers a level of security commensurate with
a 64-bit block size and an 80-bit key. Intriguingly present has implementation
requirements similar to many compact stream ciphers. As such, we believe it to
be of both theoretical and practical interest. Like all new proposals, we discour-
age the immediate deployment of present but strongly encourage its analysis.



Key Block Cycles per Throughput at Logic Area
size size block 100KHz (Kbps) process GE rel.

Block ciphers

present-80 80 64 32 200 0.18µm 1570 1

AES-128 [16] 128 128 1032 12.4 0.35µm 3400 2.17

HIGHT [22] 128 64 1 6400 0.25µm 3048 1.65

mCrypton [30] 96 64 13 492.3 0.13µm 2681 1.71

Camellia [1] 128 128 20 640 0.35µm 11350 7.23

DES [37] 56 64 144 44.4 0.18µm 2309 1.47

DESXL [37] 184 64 144 44.4 0.18µm 2168 1.38

Stream ciphers

Trivium [18] 80 1 1 100 0.13µm 2599 1.66

Grain [18] 80 1 1 100 0.13µm 1294 0.82
Table 2. Comparison of lightweight cipher implementations
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Appendix I

Test vectors for present with an 80-bit key are shown in hexadecimal notation.

plaintext key ciphertext

00000000 00000000 00000000 00000000 0000 5579C138 7B228445

00000000 00000000 FFFFFFFF FFFFFFFF FFFF E72C46C0 F5945049

FFFFFFFF FFFFFFFF 00000000 00000000 0000 A112FFC7 2F68417B

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFF 3333DCD3 213210D2

Appendix II

Here we describe a key schedule for a version of present that takes 128-bit
keys. The user-supplied key is stored in a key register K and represented as
k127k126 . . . k0. At round i the 64-bit round key Ki = κ63κ62 . . . κ0 consists of
the 64 leftmost bits of the current contents of register K. Thus at round i we
have that:

Ki = κ63κ62 . . . κ0 = k127k126 . . . k64.

After extracting the round key Ki, the key register K = k127k126 . . . k0 is updated
as follows.

1. [k127k126 . . .k1k0] = [k66k65 . . . k68k67]
2. [k127k126k125k124] = S[k127k126k125k124]
3. [k123k122k121k120] = S[k123k122k121k120]
4. [k66k65k64k63k62] = [k66k65k64k63k62] ⊕ round_counter

Thus, the key register is rotated by 61 bit positions to the left, the left-most
eight bits are passed through two present S-boxes, and the round_counter

value i is exclusive-ored with bits k66k65k64k63k62 of K with the least significant
bit of round_counter on the right.

Appendix III

Theorem 1. Any 5-round differential characteristic of present has a minimum
of 10 active S-boxes.

Proof. Recalling that the rounds are indexed from 1 to 31, consider five consec-
utive rounds of present ranging from i − 2 to i + 2 for i ∈ [3 . . . 29]. Let Dj be
the number of active S-boxes in round j. If Dj ≥ 2, for i − 2 ≤ j ≤ i + 2, then
the theorem trivially holds. So let us suppose that one of the Dj is equal to one.
We can distinguish several cases:

Case Di = 1. The S-box of present is such that a difference in a single input
bit causes a difference in at least two output bits (cf. the second design cri-
terion). Thus Di−1 +Di+1 ≥ 3. Using observation 1 above, all active S-boxes
of round i − 1 belong to the same group, and each of these active S-boxes



have only a single bit difference in their output. So according to observation
2 we have that Di−2 ≥ 2Di−1. Conversely, according to observation 3, all
active S-boxes in round i + 1 belong to distinct groups and have only a sin-
gle bit difference in their input. So according to observation 4 we have that
Di+2 ≥ 2Di+1. Together this gives

∑i+2
j=i−2 Dj ≥ 1 + 3 + 2 × 3 = 10.

Case Di−1 = 1. If Di = 1 we can refer to the first case, so let us suppose
that Di ≥ 2. According to observation 3 above, all active S-boxes of round
i belong to distinct groups and have only a single bit difference in their
input. Thus, according to observation 4, Di+1 ≥ 2Di ≥ 4. Further, all active
S-boxes in round i + 1 have only a single bit difference in their input and
they are distributed so that at least two groups of S-boxes contain at least
one active S-box. This means that Di+2 ≥ 4 and we can conclude that∑i+2

j=i−2 Dj ≥ 1 + 1 + 2 + 4 + 4 = 12.
Case Di+1 = 1. If Di = 1 we can refer to the first case. So let us suppose that

Di ≥ 2. According to observation 1 above, all active S-boxes of round i belong
to the same group and each of these active S-boxes has only a single bit
difference in their output. Thus, according to observation 2, Di−1 ≥ 2Di ≥ 4.
Further, all active S-boxes of round i− 1 have only a single bit difference in
their output, and they are distributed so that at least two groups contain at
least two active S-boxes. Thus, we have that Di−2 ≥ 4 and therefore that∑i+2

j=i−2 Dj ≥ 4 + 4 + 2 + 1 + 1 = 12.
Cases Di+2 = 1 or Di−2 = 1. The reasoning for these cases is similar to those

for the second and third cases.

The theorem follows. ⊓⊔

Appendix IV

Theorem 2. Let ǫ4R be the maximal bias of a linear approximation of four
rounds of present. Then ǫ4R ≤ 1

27 .

Proof. Recall that Matsui’s piling-up lemma [32] estimates the bias of a linear
approximation involving n S-boxes to be

2n−1
n∏

i=1

ǫi,

where the values ǫi are the individual bias of each (independent) S-box. Accord-
ing to the design principles of present, the bias of all linear approximations is
less than 2−2 while the bias of any single-bit approximation is less than 2−3. Let

ǫ
(j)
4R denote the bias of a linear approximation over 4 rounds involving j active

S-boxes. Now consider the following three cases.

1. Suppose that each round of a four-round linear approximation has exactly
one active S-box. Then the bias of each of the two S-boxes in the middle



rounds is at most 1/8 and the overall bias for a four round approximation
can be bounded as follows:

ǫ
(4)
4R ≤ 23 × (2−3)2 × (2−2)2 = 2−7.

2. Suppose, instead, that there are exactly five active S-boxes over four rounds.
Then by the grouping of S-boxes in Figure 3, the active S-boxes over three
consecutive rounds cannot form the pattern 1-2-1. For this to happen, the
two active S-boxes in the middle round are activated by the same S-box
and must therefore belong to two different groups of S-boxes. But if this
is the case they couldn’t activate only one S-box in the following round.
Consequently the number of active S-boxes is either 2-1-1-1 or 1-1-1-2, so
that

ǫ
(5)
4R ≤ 24 × (2−3) × (2−2)4 = 2−7.

3. Finally, suppose that there are more than five active S-boxes. Thus

ǫ
(j)
4R ≤ 2j−1 × (2−2)j = 2−j−1 ≤ 2−7 for j > 5.

The equality is theoretically attainable for j = 6. This is a strict inequality
for all other j’s.

The theorem follows. ⊓⊔


