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Abstract. In this article, we propose a new comparison metric, the
figure of adversarial merit (FOAM), which combines the inherent se-
curity provided by cryptographic structures and components with their
implementation properties. To the best of our knowledge, this is the first
such metric proposed to ensure a fairer comparison of cryptographic de-
signs. We then apply this new metric to meaningful use cases by study-
ing Substitution-Permutation Network permutations that are suited for
hardware implementations, and we provide new results on hardware-
friendly cryptographic building blocks. For practical reasons, we consid-
ered linear and differential attacks and we restricted ourselves to fully se-
rial and round-based implementations. We explore several design strate-
gies, from the geometry of the internal state to the size of the S-box,
the field size of the diffusion layer or even the irreducible polynomial
defining the finite field. We finally test all possible strategies to provide
designers an exhaustive approach in building hardware-friendly crypto-
graphic primitives (according to area or FOAM metrics), also introduc-
ing a model for predicting the hardware performance of round-based or
serial-based implementations. In particular, we exhibit new diffusion ma-
trices (circulant or serial) that are surprisingly more efficient than the
current best known, such as the ones used in AES, LED and PHOTON.

Key words: SPN, lightweight cryptography, figure of adversarial
merit, diffusion matrices.

1 Introduction

RFID is a rising technology that is likely to be widely deployed in every-
day life, leading to new security challenges. Significant advances in this



area have already been obtained. In particular, many lightweight block
ciphers [8,10,15,19] have recently been proposed, and designing such ci-
phers is not an easy task as showed by the numerous candidates that
eventually got broken. Moreover, it is interesting to note that in most
privacy-preserving RFID protocols proposed [1,16,17] a hash function is
required, and since a hash function can be easily built from a block cipher
(for example with the Davies-Meyer mode) or a permutation (for example
with the sponge construction [7]), a crucial question for the researchers
is how to design a hardware efficient permutation.

Hardware efficiency can have very different meanings depending on
the utilization scenario targeted by the designer. For example, a classical
metric is to estimate the minimum silicon area required by the primi-
tive to perform the cryptographic operations. This, of course, depends
on the parameters of the function itself (the area is highly dependent on
the amount of memory required) and most lightweight block ciphers have
a rather small block size of 64 bits. It is to be noted that the area is
usually not directly linked to the security of a primitive, as adding extra
rounds will have an impact on the throughput of the implementation, but
only a very limited one concerning the area (we assumed that the func-
tion has no weakness that is independent of the number of rounds). Area
and other metrics such as throughput, latency or power dissipation can
be traded-off for one another, making the comparison between different
primitives difficult. In the direction of fairer comparisons of hardware im-
plementations of cryptographic primitives, Bogdanov et al. [9] introduced
the efficiency metric throughput/area in order to take in account these
tradeoffs. However, the possibility of trading off throughput for power
was not taken in account and Badel et al. [2] proposed instead a figure
of merit, defined as FOM = throughput/area2. However, as of today, no
metric takes in account the inherent security of a building block, therefore
making it hard to compare for example two diffusion matrices that have
different area footprint and different branch number.

The construction of good diffusion matrices has always been an im-
portant research topic in cryptography, equally important as the search
for good confusion functions. The AES [13] for example uses a 4×4 matrix
with elements in GF (28). This matrix is Maximum Distance Separable
(MDS), which means that it has a branch number of 5, optimal for a 4×4
matrix. However, this security feature comes at a cost that computations
in GF (28) might not be the best choice for some hardware purposes, even
though special care has been taken by the designers to choose a circulant
matrix instantiated with lightweight coefficients of low Hamming weight.



Recently, Guo et al. [14,15] described a new type of diffusion matrix, so-
called serial, that trades more clock cycles in the execution for a smaller
area. This idea was later extended to the use of linear Feistel-like struc-
tures or Linear Feedback Shift Registers (LFSR) to build the diffusion
matrix [18,20]. On the opposite side, PRESENT [8] uses a simple bit per-
mutation layer, the real diffusion coming in fact directly from the S-box
application. The advantage being that a bit permutation layer is basically
free in a hardware implementation. Now, one may ask the following ques-
tion: what is better when the goal is to maximize some hardware metric, a
very weak diffusion matrix with a low area footprint, or a strong diffusion
matrix but requiring more silicon?

More generally, many different trade-offs exist when building an AES-
like Substitution-Permutation Network (SPN) primitive, such as the gen-
eral geometry (number of lines and columns), what size of S-box, what
type of matrix, with what branch number, in what finite field, with which
irreducible polynomial, etc. When a cryptographer would like to design
a permutation with a specific hardware efficiency metric in mind, it is
not trivial for him to make the best construction choices directly. Since
implementing many different trade-offs is very time consuming, he will
have to rely on his own intuition when picking the basic building blocks
and choosing the general structure of the primitive, therefore accepting
that his final design might not be optimal.

Our contributions. In this article, we study the problem of designing
hardware efficient permutations for lightweight symmetric key cryptogra-
phy purposes, and we propose new promising diffusion matrices as build-
ing blocks. We first explain in Section 2 the family of functions that we
will study, namely AES-like SPN permutations, and we describe a new gen-
eralized diffusion layer (i.e. the ShiftRows function in AES), that allows
a provable optimal diffusion even for non-square internal state matrices.
Then, we introduce in Section 3 a new metric, the figure of adversarial
merit (FOAM), that for the first time takes into account the inherent se-
curity provided by the primitive. We then explain in Section 4 the various
SPN design tradeoffs that we will consider for our comparisons, such as
the geometry of the SPN, the S-box size, the type of matrix (circulant or
serial), the field size for the diffusion or even the irreducible polynomial.
The goal being that the designer only has to input the type of implemen-
tation (round and/or serial) and the size of the permutation he would
like to build, and he can directly get the SPN structure and its inter-
nal components that are the best suited for him. We study in Section 5



the security of the AES-like SPN permutations by only taking in account
simple linear/differential attacks. In Section 6, we present formulas for
estimating various parts of the ASIC implementations. We chose to fo-
cus our work on designing permutations only since many cryptographic
primitives can be built from them. Therefore, we will not cover other com-
ponents such as key schedule for a block cipher, or message expansion for
a hash function. Moreover, due to the obviously vast amount of imple-
mentation trade-offs, we restricted ourselves to the two most important
cases: fully serialized and round-based.

Finally, the results obtained by our analysis are given in Section 7,
with the best diffusion matrices and SPN parameters we could find for
many different scenarios. Notably, we show that the diffusion matrices of
ciphers such as AES, LED or PHOTON are not the best possible choices. For
example, in the case of AES encryption, a circulant matrix with coefficients
(0x01,0x01,0x04,0x8d) would have been, surprisingly, a better choice in
terms of implementation while keeping the same MDS security.

2 Generic SPN with generalized optimal diffusion

In this section, we describe the family of AES-like SPN functions. Our
scope is classical, but we propose a new generalized diffusion layer that
allows an optimal diffusion even for non-square internal state matrices.

2.1 Extended AES-like permutations

An n-bit AES-like SPN permutation transforms an r × c array of s-bit
cells (n = r × c × s). During one round, each cell is first transformed
by an s-bit S-box (similar to the AES SubBytes operation). Then each
r-cell column is transformed by an r × r diffusion matrix (similar to
the AES MixColumns operation), followed by an optimal diffusion4 which
permutes the c cells of each row to provide further mixing (similar to
the AES ShiftRows operation). Finally, an (r × c)-cell constant is xored
to complete a round transformation (in block-cipher design, this phase
is a subkey addition, but we will not consider key-schedules here). In
AES, we have a square array r = c = 4 and cell size s = 8-bit. The
diffusion matrix is usually defined over the finite field GF (2s) because of
the s-bit cell size. Sometimes, we might actually use a smaller subfield

4 Note that here, without loss of generality, we apply the permutation operations from
right-to-left, i.e. SC (SubCells) is first applied, followed by MC (MixColumn) and then
the optimal diffusion.



of size GF (2i), i divides s, in order to define the diffusion matrix. This
framework captures many known ciphers such as AES, PRESENT, LED, etc.

A cell is called differentially (resp. linearly) active if its value (resp.
mask value) is non-zero in a differential (resp. linear) attack. The differ-
ential branch number of a diffusion matrix is the minimum number of
differentially active input and output cells (among all non-zero inputs).
The notion of linear branch number is similar, except that we consider
the transpose of the diffusion matrix instead. From this point onwards,
we will not distinguish between differential and linear branch number
unless necessary. That is, when we say a matrix has branch number B,
both its differential and linear branch numbers are equal to B. The max-
imum branch number for an r by r diffusion matrix is r+1, and a matrix
which achieves this optimal branch number is called MDS. If the diffusion
matrix has branch number r, then it is called almost-MDS.

2.2 The generalized optimal diffusion

In this section, we generalize the concept of optimal diffusion [13] for non-
square state array. This has been done already when r < c with a security
bound equivalent to the case where r = c (square array) [13]. When r > c
and c divides r, a simple generalization has been proposed in [11] where
a 4-round security bound is proven when the diffusion matrix is MDS. In
this section, we propose a generalized optimal diffusion for the case r > c
where c may not divide r and the diffusion matrix may not be MDS, i.e.
for all branch number B ≤ r + 1.

An example of optimal diffusion is the ShiftRows operation of AES
which helps to diffuse the effect of the AES SubBytes and MixColumns

operation over 32-bit to the whole 128-bit block. The AES ShiftRows

transforms a 4× 4 byte-array by rotating row r to the left by r bytes, for
r = 0, 1, 2, 3. Due to ShiftRows, each byte of an input column is mapped
to a different output column. This is captured by the concept of optimal
diffusion (another example is SQUARE cipher [12]’s ArrayTranspose map).

Definition 1. For an r-by-r cell-array, the optimal diffusion map is a
cell-permutation that maps each cell of an input column to a different
output column.

However, the optimal diffusion only applies for r × c cell array where
r ≤ c. When r > c, there are not enough output columns c to map each
of the r cells of an input column. Thus, we extend a new concept from
[11] called Generalized Optimal Diffusion (GOD) for r × c cell-array when



r > c, which we describe below5. Our strategy is to distribute the cells of
an input column as uniformly as possible to each output column.

Definition 2. For an r × c cell-array, a generalized optimal diffusion is
a cell-permutation such that looking at any r-cell column:

1. dr/ce input cells are mapped to each of (r mod c) output columns.

2. br/cc input cells are mapped to each of c−(r mod c) output columns.

Example 1. Consider r = 5, c = 3. For each input column of 5 cells,
d5/3e = 2 input cells are mapped to each of (5 mod 3) = 2 columns.
b5/3c = 1 input cell is mapped to 3 − (5 mod 3) = 1 column. One
example is given by the transform of the following arrays:

a1 b1 c1
a2 b2 c2
a3 b3 c3
a4 b4 c4
a5 b5 c5

 maps to


a1 b1 c1
a2 b2 c2
c3 a3 b3
c4 a4 b4
b5 c5 a5


Theorem 1. Consider a 4-round AES-like SPN as follows (omitting the
constant addition since it has no effect on our reasoning):

GOD ◦ MC ◦ SC ◦ GOD ◦ MC ◦ SC ◦ GOD ◦ MC ◦ SC ◦ GOD ◦ MC ◦ SC,

where

1. SubCells is a nonlinear substitution layer with r × c s-bit S-boxes
acting in parallel.

2. MixColumns is a layer of c parallel MixColumn transforms each map-
ping r cells to r cells with branch number B, i.e. MixColumns(x1, . . . , xc) =
(MixColumn(x1), . . . , MixColumn(xc)), each xi corresponding to a col-
umn of r cells.

3. GOD (generalized optimal diffusion) is as defined above which distributes
the r cells of an input column almost uniformly to c output columns.

Then the number of active S-boxes over 1 and 2 rounds are at least 1 and
B respectively. For 4 rounds it is at least B×B′ where B′ = max{2;x+y}
and: {

y = min{2× (r mod c)); bB/dr/cec}
x = d(B − dr/ce × y)/br/cce

5 The Generalized Optimal Diffusion (GOD) defined in [11] applies only when r is a
multiple c. Here, we define GOD for any r > c.



We provide the proof of this theorem in the full version of this paper.
We note that it is tight in the sense that it naturally provides a 4 round
path that corresponds to a “luckiest” scenario for the attacker, which
involves the minimum number of active Super-Sboxes (the (c × s)-bit
S-boxes composed of two SubCells layers surrounding one MixColumns).

Let us look at an application example of Theorem 1 to derive the
number of active S-boxes of an AES-like SPN structure, which cannot be
deduced by the known results of [11,13]. Consider an SPN structure with
state size 24-cell, the diffusion matrices being an 8×8 matrix with branch
number 7, i.e. r = 8, c = 3 and B = 7. By Theorem 1, we have y = 2 and
x = 1, therefore B′ = max{2;x+y} = 3 and there are B×B′ = 7×3 = 21
active S-boxes guaranteed over 4 rounds of this 24-cell SPN structure.

3 FOAM: Figure Of Adversarial Merit

As explained in the introduction, the various trade-offs inherent in any
design of a cryptographic primitive make a fair and consistent comparison
of software and hardware implementations thereof a challenging task. For
hardware implementations exist a few metrics, like the Area-Time (AT)
product, which multiplies the area in Gate Equivalents (GE) occupied
by the design with the number of clock cycles required (the smaller the
number, the more efficient is the design). Closely related is the hardware
efficiency [9], which divides the throughput at a given frequency by the
area (hence the greater the number, the better the design). In order to
also address the area-power trade-off, [2] proposed a new Figure of Merit
(FOM): throughput divided by the area squared. The latter two metrics
are frequency dependent, which can complicate comparisons.

We propose a new metric called Figure of Adversarial Merit (FOAM)
in order to resolve the aforementioned shortcomings. It is defined as

FOAM(x) =
1

S(x)×A2

where S(x) and A are basically equivalent to special definitions of speed
and area, respectively. More precisely, S(x) denotes the speed of the ci-
pher based on the number of rounds required to achieve a certain security
x against some set of attacks (in this article, we will later restrict ourselves
to simple differential/linear attacks). For a round-based permutation, it
is defined as S(x) = p(x)× t where p(x) represents the number of rounds
required to achieve security x, and t the number of clock cycles to perform
one round. Moreover, for SPN-based primitives, we decompose the area



requirements A into six parts: the intermediate state memory cost Cmem,
the S-boxes implementation cost Csbox, the diffusion matrix implemen-
tation cost Cdiff , the constant addition Ccst, the control logic cost Clog,
and the IO logic cost Cio:

FOAM(x) =
1

S(x)×A2
=

1

p(x)× t× (Cmem + Csbox + Cdiff + Ccst + Clog + Cio)2

This FOAM metric will be useful to compare different design strate-
gies, different building blocks (such as diffusion matrices) with a simple
value computation. Even better, we would like to roughly compare all
these possible design trade-offs without having the hassle to implement
all of them: in Section 6 we present formulas to estimate these six subparts
of the area cost and the number t of clock cycles required to perform one
round. The value p(x) can be deduced by the number of active S-boxes
proven in Theorem 1 and the S-box cryptographic properties (see Sec-
tion 5). Note that in the rest of the paper, we consider that the security
aimed by the designer is equal to the permutation size, i.e. we are aiming
at a security of 2n computations (thus p(x) = p(2n)).

4 Trade-offs considered

We explain all the various trade-offs we consider when building an AES-like
SPN permutation. The goal being that a designer specifies a permutation
bitsize n, the metric he would like to maximize (area, FOAM), the degree
up to which serial or round-based implementations are important, and he
directly obtains the best parameters to build his permutation.

The S-box. One of the first choice of the designer is the size of the
S-box, and we will consider two possible trade-offs: s = 4 and s = 8. Note
that, for simplicity, we will consider that the S-box chosen has perfect
differential and linear properties relative to its size (one could further
extend the trade-offs to non-optimal but smaller S-boxes, but the search
space being very broad we leave this as an open problem).

The geometry of the internal state. When building an AES-like
SPN permutation, one can consider several internal state geometries (the
values r and c). The classical case is a square state, like for AES. How-
ever, depending on the diffusion matrices available, it might be worth
considering more line-shaped or column-shaped designs.



Diffusion matrix field size. The designer can choose the field size 2i

in which the matrix computations will take place. The classical case, like
in AES, being that the field size for the diffusion matrix is the same as the
S-box. However, depending on the diffusion matrices available, it might
be worth considering designs with thinner diffusion layers but repeated
several times. For example, in the case of AES, instead of the MixColumns

matrix one could use a 4×4 diffusion matrix on GF (24) applied two times
(one time on the 4 MSB and one time on the 4 LSB of the 8-bit cells in
the AES column). Overall, we will cover a scope from binary matrices (in
GF(2)) up to matrices on the same field size as the S-box (in GF (2s)).

Irreducible polynomial for the diffusion matrix field. Once the
field size 2i is fixed, the designer can choose the irreducible polynomial
defining the field. For i = 1 and i = 2 only a single polynomial exists,
while for i = 4 at most 3 choices are possible (α4 +α+ 1, α4 +α3 + 1 and
α4+α3+α2+α+1). For the i = 8 case, many polynomials are possible (this
was already observed by [3]), thus in order to focus the search space we will
only consider the irreducible polynomial used in AES (α8+α4+α3+α+1)
and in WHIRLPOOL hash function [5] (α8 + α4 + α3 + α2 + 1).

Type of diffusion matrix. The designer can choose what type of
matrix he will implement, the two main hardware-friendly types being
circulant or serial. In the circulant case, the designer picks r coefficients
Z = (Z0, . . . , Zr−1) and the matrix Z is defined as

Z0 Z1 Z2 . . . Zr−2 Zr−1

Zr−1 Z0 Z1 . . . Zr−3 Zr−2

Zr−2 Zr−1 Z0 . . . Zr−4 Zr−3

. . . . . . . .

. . . . . . . .
Z1 Z2 Z3 . . . Zr−1 Z0


In the serial case, the designer picks r coefficients Z = (Z0, . . . , Zr−1) and
the matrix Z is defined as

0 1 0 0 . . 0 0
0 0 1 0 . . 0 0
0 0 0 1 . . 0 0
. . . . . . . .
. . . . . . . .
0 0 0 0 . . 0 1
Z0 Z1 Z2 . . . Zr−2 Zr−1



r

The matrix therefore takes r operations to be computed.



Branch number of the diffusion matrix. In general, implementing
a matrix with very good diffusion property will cost more area and/or
cycles than a weak one. For example, the AES matrix has ideal MDS
diffusion property, but certainly requires more area to implement than a
simple binary matrix with weaker properties. Since the former is bigger
but stronger and the latter is smaller and weaker, it is not clear which
alternative will lead to the best FOAM. Therefore, the designer can choose
between a wide range of possibilities concerning the branch number B of
the diffusion matrix, from B = 3 to B = r + 1 (MDS).

5 Security assessment of AES-like primitives

The FOAM metric takes into account the security of the permutation with
regards to simple differential/linear attacks. We would like to evaluate this
security for the AES-like SPN permutations we are considering. Theorem 1
gives us the minimal number of active S-boxes for a given number of
rounds6, and knowing the S-box cryptographic properties we can compute
the maximum differential and linear characteristic probabilities of our
generic SPN ciphers easily. In other words, we can easily compute the
number of rounds p(x) = p(2n) required to achieve the aimed security 2n.

As stated before, for simplicity, in the rest of this article we will con-
sider that the S-boxes have perfect differential and linear properties: for
a 4-bit S-box the maximum differential and linear characteristic proba-
bilities are 2−2 (e.g. PRESENT S-box), while for a 8-bit S-box the maxi-
mum differential and linear characteristic probabilities are 2−6 (e.g. AES
S-box). One can extend the trade-off by considering other S-boxes, that
might require a smaller area, but will have worse security properties.

Reusing the example from Section 2.2, from Theorem 1, there are at
least 21 active S-boxes over 4 rounds of this SPN permutation. Suppose
that 8-bit S-boxes are of maximum differential and linear probabilities
2−6. Then the maximum differential and linear characteristic probabilities
over four rounds are upper-bounded by (2−6)21 = 2−126.

We are aware that other attacks rather than simple differential/linear
might exist. However, our goal here is not to fully specify a permutation,
but to compare many trade-offs and design strategies that will lead to

6 We note that the number of active S-boxes given by Theorem 1 is tight if the number
of rounds is not equal to 3 modulo 4 (even in that case the theorem gives a very
close estimation). This does not mean that the maximum differential and linear
characteristic probabilities computed are tight, since it is unknown how many active
S-boxes can use the maximum differential and linear characteristic probabilities at
the same time (this remains an open problem).



good hardware performances. Therefore, we emphasize that the number
of rounds p(x) is not the number of rounds that should be chosen by a
designer. This number should be carefully chosen after thorough crypt-
analysis work on the entire primitive. Yet, we believe that this simple
differential/linear criterion is a quite accurate way to compare the secu-
rity of AES-like SPN permutations.

6 Implementations in ASIC

In this section, we introduce some notation before we present formulas
to estimate serialized and round-based implementations (we restricted
ourselves to these two important practical cases due to the obviously
vast amount of implementation trade-offs). Please note that all estimates
have to be seen as lower bounds, as we use scan flip-flops, and consider
neither reset nor I/O requirements, which can significantly impact the
area count in practice. We argue that those requirements –though very
important in practice– are highly application specific, and will be the
same for any permutation for a given target application scenario. Thus
for a fair comparison of permutation constructions we will not consider
them. In practice, a higher throughout can be achieved by using pipelining
techniques to reduce the critical path at the cost of additional area. As this
design goal is, again, highly application specific and FOAM is designed
to be frequency independent, we have not considered it in our analysis.

We have estimated all serial architectures with the single optimization
goal of minimal area in mind. In practice, some design decisions will most
likely use another trade-off point more in favor of smaller time and larger
area. To reflect this, we have estimated all round-based architectures op-
timized for maximum FOAM.

The table below provides an overview over the hardware building
blocks we used, their notation and typical area requirements for a UMC
180 nm technology. 7

Notation Description GE

DFF 1-input flip-flop 4.67

SFF 2-input flip-flop 6

MUX 2-input multiplexer 2.33

Notation Description GE

XOR 2-input exclusive Or 2.67

SB4 4 x 4 S-box (PRESENT) 22

SB8 8 x 8 S-box (AES) 233

7 This is just one example for a technology and the area of the building blocks can be
easily adapted for other technologies.



We give in Table 1 the estimates for the various parts of the ASIC
implementations. The details on how these formulas were obtained will
be provided in the full version of this paper.

Table 1: Estimates for various parts of the ASIC implementations. ( i de-
notes the exponent for the field GF (2i); ar, ac and ap denote the counters
for rows, columns and rounds respectively; cg and oc denote clock gating
and other combinational logic respectively; b denotes the area requirement
for the finite state machine.)

Serial architectures Round-based architectures

Cmem
s · (r − b i

s
c) · SFF + b i

s
cs ·DFF , c = 1

2 · s · r · SFF + s · r · (c− 2) ·DFF , c ≥ 2
s · r · c · SFF

Csbox
SB4 , s = 4
SB8 , s = 8

r · c · SB4 , s = 4
r · c · SB8 , s = 8

Cdiff
A ·XOR , for serial mat.

A ·XOR+ (s · r − i) ·DFF + i ·MUX , for circulant mat.
A · r · c · s

i
·XOR

Ccst s ·XOR s · r · c ·XOR

Clog
ar + ap + SFF · 2 + oc , c = 1

ar + ac + ap + b+ cg + oc , c ≥ 2
ap + b

Cio s ·MUX 0

t

r · c+ (c− 1) + ( s
i
· r + 1− b i

s
c) · c , c ≥ 2 serial mat.

r · c+ (c− 1) + (2 · s
i
· r) · c , c ≥ 2 circulant mat.

r · c+ s
i
· r , c = 1 serial mat.

r · c+ (2 · s
i
· r − 1) , c = 1 circulant mat.

1

7 Results and new diffusion matrices

In this section we provide the results of our framework, as well as new
diffusion matrices that are very interesting for hardware implementations.
As explained in Section 4, the designer’s input is the permutation bitsize
n, the metric he would like to maximize (area or FOAM), and the degree
up to which serial or round-based implementations are important. To il-
lustrate our method, we focused on the case where the designer would like
to build a 64-bit permutation (which is a typical state size for a lightweight
block cipher). For the implementation types, we focused on three scenar-
ios: only serial implementation is important, only round-based implemen-
tation is important, serial and round-based implementations are equally
important for the designer. Further, we only considered encryption.

Before describing our results, we first explain how we found good
diffusion matrices (circulant and serial), which outperform known ones
from the AES, LED ciphers and the PHOTON hash function.



7.1 Lightweight coefficients

Consider the AES matrix, a circulant matrix with coefficients (0x01, 0x01,
0x02, 0x03) over GF (28) defined by the irreducible polynomial α8 +α4 +
α3+α+1. The matrix appears to be very lightweight due to the low Ham-
ming weight of its entries. But surprisingly, we found an even lighter circu-
lant matrix over the same field with coefficients8 (0x01,0x01,0x04,0x8d).
We now explain why this is so.

We first illustrate how to compute the number of XORs required to
implement a multiplication by a finite field element x, by using GF (28)
defined by α8 + α4 + α3 + α + 1 as an example. Let x = x7 · α7 + x6 ·
α6 + · · ·x1 ·α+ x0 = (x7, x6, · · · , x1, x0). For ease of explanation, we em-
ploy hexadecimal encoding: (x7, x6, x5, x4, x3, x2, x1, x0) can be encoded
as a tuple of hexadecimal numbers (0x80, 0x40, 0x20, 0x10, 0x08, 0x04,
0x02, 0x01). Then, the multiplication of 0x04 is represented as:

0x04 · x = (x5, x4, x3 + x7, x2 + x6 + x7, x1 + x6, x0 + x7, x6 + x7, x6)

= (0x20, 0x10, 0x88, 0xc4, 0x42, 0x81, 0xc0, 0x40).

We see that the number of XORs required for the multiplication of 0x04
by x is 6. Now we can compute

0x8d · x = (α7 + α3 + α2 + 1) · x
= (0xb1, 0x58, 0x2c, 0x96, 0xfa, 0x4c, 0xa6, 0x62)⊕ (0x10, 0x88, 0xc4, 0x62, 0xa1, 0xc0, 0x60, 0x20)

⊕(0x20, 0x10, 0x88, 0xc4, 0x42, 0x81, 0xc0, 0x40)⊕ (0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01)

= (0x01, 0x80, 0x40, 0x20, 0x11, 0x09, 0x04, 0x03)

= (x0, x7, x6, x5, x0 + x4, x0 + x3, x2, x0 + x1)

Due to the ’cancellation of XORs’, we see that multiplication of x by
0x8d requires only 3 XORs. In a similar fashion, the multiplication of x
by 0x02 and 0x03 requires 3 and 11 XORs respectively.

Hence we are able to come up with the XOR count table for any finite
field. Table 2 of Appendix A shows the XOR count for GF (24) defined
by α4 + α + 1. The tables for GF (24) and GF (28) defined by different
irreducible polynomials are provided in the full version of this paper.

Now we explain how to use the tables to calculate A the number of
XORs required to implement a row of a matrix. Denote a given row of
an r× r matrix by (x1, x2, · · ·xr) over a finite field GF (2i). Let γj be the
XOR count(e.g. Table 2 of Appendix A for i = 4) corresponding to the
field element xj . Then A is equal to (γ1 + · · ·+ γr) + (z− 1) · i, where z is
the number of non-zero elements in the row. We give some examples: row

8 We use the binary representation to represent finite field elements. E.g., 0x8d is
10001101 in binary, which corresponds to the finite field element α7 + α3 + α2 + 1
in GF (28).



(0x1,0x1,0x4,0x9) uses (0 + 0 + 2 + 1) + 3× 4 = 15 XORs to implement
over GF (24); the AES matrix uses (0 + 0 + 3 + 11) + 3 × 8 = 38 XORs
to implement per row over GF (28). Similarly, the circulant matrix with
coefficients (0x01,0x01,0x04,0x8d) uses 33 XORs to implement per row
over GF (28), and is thus lighter than the AES matrix.

7.2 Subfield construction

In this section, we describe the subfield construction9 which allows us
to outperform the AES matrix even more than the optimal matrix found
in Section 7.1. As computed in the previous subsection, the MDS circu-
lant matrix circ(0x1, 0x1, 0x4, 0x9) over GF (24) defined by α4 + α + 1
requires 15 XORs to implement per row. Using the method of [11, Sec-
tion 3.3], we can form a circulant MDS matrix over GF (28) by using
two parallel copies of Q = circ(0x1, 0x1, 0x4, 0x9) over GF (24). The
matrix is formed by writing each byte qj as a concatenation of two
nibbles qj = (qLj ||qRj ). Then the MDS multiplication is computed on

each half (uL1 , u
L
2 , u

L
3 , u

L
4 ) = Q · (qL1 , qL2 , qL3 , qL4 ) and (uR1 , u

R
2 , u

R
3 , u

R
4 ) =

Q · (qR1 , qR2 , qR3 , qR4 ) over GF (24). The result is concatenated to form four
output bytes (u1, u2, u3, u4) where uj = (uLj ||uRj ). This matrix needs just
15 × 2 = 30 XORs to implement per row. In comparison, the lightest
MDS circulant matrix circ(0x01,0x01,0x04,0x8d) over GF (28) defined by
α8 + α4 + α3 + α+ 1 requires more XORs (33 XORs per row).

Further, we can serialize the above multiplication to do the left half
followed by the right half, in which case only 15 XORs are needed to
implement one row of the MDS matrix over GF (28). Another advantage
of subfield construction is exemplified by the SPN-Hash construction [11].
Instead of finding an 8× 8 serial MDS matrix over GF (28) exhaustively,
two parallel copies of the PHOTON 8 × 8 serial MDS matrix over GF (24)
were concatenated to form the 8× 8 serial MDS matrix over GF (28) for
SPN-Hash.

We can generalize this method to form a diffusion matrix with branch
number B over GF (2s) from s/i copies of a diffusion matrix of the same
branch number over a subfield GF (2i), where i divides s.

7.3 Good matrices

We search for optimal low-weight r × r circulant and serial matrices of
different branch numbers (3 to r+1) over the finite fields GF (2), GF (22),

9 This idea of subfield construction was used in the SHA3 submission ECHO [6] and later
in WHIRLWIND [4] and SPN-Hash [11].



GF (24) and GF (28), and list them in Table 3 of Appendix A. Using the
construction of Section 7.2, we can form diffusion matrices to transform
nibbles and bytes from these subfields.

The optimal matrices are found by exhaustively checking the branch
number of all matrices and choosing the one with the least number of
XORs according to the method explained in Section 7.1. To check the
branch number of matrix Q, we concatenate it with the identity matrix
Ir to form (Ir|Q), the generating matrix of the corresponding linear code,
and use the MAGMA software to find the distance10. For branch number
B, we check that both Q and its transpose Qt has branch number B.

The matrices are optimal in the sense that they need minimal number
of XORs to implement. In the events of a tie between two matrices, possi-
bly over different finite field representations, we just list one of them. For
example, the circulant matrices circ(0x01,0x01,0x04,0x8d) over GF (28)
defined by α8+α4+α3+α+1 and circ(0x01,0x01,0x04,0x8e) over GF (28)
defined by α8 + α4 + α3 + α2 + 1 both outperforms the AES matrix by
using 33 XORs to implement one row, so we just list the latter. We use
“-” when no circulant matrix with branch number B exists (verified by
exhaustive search or coding theory bounds). For example, it can be ver-
ified that 8 × 8 circulant MDS matrix does not exist in the finite field
GF (24). However, we could not find the optimal 8 × 8 circulant MDS
matrix over GF (28). Because the search space is too big to exhaust, we
just list the WHIRLPOOL matrix which is MDS and low weight.

We use “*” to denote that we have not found the serial matrix with
branch number B at this point of time due to the huge search space.
For instance, as the search space is too big to exhaust, we could not
find a 8 × 8 serial MDS matrix over GF (28). In this case, we can em-
ploy the method of subfield construction (described in Section 7.2), i.e.
use two parallel copies of the 8 × 8 MDS serial matrix with last row
(0x2,0xd,0x2,0x4,0x3,0xd,0x5,0x2) (refer to second row of 8× 8 subtable
of Table 3) over GF (24) to obtain the desired matrix over GF (28).

7.4 Application: FOAM Comparison for 64-bit SPN
Structures

In this section, we compare the FOAM metric for 64-bit SPN Structures.
Table 4 in Appendix A gives the results for a SPN structure based on

10 We are aware that better techniques than naive exhaustive search might be used
here. However, such improvements are not the goal of this article and we leave them
as potential future work.



4-bit PRESENT S-box with circulant matrices or serial matrices. Due to
space constraints, we will provide the results for a SPN structure based
on 8-bit AES S-box with circulant matrices or serial matrices in the full
version of this paper. The diffusion matrices are based on the optimal
matrices found in Section 7.3. To compute p(264), the number of rounds
to achieve differential/linear probability ≤ 2−64, we use the fact that
the differential/linear probability of the PRESENT S-box is 2−2 and that
of the AES S-box is 2−6. Then we lower bound the number of active S-
boxes by concatenating 4-round bounds with B×B′ active S-boxes from
Theorem 1, 2-round bounds with B active S-boxes and 1-round bound
which involves only 1 active S-box. We also write down t, the time to
compute one round for serialized implementation (the time t for round
based implementation is the constant 1, so it is not presented).

We compute the FOAM for round-based and serialized implementa-
tion based on the formula found in Section 6. We also present the FOAM
for half-half implementation, where we take the average, i.e. equal weight-
ing, of the round-based and serialized FOAM. This corresponds to imple-
mentations which are good for both scenarios. However, this represents
just one example, as the weighting of the scenarios is clearly a designer’s
choice. The structure with the best area and FOAMs are in bold.

We see that for designing 64-bit SPN:

1. For minimal area the geometry is the most important criterion, while
the choice of the field of the MDS matrix is of less importance. The ge-
ometry should be chosen, such that c is maximized, and consequently,
many internal columns can be realized with 1-input flip-flops. A se-
rial matrix is favorable over a circulant matrix and in general smaller
fields allow to save a few GE, but come at a high timing overhead.

2. PRESENT S-box
– When Circulant Matrices are used with PRESENT S-box in Table 4

from Appendix A, the 4×4 almost-MDS circulant matrix circ(0x1,
0x1, 0x1, 0x0) over GF (24) gives the best FOAM for round-based,
serial and half-half implementations.

– When Serial Matrices are used with PRESENT S-box in Table 4
from Appendix A, the 4 × 4 almost-MDS serial matrix with last
row (0x1, 0x0, 0x2, 0x1) over GF (24) defined by α4+α+1 gives the
best FOAM for round-based, serial and half-half implementations.

3. AES S-box
– From our results for AES S-box (provided in the full version of

the paper), when Circulant Matrices are used with AES S-box,
two parallel copies of the 4 × 4 MDS matrix circ(0x1, 0x1, 0x4,



0x9) over GF (24) defined by α4 + α+ 1 gives the best FOAM for
round-based implementation. The 4 × 4 MDS matrix circ(0x01,
0x01, 0x04, 0x8e) over GF (28) defined by α8 + α4 + α3 + α2 + 1
gives the best FOAM for serial and half-half implementations.

– When Serial Matrices are used with AES S-box, two parallel copies
of the 4× 4 MDS serial matrix with last row (0x2, 0x1, 0x1, 0x4)
over GF (24) defined by α4+α+1 gives the best FOAM for round-
based implementation. The 8 × 8 serial matrix (having branch
number 6) with last row (0x01, 0x01, 0x00, 0x00, 0x01, 0x01, 0x02,
0x00) over GF (28) defined by α8 + α4 + α3 + α+ 1 gives the best
FOAM for serial and half-half implementations and is also very
competitive for round-based FOAMs. It is thus a very interesting
choice for many different applications.

4. Structures based on PRESENT S-box have higher FOAM for round-
based and half-half implementations than those based on AES S-box.
On the other hand, structures based on AES S-box have higher FOAM
for serial implementation than PRESENT S-box, because they need sig-
nificantly less rounds.

5. For structures using both types of S-boxes, 4×4 matrices have higher
FOAM than 2× 2 and 8× 8 matrices.

6. Based on the above observations, we do not always go for the matrix
with the best branch number: for PRESENT S-box in Table 4 from
Appendix A, we use almost-MDS 4 × 4 matrix which gives better
trade-offs and a higher FOAM than MDS matrix. Moreover, we found
that when AES S-box is used with 8 × 8 matrices, we go for the one
with branch number 6 instead of the optimal 9.
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A Tables

Table 2: XORs required to implement a multiplication by x over GF (24).
x (hexadecimal representation) 0 1 2 3 4 5 6 7 8 9 a b c d e f

α4 + α + 1 0 0 1 5 2 6 5 9 3 1 8 6 5 3 8 6
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Table 3: Good Circulant Matrices of Size 2 × 2, 4 × 4 and 8 × 8
B denotes the branch number; The “First Row” and the “Last Row” col-
umn (in hexadecimal) represents the first row of the circulant matrix and
the last row of the serial matrix (as described in Section 4) respectively;
A denotes the number of XOR gates needed to implement one row of the
circulant matrix and the last row of the serial matrix respectively.

2 × 2

Finite Field
Circulant matrices Serial matrices

B First Row A Last Row A

GF (28), α8 + α4 + α3 + α2 + 1 3 1,2 11 1,2 11

GF (24), α4 + α + 1 3 1,2 5 1,2 5

GF (22), α2 + α + 1 3 1,2 3 1,2 3
GF (2) 3 - - - -

4 × 4

Finite Field
Circulant matrices Serial matrices

B First Row A Last Row A

5 1,1,4,8e 33 1,2,1,4 33

GF (28), α8 + α4 + α3 + α2 + 1 4 1,1,1,0 16 1,0,2,1 19
3 1,0,0,2 11 1,0,0,1 8
5 1,1,4,9 15 2,1,1,4 15

GF (24), α4 + α + 1 4 1,1,1,0 8 1,0,2,1 9
3 1,0,0,2 5 1,0,0,1 4
5 - - - -

GF (22), α2 + α + 1 4 1,1,1,0 4 1,0,2,1 5
3 1,0,0,2 3 1,0,0,1 2
5 - - - -

GF (2) 4 1,1,1,0 2 - -
3 - - 1,0,0,1 1

8 × 8

Finite Field
Circulant matrices Serial matrices

B First Row A Last Row A

9 1,1,4,1,8,5,2,9 105 * *
8 1,0,1,1,2,2,1,8e 57 1,1,2,0,1,8d,2,1 57
7 1,0,0,1,1,1,2,8e 46 1,1,2,1,0,0,1,8d 46

GF (28), α8 + α4 + α3 + α2 + 1 6 1,0,0,0,1,1,1,2 35 1,1,0,0,1,1,2,0 35
5 1,0,0,0,0,1,1,2 27 1,0,0,1,1,1,0,0 24
4 1,0,0,0,0,0,1,1 16 1,0,0,0,0,1,1,0 16
3 1,0,0,0,0,0,0,2 11 1,0,0,0,0,0,1,0 8
9 - - 2,d,2,4,3,d,5,2 50
8 1,0,1,1,2,9,2,1 27 * *
7 1,0,0,1,1,1,2,9 22 1,0,2,1,1,1,2,0 22

GF (24), α4 + α + 1 6 1,0,0,0,1,1,1,2 17 1,1,0,0,1,1,2,0 17
5 1,0,0,0,0,1,1,2 13 1,0,0,1,1,1,0,0 12
4 1,0,0,0,0,0,1,1 8 1,0,0,0,0,1,1,0 8
3 1,0,0,0,0,0,0,2 5 1,0,0,0,0,0,1,0 4

GF (22), α2 + α + 1

9 - 8 - - - -
7 - - 2,1,0,3,1,2,0,1 13
6 1,0,0,0,1,1,1,2 9 1,0,0,1,1,1,0,2 9
5 1,0,0,0,0,1,1,2 7 1,0,0,1,1,1,0,0 6
4 1,0,0,0,0,0,1,1 4 1,0,0,0,0,1,1,0 4
3 1,0,0,0,0,0,0,2 3 1,0,0,0,0,0,1,0 2

GF (2)

9 - 6 - - - -
5 - - 1,0,0,1,1,1,0,0 3
4 1,0,0,0,0,0,1,1 2 1,0,0,0,0,1,1,0 2
3 - - 1,0,0,0,0,0,1,0 1



Table 4: FOAM for 64-bit SPN based on 4-bit PRESENT S-box and Circu-
lant Matrices or Serial Matrices

Circulant Matrices

Finite
r c B p(264) t

Area (GE) Area (GE) FOAM ×10−9 FOAM ×10−9 FOAM ×10−9

Field rd based serial rd based serial half-half

GF (24) 2 8 3 16 55 1156 541 46.76 3.88 25.32

GF (22) 2 8 3 16 87 1199 540 43.48 2.46 22.97

4 4 5 8 1579 652 50.16 5.77 27.96
GF (24) 4 4 4 8 51 1280 633 76.34 6.12 41.23

4 4 3 16 1156 630 46.76 3.09 24.92

GF (22)
4 4 4 8

83
1280 627 76.34 3.83 40.08

4 4 3 16 1199 629 43.48 1.90 22.69

GF (2) 4 4 4 8 147 1280 624 76.34 2.18 39.26

GF (24)

8 2 8 8

49

2091 873 28.58 3.35 15.96
8 2 7 10 1882 864 28.22 2.73 15.48
8 2 6 12 1669 851 29.92 2.35 16.14
8 2 5 14 1498 840 31.83 2.07 16.95
8 2 4 16 1284 827 37.89 1.87 19.88
8 2 3 22 1161 823 33.73 1.37 17.55

GF (22)

8 2 6 12

81

1712 834 28.45 1.48 14.96
8 2 5 14 1541 829 30.09 1.28 15.69
8 2 4 16 1284 821 37.89 1.15 19.52
8 2 3 22 1204 823 31.38 0.83 16.10

GF (2) 8 2 4 16 145 1284 818 37.89 0.64 19.27

Serial Matrices

Finite
r c B p(264) t

Area (GE) Area (GE) FOAM ×10−9 FOAM ×10−9 FOAM ×10−9

Field rd based serial rd based serial half-half

GF (24) 2 8 3 16 39 1156 513 46.76 6.09 26.42

GF (22) 2 8 3 16 63 1199 508 43.48 3.85 23.67

4 4 5 8 1579 586 50.16 10.39 30.27
GF (24) 4 4 4 8 35 1322 570 71.48 10.99 41.23

4 4 3 16 1113 561 50.41 5.66 28.04

GF (22)
4 4 4 8

55
1365 559 67.08 7.26 37.17

4 4 3 16 1113 556 50.41 3.67 27.04

GF (2) 4 4 3 16 87 1113 553 50.41 2.35 26.38

GF (24)

8 2 9 6

33

3074 794 17.64 8.01 12.82
8 2 7 10 1882 724 28.22 5.78 17.00
8 2 6 12 1669 711 29.92 5.00 17.46
8 2 5 14 1455 697 33.73 4.45 19.09
8 2 4 16 1284 687 37.89 4.02 20.95
8 2 3 22 1118 681 36.36 2.97 19.67

8 2 7 10 2053 700 23.72 4.00 13.86
8 2 6 12 1712 689 28.45 3.44 15.94

GF (22) 8 2 5 14 51 1455 681 33.73 3.02 18.37
8 2 4 16 1284 676 37.89 2.68 20.29
8 2 3 22 1118 675 36.36 1.95 19.16

8 2 5 14 1455 673 33.73 1.90 17.81
GF (2) 8 2 4 16 83 1284 671 37.89 1.67 19.78

8 2 3 22 1118 673 36.36 1.21 18.78
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