
Differential Computation Analysis:
Hiding your White-Box Designs is Not Enough

Joppe W. Bos1, Charles Hubain2?, Wil Michiels1,3, and Philippe Teuwen2?

1 NXP Semiconductors
2 Quarkslab

3 Technische Universiteit Eindhoven
{joppe.bos,wil.michiels}@nxp.com
{chubain,pteuwen}@quarkslab.com

Abstract. Although all current scientific white-box approaches of stan-
dardized cryptographic primitives are broken, there is still a large number
of companies which sell “secure” white-box products. In this paper, we
present a new approach to assess the security of white-box implemen-
tations which requires neither knowledge about the look-up tables used
nor any reverse engineering effort. This differential computation analy-
sis (DCA) attack is the software counterpart of the differential power
analysis attack as applied by the cryptographic hardware community.

We developed plugins to widely available dynamic binary instrumen-
tation frameworks to produce software execution traces which contain
information about the memory addresses being accessed. To illustrate
its effectiveness, we show how DCA can extract the secret key from
numerous publicly (non-commercial) available white-box programs im-
plementing standardized cryptography by analyzing these traces to iden-
tify secret-key dependent correlations. This approach allows one to ex-
tract the secret key material from white-box implementations signifi-
cantly faster and without specific knowledge of the white-box design in
an automated manner.

1 Introduction

The widespread use of mobile “smart” devices enables users to access a large va-
riety of ubiquitous services. This makes such platforms a valuable target (cf. [48]
for a survey on security for mobile devices). There are a number of techniques
to protect the cryptographic keys residing on these mobile platforms. The solu-
tions range from unprotected software implementations on the lower range of the
security spectrum, to tamper-resistant hardware implementations on the other
end. A popular approach which attempts to hide a cryptographic key inside a
software program is known as a white-box implementation.

? This work was performed while the second and fourth author were an intern and
employee in the Innovation Center Crypto & Security at NXP Semiconductors, re-
spectively.

Traditionally, people used to work with a security model where implementa-
tions of cryptographic primitives are modeled as “black boxes”. In this black box
model the internal design is trusted and only the in- and output are considered
in a security evaluation. As pointed out by Kocher, Jaffe, and Jun [32] in the late
1990s, this assumption turned out to be false in many scenarios. This black-box
may leak some meta-information: e.g., in terms of timing or power consumption.
This side-channel analysis gave rise to the gray-box attack model. Since the us-
age of (and access to) cryptographic keys changed, so did this security model. In
two seminal papers from 2002, Chow, Eisen, Johnson and van Oorschot intro-
duce the white-box model and show implementation techniques which attempt
to realize a white-box implementation of symmetric ciphers [17,16].

The idea behind the white-box attack model is that the adversary can be the
owner of the device running the software implementation. Hence, it is assumed
that the adversary has full control over the execution environment. This enables
the adversary to, among other things, perform static analysis on the software, in-
spect and alter the memory used, and even alter intermediate results (similar to
hardware fault injections). This white-box attack model, where the adversary is
assumed to have such advanced abilities, is realistic on many mobile platforms
which store private cryptographic keys of third-parties. White-box implemen-
tations can be used to protect which applications can be installed on a mobile
device (from an application store). Other use-cases include the protection of dig-
ital assets (including media, software and devices) in the setting of digital rights
management, the protection of Host Card Emulation (HCE) and the protection
of credentials for authentication to the cloud. If one has access to a “perfect”
white-box implementation of a cryptographic algorithm, then this implies one
should not be able to deduce any information about the secret key material used
by inspecting the internals of this implementation. This is equivalent to a setting
where one has only black-box access to the implementation. As observed by [19]
this means that such a white-box implementation should resist all existing and
future side-channel attacks.

As stated in [16], “when the attacker has internal information about a cryp-
tographic implementation, choice of implementation is the sole remaining line of
defense.” This is exactly what is being pursued in a white-box implementation:
the idea is to embed the secret key in the implementation of the cryptographic
operations such that it becomes difficult for an attacker to extract information
about this secret key even when the source code of the implementation is pro-
vided. Note that this approach is different from anti-reverse-engineering mecha-
nisms such as code obfuscation [5,36] and control-flow obfuscation [25] although
these are typically applied to white-box implementations as an additional line
of defense. Although it is conjectured that no long-term defense against attacks
on white-box implementations exist [16], there are still a significant number of
companies selling secure white-box solutions. It should be noted that there are
almost no known published results on how to turn any of the standardized public-
key algorithms into a white-box implementation, besides a patent by Zhou and
Chow proposed in 2002 [61]. The other published white-box techniques exclu-

sively focus on symmetric cryptography. However, all such published approaches
have been theoretically broken (see Section 2 for an overview). A disadvantage
of these published attacks is that it requires detailed information on how the
white-box implementation is constructed. For instance, knowledge about the ex-
act location of the S-boxes or the round transitions might be required together
with the format of the applied encodings to the look-up tables (see Section 2
on how white-box implementations are generally designed). Vendors of white-
box implementations try to avoid such attacks by ignoring Kerckhoffs’s principle
and keeping the details of their design secret (and change the design once it is
broken).

Our Contribution. All current cryptanalytic approaches require detailed knowl-
edge about the white-box design used: e.g. the location and order of the S-boxes
applied and how and where the encodings are used. This preprocessing effort
required for performing an attack is an important aspect of the value attributed
to commercial white-box solutions. Vendors are aware that their solutions do
not offer a long term defense, but compensate for this by, for instance, regular
software updates. Our contribution is an attack that works in an automated way,
and it is therefore a major threat for the claimed security level of the offered
solutions compared to the ones that are already known.

In this paper we use dynamic binary analysis (DBA), a technique often used
to improve and inspect the quality of software implementations, to access and
control the intermediate state of the white-box implementation. One approach
to implement DBA is called dynamic binary instrumentation (DBI). The idea is
that additional analysis code is added to the original code of the client program
at run-time in order to aid memory debugging, memory leak detection, and
profiling. The most advanced DBI tools, such as Valgrind [46] and Pin [37],
allow one to monitor, modify and insert instructions in a binary executable.
These tools have already demonstrated their potential for behavioral analysis of
obfuscated code [52].

We have developed plugins for both Valgrind and Pin to obtain software
traces4: a trace which records the read and write accesses made to memory. These
software traces are used to deduce information about the secret embedded in a
white-box implementation by correlating key guesses to intermediate results. For
this we introduce differential computation analysis (DCA), which can be seen as
the software counterpart of the differential power analysis (DPA) [32] techniques
as applied by the cryptographic hardware community. There are, however, some
important differences between the usage of the software and hardware traces as
we outline in Section 4.

We demonstrate that DCA can be used to efficiently extract the secret key
from white-box implementations which apply at most a single remotely handled
external encoding. We apply DCA to the publicly available white-box challenges
of standardized cryptographic algorithms we could find; concretely this means

4 The entire software toolchain ranging from the plugins, to the GUI, to the individual
scrips to target the white-box challenges as described in this paper is released as
open-source software: see https://github.com/SideChannelMarvels.

https://github.com/SideChannelMarvels

extracting the secret key from four white-box implementations of the symmetric
cryptographic algorithms AES and DES. In contrast to the current cryptanalytic
methods to attack white-box implementations, this technique does not require
any knowledge about the implementation strategy used, can be mounted without
much technical cryptographic knowledge in an automated way, and extract the
key significantly faster. Besides this cryptanalytic framework we discuss tech-
niques which could be used as countermeasures against DCA (see Section 6).

The main reason why DCA works is related to the choice of (non-) linear
encodings which are used inside the white-box implementation (cf. Section 2).
These encodings do not sufficiently hide correlations when the correct key is used
and enables one to run side-channel attacks (just as in gray-box attack model).
Sasdrich, Moradi, and Güneysu looked into this in detail [50] and used the Walsh
transform (a measure to investigate if a function is a balanced correlation im-
mune function of a certain order) of both the linear and non-linear encodings
applied in their white-box implementation of AES. Their results show extreme
unbalance where the correct key is used and this explain why first-order attacks
like DPA are successful in this scenario.

Independently, and after this paper appeared online, Sanfelix, de Haas and
Mune also presented attacks on white-box implementations [49]. On the one hand
they confirmed our findings and on the other hand they considered software fault
attacks which is of independent interest.

2 Overview of White-Box Cryptography Techniques

The white-box attack model allows the adversary to take full control over the
cryptographic implementation and the execution environment. It is not surpris-
ing that, given such powerful capabilities of the adversary, the authors of the
original white-box paper [16] conjectured that no long-term defense against at-
tacks on white-box implementations exists. This conjecture should be understood
in the context of code-obfuscation, since hiding the cryptographic key inside an
implementation is a form of code-obfuscation. It is known that obfuscation of
any program is impossible [3], however, it is unknown if this result applies to
a specific subset of white-box functionalities. Moreover, this should be under-
stood in the light of recent developments where techniques using multilinear
maps are used for obfuscation that may provide meaningful security guarantees
(cf. [22,10,2]). In order to guard oneself in this security model in the medium- to
long-run one has to use the advantages of a software-only solution. The idea is to
use the concept of software aging [27]: this forces, at a regular interval, updates
to the white-box implementation. It is hoped that when this interval is small
enough, this gives insufficient computational time to the adversary to extract
the secret key from the white-box implementation. This approach makes only
sense if the sensitive data is only of short-term interest, e.g. the DRM-protected
broadcast of a football match. However, the practical challenges of enforcing
these updates on devices with irregular internet access should be noted.

External encodings. Besides its primary goal to hide the key, white-box imple-
mentations can also be used to provide additional functionality, such as putting
a fingerprint on a cryptographic key to enable traitor tracing or hardening soft-
ware against tampering [42]. There are, however, other security concerns besides
the extraction of the cryptographic secret key from the white-box implementa-
tion. If one is able to extract (or copy) the entire white-box implementation to
another device then one has copied the functionality of this white-box implemen-
tation as well, since the secret key is embedded in this program. Such an attack
is known as code lifting. A possible solution to this problem is to use external
encodings [16]. When one assumes that the cryptographic functionality Ek is
part of a larger ecosystem then one could implement E′k = G◦Ek ◦F−1 instead.
The input (F) and output (G) encoding are randomly chosen bijections such
that the extraction of E′k does not allow the adversary to compute Ek directly.
The ecosystem which makes use of E′k must ensure that the input and output
encodings are canceled. In practice, depending on the application, input or out-
put encodings need to be performed locally by the program calling E′k. E.g. in
DRM applications, the server may take care of the input encoding remotely but
the client needs to revert the output encoding to finalize the content decryption.

In this paper, we can mount successful attacks on implementations which
apply at most a single remotely handled external encoding. When both the input
is received with an external encoding applied to it remotely and the output is
computed with another encoding applied to it (which is removed remotely) then
the implementation is not a white-box implementation of a standard algorithm
(like AES or DES) but of a modified algorithm (like G◦AES◦F−1 or G◦DES◦
F−1).

General idea. The general approach to implement a white-box program is
presented in [16]. The idea is to use look-up tables rather than individual com-
putational steps to implement an algorithm and to encode these look-up tables
with random bijections. The usage of a fixed secret key is embedded in these
tables. Due to this extensive usage of look-up tables, white-box implementations
are typically orders of magnitude larger and slower than a regular (non-white-
box) implementation of the same algorithm. It is common to write a program
that automatically generates a random white-box implementation given the algo-
rithm and the fixed secret key as input. The randomness resides in the randomly
chosen bijections to hide the secret key usage in the various look-up tables.

2.1 White-Box Results

White-Box Data Encryption Standard (WB-DES). The first publication
attempting to construct a WB-DES implementation dates back from 2002 [17]
in which an approach to create white-box implementations of Feistel ciphers
is discussed. A first attack on this scheme, which enables one to unravel the
obfuscation mechanism, took place in the same year and used fault injections [26]
to extract the secret key by observing how the program fails under certain errors.
In 2005, an improved WB-DES design, resisting this fault attack, was presented

in [35]. However, in 2007, two differential cryptanalytic attacks [6] were presented
which can extract the secret key from this type of white-box [23,59]. This latter
approach has a time complexity of only 214.

White-Box Advanced Encryption Standard (WB-AES). The first ap-
proach to realize a WB-AES implementation was proposed in 2002 [16]. In 2004,
the authors of [8] present how information about the encodings embedded in the
look-up tables can be revealed when analyzing the lookup tables composition.
This approach is known as the BGE attack and enables one to extract the key
from this WB-AES with a 230 time complexity. A subsequent WB-AES design
introduced perturbations in the cipher in an attempt to thwart the previous
attack [12]. This approach was broken [45] using algebraic analysis with a 217

time complexity in 2010. Another WB-AES approach which resisted the previ-
ous attacks was presented in [60] in 2009 and got broken in 2012 with a work
factor of 232 [44].

Another interesting approach is based on using the different algebraic struc-
ture for the same instance of an iterative block cipher (as proposed originally
in [7]). This approach [28] uses dual ciphers to modify the state and key repre-
sentations in each round as well as two of the four classical AES operations. This
approach was shown to be equivalent to the first WB-AES implementation [16]
in [33] in 2013. Moreover, the authors of [33] built upon a 2012 result [57] which
improves the most time-consuming phase of the BGE attack. This reduces the
cost of the BGE attack to a time complexity of 222. An independent attack, of
the same time complexity, is presented in [33] as well.

2.2 Prerequisites of Existing Attacks

In order to put our results in perspective, it is good to keep in mind the exact re-
quirements needed to apply the white-box attacks from the scientific literature.
These approaches require at least a basic knowledge of the scheme which is white-
boxed. More precisely, the adversary needs to (1) know the type of encodings
that are applied on the intermediate results, and (2) know which cipher opera-
tions are implemented by which (network of) lookup tables. The problem with
these requirements is that vendors of white-box implementations are typically
reluctant in sharing any information on their white-box scheme (the so-called
“security through obscurity”). If that information is not directly accessible but
only a binary executable or library is at disposal, one has to invest a significant
amount of time in reverse-engineering the binary manually. Removing several
layers of obfuscation before retrieving the required level of knowledge about
the implementations needed to mount this type of attack successfully can be
cumbersome. This additional effort, which requires a high level of expertise and
experience, is illustrated by the sophisticated methods used as described in the
write-ups of the publicly available challenges as detailed in Section 5. The dif-
ferential computational analysis approach we outline in Section 4 does not need
to remove the obfuscation layers nor requires reverse engineering of the binary
executable.

3 Differential Power Analysis

Since the late 1990s it is publicly known that the (statistical) analysis of a power
trace obtained when executing a cryptographic primitive might correlate to, and
hence reveal information about, the secret key material used [32]. Typically, one
assumes access to the hardware implementation of a known cryptographic al-
gorithm. With I(pi, k) we denote a target intermediate state of the algorithm
with input pi and where only a small portion of the secret key is used in the
computation, denoted by k. One assumes that the power consumption of the
device at state I(pi, k) is the sum of a data dependent component and some
random noise, i.e. L(I(pi, k)) + δ, where the function L(s) returns the power
consumption of the device during state s, and δ denotes some leakage noise.
It is common to assume (see e.g., [39]) that the noise is random, independent
from the intermediate state and is normally distributed with zero mean. Since
the adversary has access to the implementation he can obtain triples (ti, pi, ci).
Here pi is one plaintext input chosen arbitrarily by the adversary, the ci is the
ciphertext output computed by the implementation using a fixed unknown key,
and the value ti shows the power consumption over the time of the implemen-
tation to compute the output ciphertext ci. The measured power consumption
L(I(pi, k)) + δ is just a small fraction of this entire power trace ti.

The goal of an attacker is to recover the part of the key k by comparing
the real power measurements ti of the device with an estimation of the power
consumption under all possible hypotheses for k. The idea behind a Differential
Power Analysis (DPA) attack [32] (see [31] for an introduction to this topic) is
to divide the measurement traces in two distinct sets according to some prop-
erty. For example, this property could be the value of one of the bits of the
intermediate state I(pi, k). One assumes — and this is confirmed in practice by
measurements on unprotected hardware — that the distribution of the power
consumptions for these two sets is different (i.e., they have different means and
standard deviations). In order to obtain information about part of the secret
key k, for each trace ti and input pi, one enumerates all possible values for k
(typically 28 = 256 when attacking a key-byte), computes the intermediate value
gi = I(pi, k) for this key guess and divides the traces ti into two sets according
to this property measured at gi. If the key guess k was correct then the difference
of the subsets’ averages will converge to the difference of the means of the distri-
butions. However, if the key guess is wrong then the data in the sets can be seen
as a random sampling of measurements and the difference of the means should
converge to zero. This allows one to observe correct key guesses if enough traces
are available. The number of traces required depends, among other things, on
the measurement noise and means of the distributions (and hence is platform
specific).

While having access to output ciphertexts is helpful to validate the recovered
key, it is not strictly required. Inversely, one can attack an implementation where
only the output ciphertexts are accessible, by targeting intermediate values in
the last round. The same attacks apply obviously to the decryption operation.

The same technique can be applied on other traces which contain other types
of side-channel information such as, for instance, the electromagnetic radiations
of the device. Although we focus on DPA in this paper, it should be noted
that there exist more advanced and powerful attacks. This includes, among oth-
ers, higher order attacks [41], correlation power analyses [11] and template at-
tacks [15].

4 Software Execution Traces

To assess the security of a binary executable implementing a cryptographic prim-
itive, which is designed to be secure in the white-box attack model, one can
execute the binary on a CPU of the corresponding architecture and observe its
power consumption to mount a differential power analysis attack (see Section 3).
However, in the white-box model, one can do much better as the model implies
that we can observe everything without any measurement noise. In practice such
level of observation can be achieved by instrumenting the binary or instrument-
ing an emulator being in charge of the execution of the binary. We chose the
first approach by using some of the available Dynamic Binary Instrumentation
(DBI) frameworks. In short, DBI usually considers the binary executable to
analyze as the bytecode of a virtual machine using a technique known as just-
in-time compilation. This recompilation of the machine code allows performing
transformations on the code while preserving the original computational effects.
DBI frameworks, like Pin [37] and Valgrind [46], perform another kind of trans-
formation: they allow to add custom callbacks in between the machine code
instructions by writing plugins or tools which hook into the recompilation pro-
cess. These callbacks can be used to monitor the execution of the program and
track specific events. The main difference between Pin and Valgrind is that Val-
grind uses an architecture independent Intermediate Representation (IR) called
VEX which allows to write tools compatible with any architecture supported
by the IR. We developed (and released) such plugins for both frameworks to
trace execution of binary executables on x86, x86-64, ARM and ARM64 plat-
forms and record the desired information: namely, the memory addresses being
accessed (for read, write or execution) and their content. It is also possible to
record the content of CPU registers but this would slow down acquisition and in-
crease the size of traces significantly; we succeeded to extract the secret key from
the white-box implementations without this additional information. This is not
surprising as table-based white-box implementations are mostly made of mem-
ory look-ups and make almost no use of arithmetic instructions (see Section 2
for the design rationale behind many white-box implementations). In some more
complex configurations e.g. where the actual white-box is buried into a larger
executable it might be desired to change the initial behavior of the executable
to call directly the block cipher function or to inject a chosen plaintext in an
internal application programming interface (API). This is trivial to achieve with
DBI, but for the implementations presented in Section 5, we simply did not need
to resort to such methods.

The following steps outline the process how to obtain software traces and
mount a DPA attack on these software traces.

First step. Trace a single execution of the white-box binary with an arbitrary
plaintext and record all accessed addresses and data over time. Although the
tracer is able to follow execution everywhere, including external and system
libraries, we reduce the scope to the main executable or to a companion library
if the cryptographic operations happen to be handled there. A common computer
security technique often deployed by default on modern operating systems is the
Address Space Layout Randomization (ASLR) which randomly arranges the
address space positions of the executable, its data, its heap, its stack and other
elements such as libraries. In order to make acquisitions completely reproducible
we simply disable the ASLR, as the white-box model puts us in control over the
execution environment. In case ASLR cannot be disabled, it would just be a
mere annoyance to realign the obtained traces.

Second step. Next, we visualize the trace to understand where the block cipher
is being used and, by counting the number of repetitive patterns, determine
which (standardized) cryptographic primitive is implemented: e.g., a 10-round
AES-128, a 14-round AES-256, or a 16-round DES. To visualize a trace, we
decided to represent it graphically similarly to the approach presented in [43].
Fig. 1 illustrates this approach: the virtual address space is represented on the
x-axis, where typically, on many modern platforms, one encounters the text
segment (containing the instructions), the data segment, the uninitialized data
(BSS) segment, the heap, and finally the stack, respectively. The virtual address
space is extremely sparse so we display only bands of memory where there is
something to show. The y-axis is a temporal axis going from top to bottom. Black
represents addresses of instructions being executed, green represents addresses of
memory locations being read and red when being written. In Fig. 1 one deduces
that the code (in black) has been unrolled in one huge basic block, a lot of
memory is accessed in reads from different tables (in green) and the stack is
comparatively so small that the read and write accesses (in green and red) are
barely noticeable on the far right without zooming in.

Third step. Once we have determined which algorithm we target we keep the
ASLR disabled and record multiple traces with random plaintexts, optionally
using some criteria e.g. in which instructions address range to record activity.
This is especially useful for large binaries doing other types of operations we
are not interested in (e.g., when the white-box implementation is embedded in a
larger framework). If the white-box operations themselves take a lot of time then
we can limit the scope of the acquisition to recording the activity around just the
first or last round, depending if we mount an attack from the input or output of
the cipher. Focusing on the first or last round is typical in DPA-like attacks since
it limits the portion of key being attacked to one single byte at once, as explained
in Section 3. In the example given in Fig. 1, the read accesses pattern make it
trivial to identify the DES rounds and looking at the corresponding instructions
(in black) helps defining a suitable instructions address range. While recording
all memory-related information in the initial trace (first step), we only record a

Fig. 1. Visualization of a software execution trace of a white-box DES implementation.

single type of information (optionally for a limited address range) in this step.
Typical examples include recordings of bytes being read from memory, or bytes
written to the stack, or the least significant byte of memory addresses being
accessed.

This generic approach gives us the best trade-off to mount the attack as fast
as possible and minimize the storage of the software traces. If storage is not a
concern, one can directly jump to the third step and record traces of the full
execution, which is perfectly acceptable for executables without much overhead,
as it will become apparent in several examples in Section 5. This naive approach
can even lead to the creation of a fully automated acquisition and key recovery
setup.

Fourth step. In step 3 we have obtained a set of software traces consisting of
lists of (partial) addresses or actual data which have been recorded whenever an
instruction was accessing them. To move to a representation suitable for usual
DPA tools expecting power traces, we serialize those values (usually bytes) into
vectors of ones and zeros. This step is essential to exploit all the information we
have recorded. To understand it, we compare to a classical hardware DPA setup
targeting the same type of information: memory transfers.

When using DPA, a typical hardware target is a CPU with one 8-bit bus to
the memory and all eight lines of that bus will be switching between low and
high voltage to transmit data. If a leakage can be observed in the variations of
the power consumption, it will be an analog value proportional to the sum of
bits equal to one in the byte being transferred on that memory bus. Therefore,
in such scenarios, the most elementary leakage model is the Hamming weight of
the bytes being transferred between CPU and memory. However, in our software
setup, we know the exact 8-bit value and to exploit it at best, we want to attack
each bit individually, and not their sum (as in the Hamming weight model).
Therefore, the serialization step we perform (converting the observed values into

(a)

(b)

Fig. 2. Figure (a) is a typical example of a (hardware) power trace of an unprotected
AES-128 implementation (one can observe the ten rounds).
Figure (b) is a typical example of a portion of a serialized software trace of stack writes
in an AES-128 white-box, with only two possible values: zero or one.

vectors of ones and zeros) is as if in the hardware model each corresponding bus
line was leaking individually one after the other.

When performing a DPA attack, a power trace typically consists of sampled
analog measures. In our software setting we are working with perfect leakages
(i.e., no measurement noise) of the individual bits that can take only two possible
values: 0 or 1. Hence, our software tracing can be seen from a hardware perspec-
tive as if we were probing each individual line with a needle, something requiring
heavy sample preparation such as chip decapping and Focused Ion Beam (FIB)
milling and patching operations to dig through the metal layers in order to reach
the bus lines without affecting the chip functionality. Something which is much
more powerful and invasive than external side-channel acquisition.

When using software traces there is another important difference with tradi-
tional power traces along the time axis. In a physical side-channel trace, analog
values are sampled at a fixed rate, often unrelated to the internal clock of the
device under attack, and the time axis represents time linearly. With software
execution traces we record information only when it is relevant, e.g. every time
a byte is written on the stack if that is the property we are recording, and more-
over bits are serialized as if they were written sequentially. One may observe
that given this serialization and sampling on demand, our time axis does not
represent an actual time scale. However, a DPA attack does not require a proper
time axis. It only requires that when two traces are compared, corresponding
events that occurred at the same point in the program execution are compared
against each other. Figures 2a and 2b illustrate those differences between traces
obtained for usage with DPA and DCA, respectively.

Fifth step. Once the software execution traces have been acquired and shaped,
we can use regular DPA tools to extract the key. We show in the next section
what the outcome of DPA tools look like, besides the recovery of the key.

Optional step. If required, one can identify the exact points in the execution
where useful information leaks. With the help of known-key correlation analysis
one can locate the exact “faulty” instruction and the corresponding source code
line, if available. This can be useful as support for the white-box designer.

To conclude this section, here is a summary of the prerequisites of our dif-
ferential computation analysis, in opposition to the previous white-box attacks’
prerequisites which were detailed in Section 2.2: (1) be able to run several times
(a few dozens to a few thousands) the binary in a controlled environment, and
(2) having knowledge of the plaintexts (before their encoding, if any), or of the
ciphertexts (after their decoding, if any).

5 Analyzing Publicly Available White-Box
Implementations

5.1 The Wyseur Challenge

As far as we are aware, the first public white-box challenge was created by Brecht
Wyseur in 2007. On his website5 one can find a binary executable containing
a white-box DES encryption operation with a fixed embedded secret key. Ac-
cording to the author, this WB-DES approach implements the ideas from [17,35]
(see Section 2.1) plus “some personal improvements”. The interaction with the
program is straight-forward: it takes a plaintext as input and returns a cipher-
text as output to the console. The challenge was solved after five years (in 2012)
independently by James Muir and “SysK”. The latter provided a detailed de-
scription [54] and used differential cryptanalysis (similar to [23,59]) to extract
the embedded secret key.

Figure 3a shows a full software trace of an execution of this WB-DES chal-
lenge. On the left one can see the loading of the instructions (in black), since
the instructions are loaded repeatedly from the same addresses this implies that
loops are used which execute the same sequence of instructions over and over
again. Different data is accessed fairly linearly but with some local disturbances
as indicated by the large diagonal read access pattern (in green). Even to the
trained eye, the trace displayed in Figure 3a does not immediately look familiar
to DES. However, if one takes a closer look to the address space which rep-
resents the stack (on the far right) then the 16 rounds of DES can be clearly
distinguished. This zoomed view is outlined in Figure 3b where the y-axis is un-
altered (from Figure 3a) but the address-range (the x-axis) is rescaled to show
only the read and write accesses to the stack.

Due to the loops in the program flow, we cannot just limit the tracer to a
specific memory range of instructions and target a specific round. As a trace

5 See http://whiteboxcrypto.com/challenges.php.

http://whiteboxcrypto.com/challenges.php

(a) (b)

Fig. 3. (a) Visualization of a software execution trace of the binary Wyseur white-box
challenge showing the entire accessed address range. (b) A zoom on the stack address
space from the software trace shown in (a). The 16 rounds of the DES algorithm are
clearly visible.

over the full execution takes a fraction of a second, we traced the entire program
without applying any filter. The traces are easily exploited with DCA: e.g., if
we trace the bytes written to the stack over the full execution and we compute
a DPA over this entire trace without trying to limit the scope to the first round,
the key is completely recovered with as few as 65 traces when using the output
of the first round as intermediate value.

The execution of the entire attack, from the download of the binary challenge
to full key recovery, including obtaining and analyzing the traces, took less than
an hour as its simple textual interface makes it very easy to hook it to an attack
framework. Extracting keys from different white-box implementations based on
this design now only takes a matter of seconds when automating the entire
process as outlined in Section 4.

5.2 The Hack.lu 2009 Challenge

As part of the Hack.lu 2009 conference, which aims to bridge ethics and secu-
rity in computer science, Jean-Baptiste Bédrune released a challenge [4] which
consisted of a crackme.exe file: an executable for the Microsoft Windows plat-
form. When launched, it opens a GUI prompting for an input, redirects it to
a white-box and compares the output with an internal reference. It was solved
independently by Eloi Vanderbéken [58], who reverted the functionality of the
white-box implementation from encryption to decryption, and by “SysK” [54]
who managed to extract the secret key from the implementation.

Our plugins for the DBI tools have not been ported to the Windows operating
system and currently only run on GNU/Linux and Android. In order to use our
tools directly we decided to trace the binary with our Valgrind variant and
Wine [1], an open source compatibility layer to run Windows applications under
GNU/Linux. Due to the configuration of this challenge we had full control on
the input to the white-box.

Visualizing the traces using our software framework clearly shows ten repeti-
tive patterns on the left interleaved with nine others on the right. This indicates
(with high probability) an AES encryption or decryption with a 128-bit key.
The last round being shorter as it omits the MixColumns operation as per the
AES specification. We captured a few dozen traces of the entire execution, with-
out trying to limit ourselves to the first round. Due to the overhead caused by
running the GUI inside Wine the acquisition ran slower than usual: obtaining a
single trace took three seconds. Again, we applied our DCA technique on traces
which recorded bytes written to the stack. The secret key could be completely
recovered with only 16 traces when using the output of the first round SubBytes
as intermediate value of an AES-128 encryption. As “SysK” pointed out in [54],
this challenge was designed to be solvable in a couple of days and consequently
did not implement any internal encoding, which means that the intermediate
states can be observed directly. Therefore in our DCA the correlation between
the internal states and the traced values get the highest possible value, which
explains the low number of traces required to mount a successful attack.

5.3 The SSTIC 2012 Challenge

Every year for the SSTIC, Symposium sur la sécurité des technologies de l’information
et des communications (Information technology and communication security
symposium), a challenge is published which consists of solving several steps like
a Matryoshka doll. In 2012, one step of the challenge [40] was to validate a key
with a Python bytecode “check.pyc”: i.e. a marshalled object6. Internally this
bytecode generates a random plaintext, forwards this to a white-box (created
by Axel Tillequin) and to a regular DES encryption using the key provided by
the user and then compares both ciphertexts. Five participants managed to find
the correct secret key corresponding to this challenge and their write-ups are
available at [40]. A number of solutions identified the implementation as a WB-
DES without encodings (naked variant) as described in [17]. Some extracted the
key following the approach from the literature while some performed their own
algebraic attack.

Tracing the entire Python interpreter with our tool, based on either PIN or
Valgrind, to obtain a software trace of the Python binary results in a significant
overhead. Instead, we instrumented the Python environment directly. Actually,
Python bytecode can be decompiled with little effort as shown by the write-
up of Jean Sigwald. This contains a decompiled version of the “check.pyc” file
where the white-box part is still left serialized as a pickled object7. The white-
box makes use of a separate Bits class to handle its variables so we added some
hooks to record all new instances of that particular class. This was sufficient.
Again, as for the Hack.lu 2009 WB-AES challenge (see Section 5.2), 16 traces
were enough to recover the key of this WB-DES when using the output of the
first round as intermediate value. This approach works with such a low number
of traces since the intermediate states are not encoded.
6 https://docs.python.org/2/library/marshal.html
7 https://docs.python.org/2/library/pickle.html

https://docs.python.org/2/library/marshal.html
https://docs.python.org/2/library/pickle.html

Fig. 4. Visualization of the stack reads and writes in the software execution trace
portion limited to the core of the Karroumi WB-AES.

5.4 A White-Box Implementation of the Karroumi Approach

A white-box implementation of both the original AES approach [16] and the
approach based on dual ciphers by Karroumi [28] is part of the Master thesis by
Dušan Klinec [30]8. As explained in Section 2.1, this is the latest academic variant
of [16]. Since there is no challenge available, we used Klinec’s implementation
to create two challenges: one with and one without external encodings. This
implementation is written in C++ with extensive use of the Boost9 libraries
to dynamically load and deserialize the white-box tables from a file. An initial
software trace when running this white-box AES binary executable shows that
the white-box code itself constitutes only a fraction of the total instructions
(most of the instructions are from initializing the Boost libraries). From the
stack trace (see Figure 4) one can recognize the nine MixColumns operating on
the four columns. Therefore we used instruction address filtering to focus on the
white-box core and skip all the Boost C++ operations.

The best results were obtained when tracing the lowest byte of the memory
addresses used in read accesses (excluding stack). Initially we followed the same
approach as before: we targeted the output of the SubBytes in the first round.
But, in contrast to the other challenges considered in this work, it was not
enough to immediately recover the entire key. For some of the tracked bits of
the intermediate value we observed a significant correlation peak: this is an
indication that the first key candidate is very probably the correct one. Table 1

8 The code be found at https://github.com/ph4r05/Whitebox-crypto-AES.
9 http://www.boost.org/

https://github.com/ph4r05/Whitebox-crypto-AES
http://www.boost.org/

Table 1. DCA ranking for a Karroumi white-box implementation when targeting the
output of the SubBytes step in the first round based on the least significant address
byte on memory reads.

key byte

ta
rg

e
t
b
it

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 256 255 256 255 256 253 1 256 256 239 256 1 1 1 255
1 1 256 256 256 1 255 256 1 1 5 1 256 1 1 1 1
2 256 1 255 256 1 256 226 256 256 256 1 256 22 1 256 256
3 256 255 251 1 1 1 254 1 1 256 256 253 254 256 255 256
4 256 256 74 256 256 256 255 256 254 256 256 256 1 1 256 1
5 1 1 1 1 1 1 50 256 253 1 251 256 253 1 256 256
6 254 1 1 256 254 256 248 256 252 256 1 14 255 256 250 1
7 1 256 1 1 252 256 253 256 256 255 256 1 251 1 254 1

All 3 3 3 3 3 3 7 3 3 3 3 3 3 3 3 3

shows the ranking of the right key byte value amongst the guesses after 2000
traces, when sorted according to the difference of means (see Section 3). If the
key byte is ranked at position 1 this means it was properly recovered by the
attack. In total, for the first challenge we constructed, 15 out of 16 key bytes
were ranked at position 1 for at least one of the target bits and one key byte
(key byte 6 in the table) did not show any strong candidate. However, recovering
this single missing key-byte is trivial using brute-force.

It is interesting to observe in Table 1 that when a target bit of a given key byte
does not leak (i.e. is not ranked first) it is very often the worst candidate (ranked
at the 256th position) rather than being at a random position. This observation,
that still holds for larger numbers of traces, can also be used to recover the
key. In order to give an idea of what can be achieved with an automated attack
against new instantiations of this white-box implementation with other keys,
we provide some figures: The acquisition of 2000 traces takes about 800s on a
regular laptop (dual-core i7-4600U CPU at 2.10GHz). This results in 3328 kbits
(416 kB) of traces when limited to the execution of the first round. Running
the attack requires less than 60s. Attacking the second challenge with external
encodings gave similar results. This was expected as there is no difference, from
our adversary perspective, when applying external encodings or omitting them
since in both cases we have knowledge of the original plaintexts before any
encoding is applied.

5.5 The NoSuchCon 2013 Challenge

In April 2013, a challenge designed by Eloi Vanderbéken was published for the
occasion of the NoSuchCon 2013 conference10. The challenge consisted of a Win-
dows binary embedding a white-box AES implementation. It was of “keygen-me”
type, which means one has to provide a name and the corresponding serial to

10 See http://www.nosuchcon.org/2013/

http://www.nosuchcon.org/2013/

succeed. Internally the serial is encrypted by a white-box and compared to the
MD5 hash of the provided name.

The challenge was completed by a number of participants (cf. [53,38]) but
without ever recovering the key. It illustrates one more issue designers of white-
box implementations have to deal with in practice: one can convert an encryption
routine into a decryption routine without actually extracting the key.

For a change, the design is not derived from Chow [16]. However, the white-
box was designed with external encodings which were not part of the binary.
Hence, the user input was considered as encoded with an unknown scheme and
the encoded output is directly compared to a reference. These conditions, with-
out any knowledge of the relationship between the real AES plaintexts or cipher-
texts and the effective inputs and outputs of the white-box, make it infeasible to
apply a meaningful DPA attack, since, for a DPA attack, we need to construct
the guesses for the intermediate values. Note that, as discussed in Section 2, this
white-box implementation is not compliant with AES anymore but computes
some variant E′k = G ◦Ek ◦F−1. Nevertheless we did manage to recover the key
and the encodings from this white-box implementation with a new algebraic at-
tack, as described in [56]. This was achieved after a painful de-obfuscation of the
binary (almost completely performed by previous write-ups [53] and [38]), a step
needed to fulfill the prerequisites for such attacks as described in Section 2.2.

The same white-box is found among the CHES 2015 challenges 11 in a Game-
Boy ROM and the same algebraic attack is used successfully as explained in [55]
once the tables got extracted.

6 Countermeasures against DCA

In hardware, counter-measures against DPA typically rely on a random source.
The output can be used to mask intermediate results, to re-order instructions,
or to add delays (see e.g. [14,24,51]). For white-box implementations, we cannot
rely on a random source since in the white-box attack model such a source can
simply be disabled or fixed to a constant value. Despite this lack of dynamic
entropy, one can assume that the implementation which generates the white-
box implementation has access to sufficient random data to incorporate in the
generated source code and look-up tables. How to use this static random data
embedded in the white-box implementation?

Adding (random) delays in an attempt to misalign traces is trivially defeated
by using an address instruction trace beside the memory trace to realign traces
automatically. In [18] it is proposed to use variable encodings when accessing the
look-up tables based on the affine equivalences for bijective S-boxes (cf. [9] for al-
gorithms to solve the affine equivalence problem for arbitrary permutations). As
a potential countermeasure against DCA, the embedded (and possibly merged
with other functionality) static random data is used to select which affine equiv-
alence is used for the encoding when accessing a particular look-up table. This

11 https://ches15challenge.com/static/CHES15Challenge.zip

https://ches15challenge.com/static/CHES15Challenge.zip

results in a variable encoding (at run-time) instead of using a fixed encoding.
Such an approach can be seen as a form of masking as used to thwart classical
first-order DPA.

One can also use some ideas from threshold implementations [47]. A thresh-
old implementation is a masking scheme based on secret sharing and multi-party
computation. One could also split the input in multiple shares such that not all
shares belong to the same affine equivalence class. If this splitting of the shares
and assignment to these (different) affine equivalence classes is done pseudo-
randomly, where the randomness comes from the static embedded entropy and
the input message, then this might offer some resistance against DCA-like at-
tacks.

In practice, one might resort to methods to make the job of the adver-
sary more difficult. Typical software counter-measures include obfuscation, anti-
debug and integrity checks. It should be noted, however, that in order to mount
a successful DCA attack one does not need to reverse engineer the binary exe-
cutable. The DBI frameworks are very good at coping with those techniques and
even if there are efforts to specifically detect DBI [21,34], DBI becomes stealthier
too [29].

7 Conclusions and Future Work

As conjectured in the first papers introducing the white-box attack model, one
cannot expect long-term defense against attacks on white-box implementations.
However, as we have shown in this work, all current publicly available white-box
implementations do not even offer any short-term security since the differential
computation analysis (DCA) technique can extract the secret key within seconds.
We did not investigate the strength of commercially available white-box products
since no company, as far as we are aware, made a challenge publicly available
similar to, for instance, the RSA factoring challenge [20] or the challenge related
to elliptic curve cryptography [13].

Although we sketched some ideas on countermeasures, it remains an open
question how to guard oneself against these types of attacks. The countermea-
sures against differential power analysis attacks applied in the area of high-
assurance applications do not seem to carry over directly due to the ability of
the adversary to disable or tamper with the random source. If medium to long
term security is required then tamper resistant hardware solutions, like a secure
element, seem like a much better alternative.

Another interesting research direction is to see if the more advanced and
powerful techniques used in side-channel analysis from the cryptographic hard-
ware community obtain even better results in this setting. Examples include
correlation power analysis and higher order attacks.

References

1. B. Amstadt and M. K. Johnson. Wine. Linux Journal, 1994(4), August 1994.

2. B. Barak, S. Garg, Y. T. Kalai, O. Paneth, and A. Sahai. Protecting obfusca-
tion against algebraic attacks. In P. Q. Nguyen and E. Oswald, editors, EU-
ROCRYPT 2014, volume 8441 of LNCS, pages 221–238, Copenhagen, Denmark,
May 11–15, 2014. Springer, Berlin, Germany.

3. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In J. Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 1–18, Santa Barbara, CA, USA,
Aug. 19–23, 2001. Springer, Berlin, Germany.

4. J.-B. Bédrune. Hack.lu 2009 reverse challenge 1. online, 2009. http://2009.hack.
lu/index.php/ReverseChallenge.

5. S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation: An efficient
approach to combat a broad range of memory error exploits. In Proceedings of the
12th USENIX Security Symposium. USENIX Association, 2003.

6. E. Biham and A. Shamir. Differential cryptanalysis of Snefru, Khafre, REDOC-II,
LOKI and Lucifer. In J. Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS,
pages 156–171, Santa Barbara, CA, USA, Aug. 11–15, 1992. Springer, Berlin, Ger-
many.

7. O. Billet and H. Gilbert. A traceable block cipher. In C.-S. Laih, editor, ASI-
ACRYPT 2003, volume 2894 of LNCS, pages 331–346. Springer, Berlin, Germany,
2003.

8. O. Billet, H. Gilbert, and C. Ech-Chatbi. Cryptanalysis of a white box AES
implementation. In H. Handschuh and A. Hasan, editors, SAC 2004, volume 3357
of LNCS, pages 227–240, Waterloo, Ontario, Canada, Aug. 9–10, 2004. Springer,
Berlin, Germany.

9. A. Biryukov, C. De Canniére, A. Braeken, and B. Preneel. A toolbox for crypt-
analysis: Linear and affine equivalence algorithms. In E. Biham, editor, EURO-
CRYPT 2003, volume 2656 of LNCS, pages 33–50, Warsaw, Poland, May 4–8,
2003. Springer, Berlin, Germany.

10. Z. Brakerski and G. N. Rothblum. Virtual black-box obfuscation for all circuits via
generic graded encoding. In Y. Lindell, editor, TCC 2014, volume 8349 of LNCS,
pages 1–25, San Diego, CA, USA, Feb. 24–26, 2014. Springer, Berlin, Germany.

11. E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage
model. In M. Joye and J.-J. Quisquater, editors, CHES 2004, volume 3156 of
LNCS, pages 16–29, Cambridge, Massachusetts, USA, Aug. 11–13, 2004. Springer,
Berlin, Germany.

12. J. Bringer, H. Chabanne, and E. Dottax. White box cryptography: Another at-
tempt. Cryptology ePrint Archive, Report 2006/468, 2006. http://eprint.iacr.
org/2006/468.

13. Certicom. The certicom ECC challenge. Webpage. https://www.certicom.com/

index.php/the-certicom-ecc-challenge.
14. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to

counteract power-analysis attacks. In M. J. Wiener, editor, CRYPTO’99, vol-
ume 1666 of LNCS, pages 398–412, Santa Barbara, CA, USA, Aug. 15–19, 1999.
Springer, Berlin, Germany.

15. S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In B. S. Kaliski Jr., Çetin
Kaya. Koç, and C. Paar, editors, CHES 2002, volume 2523 of LNCS, pages 13–28,
Redwood Shores, California, USA, Aug. 13–15, 2003. Springer, Berlin, Germany.

16. S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. White-box cryptography
and an AES implementation. In K. Nyberg and H. M. Heys, editors, SAC 2002,
volume 2595 of LNCS, pages 250–270, St. John’s, Newfoundland, Canada, Aug. 15–
16, 2003. Springer, Berlin, Germany.

http://2009.hack.lu/index.php/ReverseChallenge
http://2009.hack.lu/index.php/ReverseChallenge
http://eprint.iacr.org/2006/468
http://eprint.iacr.org/2006/468
https://www.certicom.com/index.php/the-certicom-ecc-challenge
https://www.certicom.com/index.php/the-certicom-ecc-challenge

17. S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. A white-box DES imple-
mentation for DRM applications. In J. Feigenbaum, editor, Security and Privacy
in Digital Rights Management, ACM CCS-9 Workshop, DRM 2002, volume 2696
of LNCS, pages 1–15. Springer, 2003.

18. Y. de Mulder. White-Box Cryptography: Analysis of White-Box AES Implementa-
tions. PhD thesis, KU Leuven, 2014.

19. C. Delerablée, T. Lepoint, P. Paillier, and M. Rivain. White-box security notions
for symmetric encryption schemes. In T. Lange, K. Lauter, and P. Lisonek, editors,
SAC 2013, volume 8282 of LNCS, pages 247–264, Burnaby, BC, Canada, Aug. 14–
16, 2014. Springer, Berlin, Germany.

20. EMC Corporation. The RSA factoring challenge. Webpage. http://www.emc.

com/emc-plus/rsa-labs/historical/the-rsa-factoring-challenge.htm.

21. F. Falco and N. Riva. Dynamic binary instrumentation frameworks: I know you’re
there spying on me. REcon, 2012. http://recon.cx/2012/schedule/events/216.
en.html.

22. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS, pages 40–
49. IEEE Computer Society, 2013.

23. L. Goubin, J.-M. Masereel, and M. Quisquater. Cryptanalysis of white box DES
implementations. In C. M. Adams, A. Miri, and M. J. Wiener, editors, SAC 2007,
volume 4876 of LNCS, pages 278–295, Ottawa, Canada, Aug. 16–17, 2007. Springer,
Berlin, Germany.

24. L. Goubin and J. Patarin. DES and differential power analysis (the “duplication”
method). In Çetin Kaya. Koç and C. Paar, editors, CHES’99, volume 1717 of
LNCS, pages 158–172, Worcester, Massachusetts, USA, Aug. 12–13, 1999. Springer,
Berlin, Germany.

25. Y. Huang, F. S. Ho, H. Tsai, and H. M. Kao. A control flow obfuscation method
to discourage malicious tampering of software codes. In F. Lin, D. Lee, B. P. Lin,
S. Shieh, and S. Jajodia, editors, Proceedings of the 2006 ACM Symposium on
Information, Computer and Communications Security, ASIACCS 2006, page 362.
ACM, 2006.

26. M. Jacob, D. Boneh, and E. W. Felten. Attacking an obfuscated cipher by injecting
faults. In J. Feigenbaum, editor, Security and Privacy in Digital Rights Manage-
ment, ACM CCS-9 Workshop, DRM 2002, Washington, DC, USA, November 18,
2002, Revised Papers, volume 2696 of LNCS, pages 16–31. Springer, 2003.

27. M. Jakobsson and M. K. Reiter. Discouraging software piracy using software aging.
In T. Sander, editor, Security and Privacy in Digital Rights Management, ACM
CCS-8 Workshop DRM 2001, volume 2320 of LNCS, pages 1–12. Springer, 2002.

28. M. Karroumi. Protecting white-box AES with dual ciphers. In K. H. Rhee and
D. Nyang, editors, ICISC 10, volume 6829 of LNCS, pages 278–291, Seoul, Korea,
Dec. 1–3, 2011. Springer, Berlin, Germany.

29. J. Kirsch. Towards transparent dynamic binary instrumentation using virtual ma-
chine introspection. REcon, 2015. https://recon.cx/2015/schedule/events/20.
html.

30. D. Klinec. White-box attack resistant cryptography. Master’s thesis, Masaryk
University, Brno, Czech Republic, 2013. https://is.muni.cz/th/325219/fi_m/.

31. P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi. Introduction to differential power
analysis. Journal of Cryptographic Engineering, 1(1):5–27, 2011.

http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-factoring-challenge.htm
http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-factoring-challenge.htm
http://recon.cx/2012/schedule/events/216.en.html
http://recon.cx/2012/schedule/events/216.en.html
https://recon.cx/2015/schedule/events/20.html
https://recon.cx/2015/schedule/events/20.html
https://is.muni.cz/th/325219/fi_m/

32. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. J. Wiener,
editor, CRYPTO’99, volume 1666 of LNCS, pages 388–397, Santa Barbara, CA,
USA, Aug. 15–19, 1999. Springer, Berlin, Germany.

33. T. Lepoint, M. Rivain, Y. D. Mulder, P. Roelse, and B. Preneel. Two attacks
on a white-box AES implementation. In T. Lange, K. Lauter, and P. Lisonek,
editors, SAC 2013, volume 8282 of LNCS, pages 265–285, Burnaby, BC, Canada,
Aug. 14–16, 2014. Springer, Berlin, Germany.

34. X. Li and K. Li. Defeating the transparency features of dynamic binary instrumen-
tation. BlackHat US, 2014. https://www.blackhat.com/docs/us-14/materials/
us-14-Li-Defeating-The-Transparency-Feature-Of-DBI.pdf.

35. H. E. Link and W. D. Neumann. Clarifying obfuscation: Improving the security of
white-box DES. In International Symposium on Information Technology: Coding
and Computing (ITCC 2005), pages 679–684. IEEE Computer Society, 2005.

36. C. Linn and S. K. Debray. Obfuscation of executable code to improve resistance to
static disassembly. In S. Jajodia, V. Atluri, and T. Jaeger, editors, Proceedings of
the 10th ACM Conference on Computer and Communications Security, CCS 2003,
pages 290–299. ACM, 2003.

37. C. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G. Lowney, S. Wallace, V. J.
Reddi, and K. M. Hazelwood. Pin: building customized program analysis tools
with dynamic instrumentation. In V. Sarkar and M. W. Hall, editors, Proceedings
of the ACM SIGPLAN 2005 Conference on Programming Language Design and
Implementation, pages 190–200. ACM, 2005.

38. A. Maillet. Nosuchcon 2013 challenge - write up and method-
ology. online, 2013. http://kutioo.blogspot.be/2013/05/

nosuchcon-2013-challenge-write-up-and.html.
39. S. Mangard, E. Oswald, and F. Standaert. One for all - all for one: unifying

standard differential power analysis attacks. IET Information Security, 5(2):100–
110, 2011.

40. F. Marceau, F. Perigaud, and A. Tillequin. Challenge SSTIC 2012. online, 2012.
http://communaute.sstic.org/ChallengeSSTIC2012.

41. T. S. Messerges. Using second-order power analysis to attack DPA resistant soft-
ware. In Çetin Kaya. Koç and C. Paar, editors, CHES 2000, volume 1965 of LNCS,
pages 238–251, Worcester, Massachusetts, USA, Aug. 17–18, 2000. Springer, Berlin,
Germany.

42. W. Michiels. Opportunities in white-box cryptography. IEEE Security & Privacy,
8(1):64–67, 2010.

43. C. Mougey and F. Gabriel. Désobfuscation de DRM par attaques auxiliaires.
In Symposium sur la sécurité des technologies de l’information et des communi-
cations, 2014. www.sstic.org/2014/presentation/dsobfuscation_de_drm_par_

attaques_auxiliaires.
44. Y. D. Mulder, P. Roelse, and B. Preneel. Cryptanalysis of the Xiao-Lai white-box

AES implementation. In L. R. Knudsen and H. Wu, editors, SAC 2012, volume
7707 of LNCS, pages 34–49, Windsor, Ontario, Canada, Aug. 15–16, 2013. Springer,
Berlin, Germany.

45. Y. D. Mulder, B. Wyseur, and B. Preneel. Cryptanalysis of a perturbated
white-box AES implementation. In G. Gong and K. C. Gupta, editors, IN-
DOCRYPT 2010, volume 6498 of LNCS, pages 292–310, Hyderabad, India,
Dec. 12–15, 2010. Springer, Berlin, Germany.

46. N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. In J. Ferrante and K. S. McKinley, editors, Proceedings

https://www.blackhat.com/docs/us-14/materials/us-14-Li-Defeating-The-Transparency-Feature-Of-DBI.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Li-Defeating-The-Transparency-Feature-Of-DBI.pdf
http://kutioo.blogspot.be/2013/05/nosuchcon-2013-challenge-write-up-and.html
http://kutioo.blogspot.be/2013/05/nosuchcon-2013-challenge-write-up-and.html
http://communaute.sstic.org/ChallengeSSTIC2012
www.sstic.org/2014/presentation/dsobfuscation_de_drm_par_attaques_auxiliaires
www.sstic.org/2014/presentation/dsobfuscation_de_drm_par_attaques_auxiliaires

of the ACM SIGPLAN 2007 Conference on Programming Language Design and
Implementation, pages 89–100. ACM, 2007.

47. S. Nikova, C. Rechberger, and V. Rijmen. Threshold implementations against
side-channel attacks and glitches. In P. Ning, S. Qing, and N. Li, editors, Informa-
tion and Communications Security, ICICS, volume 4307 of LNCS, pages 529–545.
Springer, 2006.

48. M. L. Polla, F. Martinelli, and D. Sgandurra. A survey on security for mobile
devices. IEEE Communications Surveys and Tutorials, 15(1):446–471, 2013.

49. E. Sanfelix, J. de Haas, and C. Mune. Unboxing the white-box: Practical attacks
against obfuscated ciphers. Presentation at BlackHat Europe 2015, 2015. https:

//www.blackhat.com/eu-15/briefings.html.
50. P. Sasdrich, A. Moradi, and T. Güneysu. White-box cryptography in the gray

box - a hardware implementation and its side channels (to appear). In FSE 2016,
LNCS. Springer, 2016.

51. K. Schramm and C. Paar. Higher order masking of the AES. In D. Pointcheval,
editor, CT-RSA 2006, volume 3860 of LNCS, pages 208–225, San Jose, CA, USA,
Feb. 13–17, 2006. Springer, Berlin, Germany.

52. F. Scrinzi. Behavioral analysis of obfuscated code. Master’s thesis, Univer-
sity of Twente, Twente, Netherlands, 2015. http://essay.utwente.nl/67522/

1/Scrinzi_MA_SCS.pdf.
53. A. Souchet. AES whitebox unboxing: No such problem. online, 2013. http:

//0vercl0k.tuxfamily.org/bl0g/?p=253.
54. SysK. Practical cracking of white-box implementations. Phrack 68:14. http:

//www.phrack.org/issues/68/8.html.
55. P. Teuwen. CHES2015 writeup. online, 2015. http://wiki.yobi.be/wiki/

CHES2015_Writeup#Challenge_4.
56. P. Teuwen. NSC writeups. online, 2015. http://wiki.yobi.be/wiki/NSC_

Writeups.
57. L. Tolhuizen. Improved cryptanalysis of an AES implementation. In Proceedings of

the 33rd WIC Symposium on Information Theory. Werkgemeenschap voor Inform.-
en Communicatietheorie, 2012.

58. E. Vanderbéken. Hacklu reverse challenge write-up. online, 2009. http://baboon.
rce.free.fr/index.php?post/2009/11/20/HackLu-Reverse-Challenge.

59. B. Wyseur, W. Michiels, P. Gorissen, and B. Preneel. Cryptanalysis of white-
box DES implementations with arbitrary external encodings. In C. M. Adams,
A. Miri, and M. J. Wiener, editors, SAC 2007, volume 4876 of LNCS, pages 264–
277, Ottawa, Canada, Aug. 16–17, 2007. Springer, Berlin, Germany.

60. Y. Xiao and X. Lai. A secure implementation of white-box AES. In Computer
Science and its Applications, 2009. CSA ’09. 2nd International Conference on,
pages 1–6, 2009.

61. Y. Zhou and S. Chow. System and method of hiding cryptographic private keys,
Dec. 15 2009. US Patent 7,634,091.

https://www.blackhat.com/eu-15/briefings.html
https://www.blackhat.com/eu-15/briefings.html
http://essay.utwente.nl/67522/1/Scrinzi_MA_SCS.pdf
http://essay.utwente.nl/67522/1/Scrinzi_MA_SCS.pdf
http://0vercl0k.tuxfamily.org/bl0g/?p=253
http://0vercl0k.tuxfamily.org/bl0g/?p=253
http://www.phrack.org/issues/68/8.html
http://www.phrack.org/issues/68/8.html
http://wiki.yobi.be/wiki/CHES2015_Writeup#Challenge_4
http://wiki.yobi.be/wiki/CHES2015_Writeup#Challenge_4
http://wiki.yobi.be/wiki/NSC_Writeups
http://wiki.yobi.be/wiki/NSC_Writeups
http://baboon.rce.free.fr/index.php?post/2009/11/20/HackLu-Reverse-Challenge
http://baboon.rce.free.fr/index.php?post/2009/11/20/HackLu-Reverse-Challenge

	Differential Computation Analysis: Hiding your White-Box Designs is Not Enough

