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Abstract. Informally, an obfuscator O is an (efficient, probabilistic)
“compiler” that takes as input a program (or circuit) P and produces a
new program O(P ) that has the same functionality as P yet is “unintel-
ligible” in some sense. Obfuscators, if they exist, would have a wide vari-
ety of cryptographic and complexity-theoretic applications, ranging from
software protection to homomorphic encryption to complexity-theoretic
analogues of Rice’s theorem. Most of these applications are based on an
interpretation of the “unintelligibility” condition in obfuscation as mean-
ing that O(P ) is a “virtual black box,” in the sense that anything one
can efficiently compute given O(P ), one could also efficiently compute
given oracle access to P .

In this work, we initiate a theoretical investigation of obfuscation. Our
main result is that, even under very weak formalizations of the above in-
tuition, obfuscation is impossible. We prove this by constructing a family
of functions F that are inherently unobfuscatable in the following sense:
there is a property π : F → {0, 1} such that (a) given any program that
computes a function f ∈ F , the value π(f) can be efficiently computed,
yet (b) given oracle access to a (randomly selected) function f ∈ F , no
efficient algorithm can compute π(f) much better than random guessing.

We extend our impossibility result in a number of ways, including even
obfuscators that (a) are not necessarily computable in polynomial time,
(b) only approximately preserve the functionality, and (c) only need to
work for very restricted models of computation (TC0). We also rule
out several potential applications of obfuscators, by constructing “unob-
fuscatable” signature schemes, encryption schemes, and pseudorandom
function families.



1 Introduction

The past few decades of cryptography research has had amazing success in
putting most of the classical cryptographic problems — encryption, authenti-
cation, protocols — on complexity-theoretic foundations. However, there still
remain several important problems in cryptography about which theory has had
little or nothing to say. One such problem is that of program obfuscation. Roughly
speaking, the goal of (program) obfuscation is to make a program “unintelligi-
ble” while preserving its functionality. Ideally, an obfuscated program should be
a “virtual black box,” in the sense that anything one can compute from it one
could also compute from the input-output behavior of the program.
The hope that some form of obfuscation is possible arises from the fact that

analyzing programs expressed in rich enough formalisms is hard. Indeed, any
programmer knows that total unintelligibility is the natural state of computer
programs (and one must work hard in order to keep a program from deterio-
rating into this state). Theoretically, results such as Rice’s Theorem and the
hardness of the Halting Problem and Satisfiability all seem to imply that
the only useful thing that one can do with a program or circuit is to run it (on
inputs of one’s choice). However, this informal statement is, of course, an over-
generalization, and the existence of obfuscators requires its own investigation.
To be a bit more clear (though still informal), an obfuscator O is an (effi-

cient, probabilistic) “compiler” that takes as input a program (or circuit) P and
produces a new program O(P ) satisfying the following two conditions:

– (functionality) O(P ) computes the same function as P .
– (“virtual black box” property) “Anything that can be efficiently computed
from O(P ) can be efficiently computed given oracle access to P .”

While there are heuristic approaches to obfuscation in practice (cf., Figure 1
and [CT00]), there has been little theoretical work on this problem. This is
unfortunate, since obfuscation, if it were possible, would have a wide variety of
cryptographic and complexity-theoretic applications.

#include<stdio.h> #include<string.h> main(){char*O,l[999]=

"’‘acgo\177~|xp .-\0R^8)NJ6%K4O+A2M(*0ID57$3G1FBL";while(O=

fgets(l+45,954,stdin)){*l=O[strlen(O)[O-1]=0,strspn(O,l+11)];

while(*O)switch((*l&&isalnum(*O))-!*l){case-1:{char*I=(O+=

strspn(O,l+12)+1)-2,O=34;while(*I&3&&(O=(O-16<<1)+*I---’-’)<80);

putchar(O&93?*I&8||!( I=memchr( l , O , 44 ) ) ?’?’:I-l+47:32);

break;case 1: ;}*l=(*O&31)[l-15+(*O>61)*32];while(putchar(45+*l%2),

(*l=*l+32>>1)>35);case 0:putchar((++O,32));}putchar(10);}}

Fig. 1. The winning entry of the 1998 International Obfuscated C Code Contest, an
ASCII/Morse code translator by Frans van Dorsselaer [vD98] (adapted for this paper).



In this work, we initiate a theoretical investigation of obfuscation. We exam-
ine various formalizations of the notion, in an attempt to understand what we
can and cannot hope to achieve. Our main result is a negative one, showing that
obfuscation (as it is typically understood) is impossible. Before describing this
result and others in more detail, we outline some of the potential applications
of obfuscators, both for motivation and to clarify the notion.

1.1 Some Applications of Obfuscators

Software Protection . The most direct applications of obfuscators are for various
forms of software protection. By definition, obfuscating a program protects it
against reverse engineering. For example, if one party, Alice, discovers a more
efficient algorithm for factoring integers, she may wish to sell another party, Bob,
a program for apparently weaker tasks (such as breaking the RSA cryptosystem)
that use the factoring algorithm as a subroutine without actually giving Bob a
factoring algorithm. Alice could hope to achieve this by obfuscating the program
she gives to Bob.
Intuitively, obfuscators would also be useful in watermarking software (cf.,

[CT00, NSS99]). A software vendor could modify a program’s behavior in a way
that uniquely identifies the person to whom it is sold, and then obfuscate the
program to guarantee that this “watermark” is difficult to remove.

Homomorphic Encryption. A long-standing open problem is whether homomor-
phic encryption schemes exist (cf., [RAD78, FM91, DDN00, BL96, SYY99]).
That is, we seek a secure public-key cryptosystem for which, given encryptions
of two bits (and the public key), one can compute an encryption of any binary
Boolean operation of those bits. Obfuscators would allow one to convert any
public-key cryptosystem into a homomorphic one: use the secret key to construct
an algorithm that performs the required computations (by decrypting, applying
the Boolean operation, and encrypting the result), and publish an obfuscation
of this algorithm together with the public key.1

Removing Random Oracles. The Random Oracle Model [BR93] is an idealized
cryptographic setting in which all parties have access to a truly random function.
It is (heuristically) hoped that protocols designed in this model will remain
secure when implemented using an efficient, publicly computable cryptographic
hash function in place of the random function. While it is known that this
is not true in general [CGH98], it is unknown whether there exist efficiently
computable functions with strong enough properties to be securely used in place

1 There is a subtlety here, caused by the fact that encryption algorithms must be
probabilistic to be semantically secure in the usual sense [GM84]. However, both
the “functionality” and “virtual black box” properties of obfuscators become more
complex for probabilistic algorithms, so in this work, we restrict our attention to
obfuscating deterministic algorithms. This restriction only makes our main (impos-
sibility) result stronger.



of the random function in various specific protocols (e.g., in Fiat-Shamir type
schemes [FS87]). One might hope to obtain such functions by obfuscating a
family of pseudorandom functions [GGM86], whose input-output behavior is by
definition indistinguishable from that of a truly random function.

Transforming Private-Key Encryption into Public-Key Encryption. Obfuscation
can also be used to create new public-key encryption schemes by obfuscating a
private-key encryption scheme. Given a secret key K of a private-key encryption
scheme, one can publish an obfuscation of the encryption algorithm EncK .

2 This
allows everyone to encrypt, yet only one possessing the secret key K should be
able to decrypt.

1.2 Our Results

The Basic Impossibility Result. Most of the above applications rely on the in-
tuition that an obfuscated program is a “virtual black box.” That is, anything
one can efficiently compute from the obfuscated program, one should be able to
efficiently compute given just oracle access to the program.
Our main result shows that it is impossible to achieve this notion of obfus-

cation. We prove this by constructing (from any one-way function) a family F
of functions which is inherently unobfuscatable in the sense that there is some
property π : F → {0, 1} such that:

– Given any program (circuit) that computes a function f ∈ F , the value π(f)
can be efficiently computed;

– Yet, given oracle access to a (randomly selected) function f ∈ F , no efficient
algorithm can compute π(f) much better than by random guessing.

Thus, there is no way of obfuscating the programs that compute these func-
tions, even if (a) the obfuscation is meant to hide only one bit of information
about the function (namely π(f)), and (b) the obfuscator itself has unbounded
computation time.
We believe that the existence of such functions shows that the “virtual black

box” paradigm for obfuscators is inherently flawed. Any hope for positive re-
sults about obfuscator-like objects must abandon this viewpoint, or at least be
reconciled with the existence of functions as above.

Approximate Obfuscators. The basic impossibility result as described above ap-
plies to obfuscators O for which we require that the obfuscated program O(P )
computes exactly the same function as the original program P . However, for
some applications it may suffice that, for every input x, O(P ) and P agree on x
with high probability (over the coin tosses of O). Using some additional ideas,
our impossibility result extends to such approximate obfuscators.
2 This application involves the same subtlety pointed out in Footnote 1. Thus, our re-
sults regarding the (un)obfuscatability of private-key encryption schemes (described
later) refer to a relaxed notion of security in which multiple encryptions of the same
message are not allowed (which is consistent with a deterministic encryption algo-
rithm).



Impossibility of Applications. To give further evidence that our impossibility
result is not an artifact of definitional choices, but rather that there is some-
thing inherently flawed in the “virtual black box” idea, we also demonstrate
that several of the applications of obfuscators are also impossible. We do this by
constructing inherently unobfuscatable signature schemes, encryption schemes,
and pseudorandom functions. These are objects satisfying the standard defini-
tions of security (except for the subtlety noted in Footnote 2), but for which
one can efficiently compute the secret key K from any program that signs (or
encrypts or evaluates the pseudorandom function, resp.) relative to K. (Hence
handing out “obfuscated forms” of these keyed-algorithms is highly insecure.)

In particular, we complement Canetti et. al.’s critique of the Random Oracle
Methodology [CGH98]. They show that there exist (contrived) protocols that are
secure in the idealized Random Oracle Model (of [BR93]), but are insecure when
the random oracle is replaced with any (efficiently computable) function. Our
results imply that for even for natural protocols that are secure in the random
oracle model (e.g., Fiat-Shamir type schemes [FS87]), there exist (contrived)
pseudorandom functions, such that these protocols are insecure when the random
oracle is replaced with any program that computes the contrived function.

Obfuscating restricted complexity classes. Even though obfuscation of general
programs/circuits is impossible, one may hope that it is possible to obfuscate
more restricted classes of computations. However, using the pseudorandom func-
tions of [NR97] in our construction, we can show that the impossibility result
holds even when the input program P is a constant-depth threshold circuit (i.e.,
is in TC0), under widely believed complexity assumptions (e.g., the hardness of
factoring).

Obfuscating Sampling Algorithms. Another way in which the notion of obfusca-
tors can be weakened is by changing the functionality requirement. Until now,
we have considered programs in terms of the functions they compute, but some-
times one is interested in other kinds of behavior. For example, one sometimes
considers sampling algorithms, i.e. probabilistic programs that take no input
(other than, say, a length parameter) and produce an output according to some
desired distribution. We consider two natural definitions of obfuscators for sam-
pling algorithms, and prove that the stronger definition is impossible to meet.
We also observe that the weaker definition implies the nontriviality of statistical
zero knowledge.

Software Watermarking. As mentioned earlier, there appears to be some con-
nection between the problems of software watermarking and code obfuscation.
In the full version of the paper [BGI+01], we consider a couple of formalizations
of the watermarking problem and explore their relationship to our results on
obfuscation.



1.3 Discussion

Our work rules out the standard, “virtual black box” notion of obfuscators as
impossible, along with several of its applications. However, it does not mean that
there is no method of making programs “unintelligible” in some meaningful and
precise sense. Such a method could still prove useful for software protection.
Thus, we consider it to be both important and interesting to understand

whether there are alternative senses (or models) in which some form of obfusca-
tion is possible. Towards this end, in the full version of the paper we suggest two
weaker definitions of obfuscators that avoid the “virtual black box” paradigm
(and hence are not ruled out by our impossibility proof). These definitions could
be the subject of future investigations, but we hope that other alternatives will
also be proposed and examined.
As is usually the case with impossibility results and lower bounds, we show

that obfuscators (in the “virtual black box” sense) do not exist by supplying
a somewhat contrived counterexample of a function ensemble that cannot be
obfuscated. It is interesting whether obfuscation is possible for a restricted class
of algorithms, which nonetheless contains some “useful” algorithms. If we try
to restrict the algorithms by their computational complexity, then there’s not
much hope for obfuscation. Indeed, as mentioned above, we show that (under
widely believed complexity assumptions) our counterexample can be placed in
TC0. In general, the complexity of our counterexample is essentially the same
as the complexity of pseudorandom functions, and so a complexity class which
does not contain our example will also not contain many cryptographically useful
algorithms.

1.4 Additional Related Work

There are a number of heuristic approaches to obfuscation and software water-
marking in the literature, as described in the survey of Collberg and Thombor-
son [CT00]. A theoretical study of software protection was previously conducted
by Goldreich and Ostrovsky [GO96], who considered hardware-based solutions.
Hada [Had00] gave some definitions for code obfuscators which are stronger

than the definitions we consider in this paper, and showed some implications
of the existence of such obfuscators. (Our result rules out also the existence of
obfuscators according to the definitions of [Had00].)
Canetti, Goldreich and Halevi [CGH98] showed another setting in cryptog-

raphy where getting a function’s description is provably more powerful than
black-box access. As mentioned above, they have shown that there exist proto-
cols that are secure when executed with black-box access to a random function,
but insecure when instead the parties are given a description of any hash func-
tion.

1.5 Organization of the Paper

In Section 2, we give some basic definitions along with (very weak) definitions
of obfuscators. In Section 3, we prove the impossibility of obfuscators by con-



structing an inherently unobfuscatable function ensemble. Other extensions and
results are deferred to the full version of the paper [BGI+01].

2 Definitions

2.1 Preliminaries

TM is shorthand for Turing machine. PPT is shorthand for probabilistic polynomial-
time Turing machine. For algorithms A and M and a string x, we denote by
AM (x) the output of A when executed on input x and oracle access to M . If
A is a probabilistic Turing machine then by A(x; r) we refer to the result of
running A on input x and random tape r. By A(x) we refer to the distribu-
tion induced by choosing r uniformly and running A(x; r). If D is a distribution

then by x
R
← D we mean that x is a random variable distributed according to

D. If S is a set then by x
R
← S we mean that x is a random variable that is

distributed uniformly over the elements of S. Supp(D) denotes the support of
distribution D, i.e. the set of points that have nonzero probability under D. A
function µ : N → N is called negligible if it grows slower than the inverse of
any polynomial. That is, for any positive polynomial p(·) there exists N ∈ N
such that µ(n) < 1/p(n) for any n > N . We’ll sometimes use neg(·) to denote
an unspecified negligible function. We will identify Turing machines and circuits
with their canonical representations as strings in {0, 1}∗.

2.2 Obfuscators

In this section, we aim to formalize the notion of obfuscators based on the
“virtual black box” property as described in the introduction. Recall that this
property requires that “anything that an adversary can compute from an ob-
fuscation O(P ) of a program P , it could also compute given just oracle access
to P .” We shall define what it means for the adversary to successfully compute
something in this setting, and there are several choices for this (in decreasing
order of generality):

– (computational indistinguishability) The most general choice is not to re-
strict the nature of what the adversary is trying to compute, and merely
require that it is possible, given just oracle access to P , to produce an out-
put distribution that is computationally indistinguishable from what the
adversary computes when given O(P ).

– (satisfying a relation) An alternative is to consider the adversary as trying
to produce an output that satisfies an arbitrary (possibly polynomial-time)
relation with the original program P , and require that it is possible, given
just oracle access to P , to succeed with roughly the same probability as the
adversary does when given O(P ).

– (computing a function) A weaker requirement is to restrict the previous
requirement to relations which are functions; that is, the adversary is trying
to compute some function of the original program.



– (computing a predicate) The weakest is to restrict the previous requirement
to {0, 1}-valued functions; that is, the adversary is trying to decide some
property of the original program.

Since we will be proving impossibility results, our results are strongest when
we adopt the weakest requirement (i.e., the last one). This yields two defini-
tions for obfuscators, one for programs defined by Turing machines and one for
programs defined by circuits.

Definition 2.1 (TM obfuscator). A probabilistic algorithm O is a TM ob-
fuscator if the following three conditions hold:

– (functionality) For every TM M , the string O(M) describes a TM that com-
putes the same function as M .

– (polynomial slowdown) The description length and running time of O(M) are
at most polynomially larger than that of M . That is, there is a polynomial p
such that for every TM M , |O(M)| ≤ p(|M |), and if M halts in t steps on
some input x, then O(M) halts within p(t) steps on x.

– (“virtual black box” property) For any PPT A, there is a PPT S and a
negligible function α such that for all TMs M

∣

∣

∣
Pr [A(O(M)) = 1]− Pr

[

SM (1|M |) = 1
]∣

∣

∣
≤ α(|M |).

We say that O is efficient if it runs in polynomial time.

Definition 2.2 (circuit obfuscator). A probabilistic algorithm O is a (circuit)
obfuscator if the following three conditions hold:

– (functionality) For every circuit C, the string O(C) describes a circuit that
computes the same function as C.

– (polynomial slowdown) There is a polynomial p such that for every circuit
C, |O(C)| ≤ p(|C|).

– (“virtual black box” property) For any PPT A, there is a PPT S and a
negligible function α such that for all circuits C

∣

∣

∣
Pr [A(O(C)) = 1]− Pr

[

SC(1|C|) = 1
]∣

∣

∣
≤ α(|C|).

We say that O is efficient if it runs in polynomial time.

We call the first two requirements (functionality and polynomial slowdown)
the syntactic requirements of obfuscation, as they do not address the issue of
security at all.
There are a couple of other natural formulations of the “virtual black box”

property. The first, which more closely follows the informal discussion above,
asks that for every predicate π, the probability that A(O(C)) = π(C) is at most
the probability that SC(1|C|) = π(C) plus a negligible term. It is easy to see
that this requirement is equivalent to the ones above. Another formulation refers
to the distinguishability between obfuscations of two TMs/circuits: ask that for



every C1 and C2, |Pr [A(O(C1)) = 1] − Pr [A(O(C2))] | is approximately equal
to |Pr

[

SC1(1|C1|, 1|C2|) = 1
]

− Pr
[

SC2(1|C1|, 1|C2)
]

|. This definition appears to
be slightly weaker than the ones above, but our impossibility proof also rules it
out.

Note that in both definitions, we have chosen to simplify the definition by
using the size of the TM/circuit to be obfuscated as a security parameter. One
can always increase this length by padding to obtain higher security.

The main difference between the circuit and TM obfuscators is that a circuit
computes a function with finite domain (all the inputs of a particular length)
while a TM computes a function with infinite domain. Note that if we had not
restricted the size of the obfuscated circuit O(C), then the (exponential size)
list of all the values of the circuit would be a valid obfuscation (provided we
allow S running time poly(|O(C)|) rather than poly(|C|)). For Turing machines,
it is not clear how to construct such an obfuscation, even if we are allowed an
exponential slowdown. Hence obfuscating TMs is intuitively harder. Indeed, it
is relatively easy to prove:

Proposition 2.3. If a TM obfuscator exists, then a circuit obfuscator exists.

Thus, when we prove our impossibility result for circuit obfuscators, the impos-
sibility of TM obfuscators will follow. However, considering TM obfuscators will
be useful as motivation for the proof.

We note that, from the perspective of applications, Definitions 2.1 and 2.2
are already too weak to have the wide applicability discussed in the introduction.
The point is that they are nevertheless impossible to satisfy (as we will prove).

3 The Main Impossibility Result

To state our main result we introduce the notion of inherently unobfuscatable
function ensemble.

Definition 3.1. An inherently unobfuscatable function ensemble is an ensem-
ble {Hk}k∈N of distributions Hk on finite functions (from, say, {0, 1}

lin(k) to
{0, 1}lout(k)) such that:

– (efficiently computable) Every function f
R
←Hk is computable by a circuit of

size poly(k). (Moreover, a distribution on circuits consistent with Hk can be
sampled uniformly in time poly(k).)

– (unobfuscatability) There exists a function π :
⋃

k∈N Supp(Hk)→ {0, 1} such
that

1. π(f) is hard to compute with black-box access to f : For any PPT S

Pr
f

R
←Hk

[Sf (1k) = π(f)] ≤
1

2
+ neg(k)



2. π(f) is easy to compute with access to any circuit that computes f : There
exists a PPT A such that for any f ∈

⋃

k∈N Supp(Hk) and for any circuit
C that computes f

A(C) = π(f)

We prove in Theorem 3.9 that, assuming one-way functions exist, there exists
an inherently unobfuscatable function ensemble. This implies that, under the
same assumption, there is no obfuscator that satisfies Definition 2.2 (actually
we prove the latter fact directly in Theorem 3.6). Since the existence of an
efficient obfuscator implies the existence of one-way functions (Lemma 3.7), we
conclude that efficient obfuscators do not exist (unconditionally).
However, the existence of inherently unobfuscatable function ensemble has

even stronger implications. As mentioned in the introduction, these functions can
not be obfuscated even if we allow the following relaxations to the obfuscator:

1. As mentioned above, the obfuscator does not have to run in polynomial time
— it can be any random process.

2. The obfuscator has only to work for functions in Supp(Hk) and only for a
non-negligible fraction of these functions under the distributions Hk.

3. The obfuscator has only to hide an a priori fixed property π from an a priori
fixed adversary A.

Structure of the Proof of the Main Impossibility Result. We shall prove our
result by first defining obfuscators that are secure also when applied to several
(e.g., two) algorithms and proving that they do not exist. Then we shall modify
the construction in this proof to prove that TM obfuscators in the sense of
Definition 2.1 do not exist. After that, using an additional construction (which
requires one-way functions), we will prove that a circuit obfuscator as defined in
Definition 2.2 does not exist if one-way functions exist. We will then observe that
our proof actually yields an unobfuscatable function ensemble (Theorem 3.9).

3.1 Obfuscating two TMs/circuits

Obfuscators as defined in the previous section provide a “virtual black box”
property when a single program is obfuscated, but the definitions do not say
anything about what happens when the adversary can inspect more than one
obfuscated program. In this section, we will consider extensions of those defini-
tions to obfuscating two programs, and prove that they are impossible to meet.
The proofs will provide useful motivation for the impossibility of the original
one-program definitions.

Definition 3.2 (2-TM obfuscator). A 2-TM obfuscator is defined in the
same way as a TM obfuscator, except that the “virtual black box” property is
strengthened as follows:

– (“virtual black box” property) For any PPT A, there is a PPT S and a
negligible function α such that for all TMs M,N
∣

∣

∣
Pr [A(O(M),O(N)) = 1]− Pr

[

SM,N (1|M |+|N |) = 1
]
∣

∣

∣
≤ α(min{|M |, |N |})



2-circuit obfuscators are defined by modifying the definition of circuit obfus-
cators in an analogous fashion.

Proposition 3.3. Neither 2-TM nor 2-circuit obfuscators exist.

Proof. We begin by showing that 2-TM obfuscators do not exist. Suppose, for
sake of contradiction, that there exists a 2-TM obfuscator O. The essence of
this proof, and in fact of all the impossibility proofs in this paper, is that there
is a fundamental difference between getting black-box access to a function and
getting a program that computes it, no matter how obfuscated: A program is
a succinct description of the function, on which one can perform computations
(or run other programs). Of course, if the function is (exactly) learnable via
oracle queries (i.e., one can acquire a program that computes the function by
querying it at a few locations), then this difference disappears. Hence, to get
our counterexample, we will use a function that cannot be exactly learned with
oracle queries. A very simple example of such an unlearnable function follows.
For strings α, β ∈ {0, 1}k, define the Turing machine

Cα,β(x)
def
=

{

β x = α
0k otherwise

We assume that on input x, Cα,β runs in 10 · |x| steps (the constant 10 is
arbitrary). Now we will define a TM Dα,β that, given the code of a TM C, can
distinguish between the case that C computes the same function as Cα,β from
the case that C computes the same function as Cα′,β′ for any (α′, β′) 6= (α, β).

Dα,β(C)
def
=

{

1 C(α) = β
0 otherwise

(Actually, this function is uncomputable. However, as we shall see below, we can
use a modified version of Dα,β that only considers the execution of C(α) for
poly(k) steps, and outputs 0 if C does not halt within that many steps, for some
fixed polynomial poly(·). We will ignore this issue for now, and elaborate on it
later.) Note that Cα,β and Dα,β have description size Θ(k).
Consider an adversary A, which, given two (obfuscated) TMs as input, simply

runs the second TM on the first one. That is, A(C,D) = D(C). (Actually, like we
modified Dα,β above, we also will modify A to only run D on C for poly(|C|, |D|)
steps, and output 0 if D does not halt in that time.) Thus, for any α, β ∈ {0, 1}k,

Pr [A(O(Cα,β),O(Dα,β)) = 1] = 1 (1)

Observe that any poly(k)-time algorithm S which has oracle access to Cα,β

and Dα,β has only exponentially small probability (for a random α and β) of
querying either oracle at a point where its value is nonzero. Hence, if we let Zk

be a Turing machine that always outputs 0k, then for every PPT S,
∣

∣Pr
[

SCα,β ,Dα,β (1k) = 1
]

− Pr
[

SZk,Dα,β (1k) = 1
]∣

∣ ≤ 2−Ω(k), (2)

where the probabilities are taken over α and β selected uniformly in {0, 1}k and
the coin tosses of S. On the other hand, by the definition of A we have:

Pr [A(O(Zk),O(Dα,β)) = 1] = 0 (3)



The combination of Equations (1), (2), and (3) contradict the fact that O is a
2-TM obfuscator.
In the above proof, we ignored the fact that we had to truncate the running

times of A and Dα,β . When doing so, we must make sure that Equations (1) and
(3) still hold. Equation (1) involves executing (a) A(O(Dα,β),O(Cα,β)), which in
turn amounts to executing (b) O(Dα,β)(O(Cα,β)). By definition (b) has the same
functionality asDα,β(O(Cα,β)), which in turn involves executing (c) O(Cα,β)(α).
Yet the functionality requirement of the obfuscator definition assures us that (c)
has the same functionality as Cα,β(α). By the polynomial slowdown property of
obfuscators, execution (c) only takes poly(10 · k) = poly(k) steps, which means
that Dα,β(O(Cα,β)) need only run for poly(k) steps. Thus, again applying the
polynomial slowdown property, execution (b) takes poly(k) steps, which finally
implies that A need only run for poly(k) steps. The same reasoning holds for
Equation (3), using Zk instead of Cα,β .

3 Note that all the polynomials involved
are fixed once we fix the polynomial p(·) of the polynomial slowdown property.
The proof for the 2-circuit case is very similar to the 2-TM case, with a

related, but slightly different subtlety. Suppose, for sake of contradiction, that
O is a 2-circuit obfuscator. For k ∈ N and α, β ∈ {0, 1}k, define Zk, Cα,β and
Dα,β in the same way as above but as circuits rather than TMs, and define
an adversary A by A(C,D) = D(C). (Note that the issues of A and Dα,β ’s
running times go away in this setting, since circuits can always be evaluated in
time polynomial in their size.) The new subtlety here is that the definition of
A as A(C,D) = D(C) only makes sense when the input length of D is larger
than the size of C (note that one can always pad C to a larger size). Thus, for
the analogues of Equations (1) and (3) to hold, the input length of Dα,β must
be larger than the sizes of the obfuscations of Cα,β and Zk. However, by the
polynomial slowdown property of obfuscators, it suffices to let Dα,β have input
length poly(k) and the proof works as before.

3.2 Obfuscating one TM/circuit

Our approach to extending the two-program obfuscation impossibility results to
the one-program definitions is to combine the two programs constructed above
into one. This will work in a quite straightforward manner for TM obfuscators,
but will require new ideas for circuit obfuscators.

Combining functions and programs. For functions, TMs, or circuits f0, f1 : X →

Y , define their combination f0#f1 : {0, 1} ×X → Y by (f0#f1)(b, x)
def
= fb(x).

Conversely, if we are given a TM (resp., circuit) C : {0, 1} × X → Y , we can

3 Another, even more minor subtlety that we ignored is that, strictly speaking, A only
has running time polynomial in the description of the obfuscations of Cα,β , Dα,β ,
and Zk, which could conceivably be shorter than the original TM descriptions. But
a counting argument shows that for all but an exponentially small fraction of pairs
(α, β) ∈ {0, 1}k × {0, 1}k, O(Cα,β) and O(Dα,β) must have description size Ω(k).



efficiently decompose C into C0#C1 by setting Cb(x)
def
= C(b, x); note that C0

and C1 have size and running time essentially the same as that of C. Observe
that having oracle access to a combined function f0#f1 is equivalent to having
oracle access to f0 and f1 individually.

Theorem 3.4. TM obfuscators do not exist.

Proof Sketch: Suppose, for sake of contradiction, that there exists a TM ob-
fuscator O. For α, β ∈ {0, 1}k, let Cα,β , Dα,β , and Zk be the TMs defined in the
proof of Proposition 3.3. Combining these, we get the TMs Fα,β = Cα,β#Dα,β

and Gα,β = Zk#Cα,β .
We consider an adversary A analogous to the one in the proof of Proposi-

tion 3.3, augmented to first decompose the program it is fed. That is, on input
a TM F , algorithm A first decomposes F into F0#F1 and then outputs F1(F0).
(As in the proof of Proposition 3.3, A actually should be modified to run in time
poly(|F |).) Let S be the PPT simulator for A guaranteed by Definition 2.1. Just
as in the proof of Proposition 3.3, we have:

Pr [A(O(Fα,β)) = 1] = 1 and Pr [A(O(Gα,β)) = 1] = 0
∣

∣Pr
[

SFα,β (1k) = 1
]

− Pr
[

SGα,β (1k) = 1
]∣

∣ ≤ 2−Ω(k),

where the probabilities are taken over uniformly selected α, β ∈ {0, 1}k, and the
coin tosses of A, S, and O. This contradicts Definition 2.1. 2

There is a difficulty in trying to carry out the above argument in the circuit
setting. (This difficulty is related to (but more serious than) the same subtlety
regarding the circuit setting discussed earlier.) In the above proof, the adversary
A, on input O(Fα,β), attempts to evaluate F1(F0), where F0#F1 = O(Fα,β) =
O(Cα,β#Dα,β). In order for this to make sense in the circuit setting, the size
of the circuit F0 must be at most the input length of F1 (which is the same as
the input length of Dα,β). But, since the output F0#F1 of the obfuscator can
be polynomially larger than its input Cα,β#Dα,β , we have no such guarantee.
Furthermore, note that if we compute F0, F1 in the way we described above (i.e.,

Fb(x)
def
= O(Fα,β)(b, x)) then we’ll have |F0| = |F1| and so F0 will necessarily be

larger than F1’s input length.
To get around this, we modify Dα,β in a way that will allow A, when given

Dα,β and a circuit C, to test whether C(α) = β even when C is larger than the
input length of Dα,β . Of course, oracle access to Dα,β should not reveal α and
β, because we do not want the simulator S to be able to test whether C(α) = β
given just oracle access to C and Dα,β . We will construct such functions Dα,β

based on pseudorandom functions [GGM86].

Lemma 3.5. If one-way functions exist, then for every k ∈ N and α, β ∈
{0, 1}k, there is a distribution Dα,β on circuits such that:

1. Every D ∈ Supp(Dα,β) is a circuit of size poly(k).



2. There is a polynomial-time algorithm A such that for any circuit C, and any
D ∈ Supp(Dα,β), A

D(C, 1k) = 1 iff C(α) = β.
3. For any PPT S, Pr

[

SD(1k) = α
]

= neg(k), where the probability is taken

over α, β
R
←{0, 1}k, D

R
←Dα,β, and the coin tosses of S.

Proof. Basically, the construction implements a private-key “homomorphic en-
cryption” scheme. More precisely, the functions in Dα,β will consist of three
parts. The first part gives out an encryption of the bits of α (under some private-
key encryption scheme). The second part provides the ability to perform binary
Boolean operations on encrypted bits, and the third part tests whether a se-
quence of encryptions consists of encryptions of the bits of β. These operations
will enable one to efficiently test whether a given circuit C satisfies C(α) = β,
while keeping α and β hidden when only oracle access to C and Dα,β is provided.
We begin with any one-bit (probabilistic) private-key encryption scheme

(Enc,Dec) that satisfies indistinguishability under chosen plaintext and non-
adaptive chosen ciphertext attacks. Informally, this means that an encryption
of 0 should be indistinguishable from an encryption of 1 even for adversaries
that have access to encryption and decryption oracles prior to receiving the
challenge ciphertext, and access to just an encryption oracle after receiving the
challenge ciphertext. (See [KY00] for formal definitions.) We note that such
encryptions schemes exist if one-way functions exist; indeed, the “standard” en-

cryption scheme EncK(b) = (r, fK(r) ⊕ b), where r
R
← {0, 1}|K| and fK is a

pseudorandom function, has this property.
Now we consider a “homomorphic encryption” algorithm Hom, which takes

as input a private-key K and two ciphertexts c and d (w.r.t. this key K), and
a binary boolean operation ¯ (specified by its 2× 2 truth table). We define

HomK(c, d,¯)
def
= EncK(DecK(c)¯DecK(d)).

It can be shown that such an encryption scheme retains its security even if the
adversary is given access to a Hom oracle. This is formalized in the following
claim:

Claim. For every PPT A,

∣

∣Pr
[

AHomK ,EncK (EncK(0)) = 1
]

− Pr
[

AHomK ,EncK (EncK(1)) = 1
]∣

∣ ≤ neg(k).

Proof of claim: Suppose there were a PPT A violating the claim.
First, we argue that we can replace the responses to all of A’S HomK-
oracle queries with encryptions of 0 with only a negligible effect on A’s
distinguishing gap. This follows from indistinguishability under chosen
plaintext and ciphertext attacks and a hybrid argument: Consider hy-
brids where the first i oracle queries are answered according to HomK

and the rest with encryptions of 0. Any advantage in distinguishing two
adjacent hybrids must be due to distinguishing an encryption of 1 from
an encryption of 0. The resulting distinguisher can be implemented using



oracle access to encryption and decryption oracles prior to receiving the
challenge ciphertext (and an encryption oracle afterwards).
Once we have replaced the HomK-oracle responses with encryptions

of 0, we have an adversary that can distinguish an encryption of 0 from
an encryption of 1 when given access to just an encryption oracle. This
contradicts indistinguishability under chosen plaintext attack. 2

Now we return to the construction of our circuit family Dα,β . For a key K,
let EK,α be an algorithm which, on input i outputs EncK(αi), where αi is the
i’th bit of α. Let BK,β be an algorithm which when fed a k-tuple of ciphertexts
(c1, . . . , ck) outputs 1 if for all i, DecK(ci) = βi, where β1, . . . , βk are the bits of
β. A random circuit from Dα,β will essentially be the algorithm

DK,α,β
def
= EK,α#HomK#BK,β

(for a uniformly selected key K). One minor complication is that DK,α,β is
actually a probabilistic algorithm, since EK,α and HomK employ probabilistic
encryption, whereas the lemma requires deterministic functions. This can be
solved in the usual way, by using pseudorandom functions. Let q = q(k) be the
input length of DK,α,β and m = m(k) the maximum number of random bits
used by DK,α,β on any input. We can select a pseudorandom function fK′ :
{0, 1}q → {0, 1}m, and let D′K,α,β,K′ be the (determinstic) algorithm, which on
input x ∈ {0, 1}q evaluates DK,α,β(x) using randomness fK′(x).
Define the distribution Dα,β to be D

′
K,α,β,K′ , over uniformly selected keys K

and K ′. We argue that this distribution has the properties stated in the lemma.
By construction, each D′K,α,β,K′ is computable by circuit of size poly(k), so
Property 1 is satisfied.
For Property 2, consider an algorithm A that on input C and oracle access to

D′K,α,β,K′ (which, as usual, we can view as access to (deterministic versions of)
the three separate oracles EK,α, HomK , and BK,α), proceeds as follows: First,
with k oracle queries to the EK,α oracle, A obtains encryptions of each of the
bits of α. Then, A uses the HomK oracle to do a gate-by-gate emulation of the
computation of C(α), in which A obtains encryptions of the values at each gate
of C. In particular, A obtains encryptions of the values at each output gate of C
(on input α). It then feeds these output encryptions to DK,β , and outputs the
response to this oracle query. By construction, A outputs 1 iff C(α) = β.
Finally, we verify Property 3. Let S be any PPT algorithm. We must show

that S has only a negligible probability of outputting α when given oracle access
to D′K,α,β,K′ (over the choice of K, α, β, K ′, and the coin tosses of S). By the
pseudorandomness of fK′ , we can replace oracle access to the function D′K,α,β,K′

with oracle access to the probabilistic algorithm DK,α,β with only a negligible
effect on S’s success probability. Oracle access to DK,α,β is equivalent to oracle
access to EK,α, HomK , and BK,β . Since β is independent of α and K, the
probability that S queries BK,β at a point where its value is nonzero (i.e., at a
sequence of encryptions of the bits of β) is exponentially small, so we can remove
S’s queries to BK,β with only a negligible effect on the success probability. Oracle



access to EK,α is equivalent to giving S polynomially many encryptions of each of
the bits of α. Thus, we must argue that S cannot compute α with nonnegligible
probability from these encryptions and oracle access to HomK . This follows from
the fact that the encryption scheme remains secure in the presence of a HomK

oracle (Claim 3.2) and a hybrid argument.

Theorem 3.6. If one-way functions exist, then circuit obfuscators do not exist.

Proof. Suppose, for sake of contradiction, that there exists a circuit obfuscator
O. For k ∈ N and α, β ∈ {0, 1}k, let Zk and Cα,β be the circuits defined in the
proof of Proposition 3.3, and let Dα,β be the distribution on circuits given by
Lemma 3.5. Fer each k ∈ N, consider the following two distributions on circuits
of size poly(k):

Fk: Choose α and β uniformly in {0, 1}
k, D

R
←Dα,β . Output Cα,β#D.

Gk: Choose α and β uniformly in {0, 1}
k, D

R
←Dα,β . Output Zk#D.

Let A be the PPT algorithm guaranteed by Property 2 in Lemma 3.5, and
consider a PPT A′ which, on input a circuit F , decomposes F = F0#F1 and
evaluates AF1(F0, 1

k), where k is the input length of F0. Thus, when fed a circuit
from O(Fk) (resp., O(Gk)), A

′ is evaluating AD(C, 1k) where D computes the
same function as some circuit from Dα,β and C computes the same function as
Cα,β (resp., Zk). Therefore, by Property 2 in Lemma 3.5, we have:

Pr [A′(O(Fk)) = 1] = 1 Pr [A′(O(Gk)) = 1] = 0.

We now argue that for any PPT algorithm S
∣

∣Pr
[

SFk(1k) = 1
]

− Pr
[

SGk(1k) = 1
]∣

∣ ≤ 2−Ω(k),

which will contradict the definition of circuit obfuscators. Having oracle access
to a circuit from Fk (respectively, Gk) is equivalent to having oracle access to

Cα,β (resp., Zk) and D
R
← Dα,β , where α, β are selected uniformly in {0, 1}

k.
Property 3 of Lemma 3.5 implies that the probability that S queries the first
oracle at α is negligible, and hence S cannot distinguish that oracle being Cα,β

from it being Zk.

We can remove the assumption that one-way functions exist for efficient
circuit obfuscators via the following (easy) lemma (proven in the full version of
the paper).

Lemma 3.7. If efficient obfuscators exist, then one-way functions exist.

Corollary 3.8. Efficient circuit obfuscators do not exist (unconditionally).

As stated above, our impossibility proof can be cast in terms of “inherently
unbfuscatable functions”:

Theorem 3.9 (inherently unobfuscatable functions). If one-way functions
exist, then there exists an inherently unobfuscatable function ensemble.



Proof. Let Fk and Gk be the distributions on functions in the proof of The-
orem 3.6,and let Hk be the distribution that, with probability 1/2 outputs a
sample of Fk and with probability 1/2 outputs a sample of Gk. We claim that
{Hk}k∈N is an inherently unobfuscatable function ensemble.
The fact that {Hk}k∈N is efficiently computable is obvious. We define π(f) to

be 1 if f ∈
⋃

k Supp(Fk) and 0 otherwise (note that (
⋃

k Supp(Fk))∩(
⋃

k Supp(Gk)) =
∅ and so π(f) = 0 for any f ∈

⋃

k Supp(Gk)). The algorithm A′ given in the proof
of Theorem 3.6 shows that π(f) can be computed in polynomial time from any
circuit computing f ∈ Supp(Hk). Because oracle access to Fk cannot be dis-
tinguished from oracle access to Gk (as shown in the proof of Theorem 3.6), it

follows that π(f) cannot be computed from an oracle for f
R
←Hk with probability

noticeably greater than 1/2.
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