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Abstract. We present a new generic black-box traitor tracing model
in which the pirate-decoder employs a self-protection technique. This
mechanism is simple, easy to implement in any (software or hardware)
device and is a natural way by which a pirate (an adversary) which is
black-box accessible, may try to evade detection. We present a necessary
combinatorial condition for black-box traitor tracing of self-protecting
devices. We constructively prove that any system that fails this condi-
tion, is incapable of tracing pirate-decoders that contain keys based on
a superlogarithmic number of traitor keys. We then combine the above
condition with specific properties of concrete systems. We show that the
Boneh-Franklin (BF) scheme as well as the Kurosawa-Desmedt scheme
have no black-box tracing capability in the self-protecting model when
the number of traitors is superlogarithmic, unless the ciphertext size is
as large as in a trivial system, namely linear in the number of users. This
partially settles in the negative the open problem of Boneh and Franklin
regarding the general black-box traceability of the BF scheme: at least
for the case of superlogarithmic traitors. Our negative result does not ap-
ply to the Chor-Fiat-Naor (CFN) scheme (which, in fact, allows tracing
in our self-protecting model); this separates CFN black-box traceability
from that of BF. We also investigate a weaker form of black-box trac-
ing called single-query “black-box confirmation.” We show that, when
suspicion is modeled as a confidence weight (which biases the uniform
distribution of traitors), such single-query confirmation is essentially not
possible against a self-protecting pirate-decoder that contains keys based
on a superlogarithmic number of traitor keys.

1 Introduction.

The problem of Traitor Tracing can be understood best in the context of Pay-
TV. In such a system there are n subscribers, each one possessing a decryption
box (decoder). The authority scrambles digital data and broadcasts it to all
subscribers, who use their decryption boxes to descramble the data. It is possible
for some of the users to collude and produce a pirate decoder: a device not
registered with the authority that can decrypt the scrambled digital content.
The goal of Traitor Tracing is to provide a method so that the authority, given
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a pirate decoder, is able to recover the identity of some of the legitimate users
that participated in the construction of the decoder (traitors). In such a system
piracy would be reduced due to the fear of exposure.
A standard assumption is that each user’s decoder is “open” (to the user)

so that the decryption key is recoverable. A set of users can combine their keys
in order to construct a pirate decoder. It is immediately clear that each user
should have a distinct private key, otherwise distinguishing traitors from non-
traitors would be impossible. Given the contents of a pirate decoder the authority
should be able to recover one of the traitors’ keys. A scheme that allows this,
is called a Traitor Tracing Scheme (TTS). A standard measure of the efficiency
of a TTS is the size of the ciphertexts. Constructing a TTS with linear (in the
number of users) ciphertexts is trivial; as a result the focus is on how to achieve
traitor tracing when the ciphertext size is sublinear in the number of users. An
additional requirement for TTSs is black-box traitor tracing, namely, a system
where tracing is done using only black-box access to the pirate decoder (namely,
only an input/ output access is allowed). To keep tracing cheap, it is extremely
desirable that the tracing algorithm is black-box.

Previous Work.
Let us first review the work of the various notions of traitor tracing. Traitor Trac-
ing was introduced in [CFN94,CFNP00], with the presentation of a generic TTS.
Explicit constructions based on combinatorial designs were given in [SW98b].
A useful variation of the [CFN94] scheme was presented in [NP98]. Public
key Traitor Tracing Schemes based on ElGamal encryption were presented in
[KD98,BF99]. In most settings (here also) it is assumed that the tracing au-
thority is trusted (i.e. the authority does not need to obtain a proof that a
certain user is a traitor); the case where the authority is not trusted was consid-
ered in [Pfi96,PS96,PW97]. An online approach to tracing, targeting pirate re-
broadcasting (called dynamic traitor tracing) was presented in [FT99]. A method
of discouraging users from sharing their decryption keys with other parties, called
self-enforcement, was introduced in [DLN96]. A traitor tracing scheme along
the lines of [KD98,BF99] combining self-enforcement and revocation capabilities
was presented in [NP00]. Further combinatorial constructions of traitor tracing
schemes in combination with revocation methods were discussed in [GSY99].
Previous work on black-box traitor tracing is as follows: a black-box traitor

tracing scheme successful against any resettable1 pirate decoder was presented in
[CFN94,CFNP00]. In [BF99], a black-box traitor tracing scheme was presented
against a restricted model called “single-key pirates”: the pirate-decoder uses
a single key for decryption without any other side computation (note that this
single key could have been a combination of many traitors’ keys). In the same
paper, a weaker form of black-box traitor tracing was presented: “black-box con-
firmation.” In this setting the tracer has a set of suspects and it wants to confirm
that the traitors that constructed the pirate decoder are indeed included in the
set of suspects. The work in [BF99] presented a single-query black-box confir-

1 A pirate decoder is called resettable if the tracer has a means of resetting the device
to its initial state for each trial.
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mation method: using a single query to the pirate decoder the tracer solves the
problem; multiple queries may be used to increase confidence. Black-box confir-
mation can be used for general tracing by trying all possible subsets. However
the resulting traitor tracing algorithm needs exponential time (unless the num-
ber of traitors is a constant). In [Pfi96], a piracy prevention behavior was noted,
dealing with the possibility of pirate decoders shutting down whenever an invalid
ciphertext (used for tracing, perhaps) is detected. In [BF01] a combination of
black-box confirmation and tracing appeared: extending the methods of [BF99]
it was shown how one can trace within the suspect set (which is assumed to
include all traitors) and recover one of the traitors. In addition, a new mode of
black box tracing was considered in [BF01] called minimal access black box trac-
ing: for any query to the pirate decoder, the tracer does not obtain the plaintext
but merely whether the pirate-decoder can decrypt the ciphertext and “play” it
or not (e.g. the case of a pirate cable-box incorporating a TV-set).

Our Results.
The Model: Our perspective on black-box traitor tracing is as follows: under
normal operation all users decrypt the same message; we say that in this case
all users are colored in the same way. As we will see, in order to trace a pirate
decoder in a black-box manner we have to disrupt this uniformity: color the
users using more than one color. A ciphertext that induces such a coloring over
the user population, will be called an “invalid” ciphertext. Tracing algorithms
will have to probe with invalid ciphertexts (we assume our tracing methods
to be aware of this fact). We consider a simple self-protection mechanism that
can be used by any pirate decoder in order to detect tracing: before decrypting,
the pirate decoder computes the projection of the induced coloring onto the set
of traitor keys (for some systems the stored keys can actually be combinations
of traitor keys). If the traitor keys are colored by two colors or more, then the
decoder knows that it is probed by the tracer, and can take actions to protect
itself. Computing the projection of the coloring onto the traitor keys is typically
not a time-consuming operation and can be implemented within any software
or hardware pirate decoder: prior to giving output the pirate decoder decrypts
the given input with all available traitor keys (or combinations thereof) that are
stored in its code. Since the decoder is black-box accessible, the presence of the
keys internally, does not reduce its evasion power.

Necessary Combinatorial Condition and Negative Results: By
adding the above simple self-protecting mechanism to the capabilities of pirate
decoders together with an appropriate reaction mechanism we present a condi-
tion that has to be satisfied by any TTS in order to be able to black-box trace
a pirate decoder that contains ω(log n) traitor keys. Namely, the condition that
most users should be colored in the same way. If this is not the case, we present
a strategy that can be followed by a pirate decoder of any type (involving the
previously stated self-protection mechanism) that defeats any black-box tracing
method with high probability, assuming randomly chosen traitors.

Necessary Condition and Negative Results for Confirmation: The
assumption above which underlies our negative result is that the choice of keys
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available to the pirate is randomly distributed over the keys of the user popula-
tion, i.e. the tracer has no a-priori idea about the identities of the traitors. In the
context of black-box confirmation the situation is different because it is assumed
that the tracer has a set of suspects, that are traitors with higher probability
compared to a user chosen at random. We formalize this setting (differently
from [BF01]) by assigning a “confidence level” function to the set of suspects
that measures the amplification of the probability that a user is a traitor given
that he belongs to the suspect set. Using this formalization we show that single-
query black-box confirmation fails against any pirate-decoder, provided that the
decoder contains a superlogarithmic number of traitor keys, and the confidence
level of the tracer is below a certain (explicitely defined) threshold. We note that
the confidence level exhibits a trade-off with the size of the suspect set, i.e. for
small suspect sets, the confidence of the tracer should be very high in order to be
successful in black-box confirmation. An immediate corollary of our result is that
single-query black-box confirmation can be successful against decoders including
a superlogarithmic number of traitor keys only in the case that the confidence
level of the tracer is so high that the probability that a user is a suspect given
that it is a traitor is arbitrarily close to 1. Note that in this case, confirmation
becomes quite localized (the tracer knows already that the suspect set contains
all traitors with very high probability; this type of confirmation is covered in
[BF01]).

Applying the Results to Concrete Systems:We continue by combin-
ing our negative results with specific properties of concrete schemes which we
analyze. First, we consider the Boneh-Franklin scheme [BF99] which possesses
many attractive properties (based on public key, small ciphertext size, determin-
istic tracing). We show that the scheme is incapable of black-box traitor tracing
when there are ω(log n) traitors in the self-protecting model, unless the scheme
becomes trivial (i.e. with ciphertexts of size linear in the number of users). This
partially (for the ω(log n) traitor case) settles in the negative the open problem
from [BF99] who asked whether [BF99] traceability can be extended to the gen-
eral black-box traitor tracing model of [CFN94,CFNP00] (i.e. black-box tracing
of any resettable pirate decoder). Note that this is not an inconsistency with the
black-box traitor tracing methods of [BF99], since they apply tracing against pi-
rate decoders of an explicit construction or against a constant number of traitors.
Similar negative results hold for the scheme of [KD98]. We note that our negative
results do not apply to the black-box tracing methods of [CFN94,CFNP00] since
their scheme is proved to work against any resettable pirate-decoder by (obvi-
ously not coincidentally) using colorings that satisfy the condition we show to be
necessary (most users are colored in the same way). Thus, our work can be seen
as retrofitting a design criterion for the early work of [CFN94] and it provides a
separation with respect to black-box traceability between [CFN94,CFNP00] and
[BF99,KD98]. Additionally, we show that black-box confirmation fails for both
[BF99,KD98] against a superlogarithmic number of traitors unless the confidence
level of the tracer is extremely high. Note again that this is not an inconsistency
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with the black-box confirmation result of [BF99] which allows the differently
modeled tracer’s confidence to be quite large.

Organization. To state negative results, careful modeling is required. We
define Multicast Encryption Schemes and non-black-box traitor tracing in sec-
tion 2, whereas in section 3 we formalize the concepts of black-box tracing and
coloring, and we provide the groundwork for the rest of the paper. In section 4
we prove the necessary condition for black-box traitor tracing (section 4.1), and
we identify families of TTSs that are incapable for black-box tracing (section
4.2). Black-box confirmation is discussed in section 4.3. The negative results
regarding the black-box traceability of the [BF99] and [KD98] schemes in the
“self-protecting” pirate-decoder model, are proven in section 5.1 and section 5.2
respectively.

2 Multicast Encryption Schemes

Any traitor tracing scheme is based on a Multicast Encryption Scheme (MES)
– a cryptographic primitive we formalize in this section. Let U := {1, . . . , n} be
the set of users. Let {Gw}w∈IN be some a family of sets of elements of length
w (e.g. Gw = {0, 1}

w). For a certain w, we fix the following sets: the message
space M ⊆ Gw; the ciphertext-space C ⊆ G

v
w; the user key-space D ⊆ G

u
w; v, u

express the dimension of ciphertext space and user key space respectively over
the message space. Without loss of generality we will assume that u ≤ v i.e. a
user key does not have to be “longer” than a ciphertext (this is justified by all
concrete MESs in the literature). Note that in a concrete MESM, C,D may be
of slightly different structure e.g. in the [BF99]-scheme M ⊆ Gq, C ⊆ Gv

q but
D ⊆ Zv−1

q (see section 5.1), but these differences are of minor importance here.
A function σ(n) will be called negligible if σ(n) < n−c for all c, for sufficiently
large n. For brevity we make the assumption that 1w is polynomially related to
n. A Multicast Encryption Scheme (MES) is a triple (G,E,D) of probabilistic
polynomial time algorithms with the following properties:

◦ Key Generation. On input 1w and n, G produces a pair (e,K) with
K ⊆ D, |K| = n.
◦ Encryption. c← E(1w,m, e); m ∈M, e : (e,K)← G(1w, n), (c ∈ C).
◦ Decryption. For any m ∈ M, (e,K) ← G(1w, n), if c ← E(1w,m, e),
then the probabilities Prob[m′ 6= m : m′ ← D(1w, d, c)] and Prob[m′ 6=
m′′ : m′ ← D(1w, c, d),m′ ← D(1w, c, d′)] are negligible, for any keys
d, d′ ∈ K. The first probability states that incorrect decryption event is
negligible whereas the second probability states that all user keys decrypt
the same word but with negligible error.

Note that the above scheme can be either public or secret key. It is easy to
adapt the standard notions of semantic security or chosen-ciphertext security for
MESs.
Let F be the set of functions of (IN → IN) s.t. f ∈ F if and only if f is

non-decreasing and constructible (i.e., there is an algorithm M s.t. on input n,
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M outputs the string 0f(n)). Moreover, for any f, g ∈ F it holds that either
(a) ∃n0 ∀n ≥ n0 (f(n) = g(n)) (b) ∃n0 ∀n ≥ n0 (f(n) > g(n)) (c) ∃n0 ∀n ≥
n0 (f(n) < g(n)) (i.e. it is possible to define a total order over F). Since we are
interested only in functions less than n, we assume that ∀f ∈ F it holds that
∀n(f(n) ≤ n). To facilitate traitor tracing, some additional security requirements
have to be imposed.
Non-Triviality of Decryption. For any probabilistic polynomial time al-
gorithm A the following probability is negligible for almost all messages m:
Prob[m = m′ : m′ ← A(1w, c); c ← E(1w,m, e)]. This property ensures that
there are no “shortcuts” in the decryption process. Namely, decryption with-
out access to a key amounts to reversing a one-way function, thus for effective
decryption one needs some or a combination of the designated user keys.
Key-User correspondence. It should be guaranteed that each user does not
divulge its own key; more generally that a user is responsible when its key
is being used for decryption. This should apply to collusions of users as well.
More specifically, given t ∈ F , there should be no probabilistic polynomial-time
algorithm working with non-negligible success probability that given the keys of
a set of subscribers di1 , . . . , dik with k ≤ t(n), and all other public information,
and is able to compute one additional private key dj with j 6∈ {i1, . . . , ik}.
Non-Ambiguity of Collusions. The user keys are drawn from a key-space De

defined for each encryption key e; i.e. De ⊆ G
u
w contains all d that can be used

to invert e. Obviously De ⊇ K, if (e,K)← G(1w, n). Then, the following holds:
Given t ∈ F ; let A,B be probabilistic polynomial algorithms. Given T1, T2 two
disjoint subsets of K, of cardinality less or equal to t(n). Let I1, I2 be all private
and public information available to T1, T2 correspondingly. Then the following
probability is negligible Prob[d = d′ ∧ (d ∈ De) : d ← A(T1, I1, 1

w), d′ ←
B(T2, I2, 1

w)].
Non-ambiguity of collusions requires that two disjoint sets of users cannot

generate the same decryption key. It is an essential property of any traitor-
tracing scheme, since if it fails it is immediately possible to generate instances
where tracing is impossible due to ambiguity.

Definition 1. Traitor Tracing Scheme (non-black-box). Given t, f, v ∈ F ,
a MES satisfying non-triviality of decryption, key-user correspondence for t(n),
non-ambiguity of collusions for t(n) and, in addition, has wv(n) ciphertext size,
is called a 〈t(n), f(n), v(n)〉-Traitor Tracing Scheme (TTS) if there exists a
probabilistic polynomial time algorithm B (tracing algorithm) s.t. for any set
T ⊆ K, (e,K) ← G(1w, n), with |T | ≤ t(n) and any probabilistic polynomial
time algorithm A that given T and all public information outputs d ∈ De, it
holds that: Prob[τ ∈ T : τ ← B(d,K, 1w), d← A(T, 1w)] ≥ 1/f(n).

Because of key-user correspondence, the recovery of τ is equivalent to ex-
posing a traitor. Note that in the non-black-box setting it is assumed that the
decoder is “open” and because of the non-triviality of decryption a decryption
key is available to the tracer. Black-Box Traitor Tracing Schemes where the trac-
ing algorithm does not have access to keys (but only black box access to devices)
are discussed in the next section.
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3 Black-Box Traitor Tracing : Preliminaries

3.1 Colorings

Consider an MES with given w, (e,K). A coloring of the user population is
a partition ∪iCi of U . Let s ∈ Gvw (an element from the extended ciphertext
space) induces a coloring over U as follows: Define a relation over K: d ≡ d′

iff D(1w, d, s) = D(1w, d′, s). Note that if D is deterministic then this is an
equivalence relation. The coloring can be defined as the set of all the equivalence
classes of ≡. If D is probabilistic (with negligible error) we define ≡ as d ≡ d′ iff
Prob[D(1w, d, s) 6= D(1w, d′, s)] is negligible.
If c← E(1w,m, e) for somem ∈M (i.e., c is a “real or valid ciphertext”) then

it holds that for all d, d′ ∈ K, D(1w, d, c) = D(1w, d′, c) (with high probability
if D is probabilistic), therefore there is only one equivalence class induced by c,
i.e. all users are colored by the same color (we call such a coloring trivial). Let
X1 be the subset of G

v
w s.t. ∀s ∈ X1, s induces a trivial coloring (with negligible

error). Obviously the valid ciphertexts constitute a subset of X1.
We say that an MES can induce a coloring ∪iCi if there is an algorithm

that produces a string s s.t. the string s induces the coloring ∪iCi over the user
population. Note that a decryption algorithm of some sort may not necessarily
return one of the “color labels” i.e. the elements of the set {D(1w, d, s) | d ∈ K}
(this can happen if the decryption algorithm operates with some “compound”
decryption key – that has been derived from combining more than one of the
users’ keys).

3.2 Black-Box Traitor Tracing Schemes

The black-box tracing algorithm R and the pirate decoder algorithm B are
probabilistic polynomial-time Turing machines with communication and output
tapes. B incorporates a correct decoding algorithm: i.e. given a valid ciphertext it
decrypts it, by running the decryption algorithm D with some key d that inverts
e (note that d is not necessarily one of the user keys, but it is an element of De by
the non-triviality of decryption property; also note that d may change from one
decryption to the next). In the terminology of the previous section this means
that if all traitor keys are colored in the same way the pirate decoder is bound to
decrypt properly. If B, on the other hand, finds that something is wrong with the
encryption it may take measures to protect itself, e.g. it may return a random
word. The set of user keys that are employed in the construction of B is denoted
by T (due to key-user correspondence the set T can be also defined to be the set
of traitor users). The tracing algorithm R is allowed oracle access to B, namely,
R can adaptively generate input strings s (queries) for B and B, in response,
will return a value (which is a correct decryption if s is a valid ciphertext).

From now on we will use the following notation: ∪
k(n)
i=1 Cn

i denotes a coloring
induced over the user population by some s of Gvw; ci(n) will denote the cardi-
nality of Cn

i . Note that for any n, it holds that k(n), ci(n) ∈ {1, . . . , n}; with
this in mind we will use standard asymptotic notation to express the relation
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of these functions to n, e.g. k(n) = Θ(n) means that the number of colors is
linear in n etc. We make the assumption that the functions k(n), ci(n) that are
related to colorings produced by R are always in F . Note that occasionally we
may suppress “(n)” and write k instead of k(n) etc.

Definition 2. For t, f ∈ F , we say that a polynomial-time (in n) probabilistic
algorithm R is a 〈t(n), f(n)〉-tracer if for any set of traitors T ⊆ U s.t. |T | ≤
t(n) and for any polynomial-time pirate-decoder algorithm B that was created
using the keys of T , RB given all user keys, outputs a user with non-negligible
probability in n, who is in the traitor set with probability at least 1/f(n).

In this paper we consider tracers R which are non-ambiguous, i.e., when they
probe the decoder they know that their queries are valid ciphertexts or invalid
ones.
We will refer to the function f as the uncertainty of the tracer. Obviously

obtaining a tracer with Θ(n) uncertainty for any MES is very simple: merely
output any user at random achieves that. The other extreme is a tracer with
uncertainty Θ(1) (ideally uncertainty=1), that no matter how large is the user
population it returns a traitor with constant probability of success.

Remark 3. Consider the tracing approach of accusing any user at random. As
stated above this has linear uncertainty and is obviously not useful in any setting.
Suppose now that we have a lower bound on the number of traitors ω(t′(n)); the
uncertainty of this tracing approach becomes n/t′(n) which can be sublinear if
t′(n) is not a constant. Nevertheless because we would like to rule it out as a
way of tracing we say that the uncertainty is still linear — and therefore not
acceptable (but it is linear in n′ = n/t′(n) instead of n); abusing the notation
we may continue to write that the uncertainty in this case is Θ(n)).

Definition 4. For some t, f, v ∈ F , a 〈t(n), f(n), v(n)〉-Black-Box Traitor Trac-
ing Scheme (BBTTS), is an MES that (1) satisfies key-user correspondence and
non-ambiguity of collusions for t(n), (2) satisfies non-triviality of decryption,
(3) it has v(n)w ciphertext size, and (4) there is an 〈t(n), f(n)〉-tracer so that
all colorings used by the tracer can be induced by the MES.

We say that an MES is incapable of Black-Box Tracing collusions of size t(n)
if any polynomial-time tracer R has linear uncertainty (i.e., it is a 〈t(n), Θ(n)〉-
tracer).
The proof technique for establishing the fact that a BBTTS is incapable of

black-box traitor tracing is the following: for any tracer R that can be defined
in the BBTTS there is another algorithm R′ that operates without oracle access
to B so that the outputs of R and R′ are essentially identical (i.e. they can be
different in at most a negligible fraction of all inputs). More specifically the oracle
B can be simulated without knowing any information pertaining to B. In such
a case we will state that the tracer essentially operates without interacting with
the decoder and as a result it will be immediate that it has linear uncertainty
(similar to the fact that any algorithm trying to guess a result of a coin flip
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without interacting with any agents which know the result of the coin cannot
have probability greater than 1/2). A preliminary result on tracing follows; we
show that strings that induce the trivial coloring over the user population are
useless for tracing:

Proposition 5. Queries which are elements of X1 do not help in reducing the
uncertainty of a tracer.

Proof. If the R algorithm uses an element of X1 for querying the pirate decoder
then, the pirate decoder decrypts normally. This answer can be simulated by
any decryption box. In particular, since the tracer is non-ambiguous it knows
that it can generate the answer itself using any of the user keys (since it knows
all user keys). ut

We will assume that the number of traitors in any pirate decoder is sublinear
in n, and as it is customary, we will give to the tracer the advantage of knowing
a (sublinear) upper bound on the number of traitors. Additionally we would
like to point out that our negative results on traitor tracing are not based on
history-recording capabilities of the pirate decoder (i.e. B as an oracle does not
have access to the previously asked queries). As a result the tracer is allowed
to reset the decoder in its initial state after each query. In addition, our results
apply even when the tracer has access to the randomness used by the pirate
decoder.

4 Necessary Conditions for Black-Box Traitor Tracing

4.1 Combinatorial Condition

In this section we establish the fact that if the number of traitor keys is su-
perlogarithmic in the user population size, it is not possible to trace without
the decoder noticing it, unless queries of a specific type are used. We denote

by ∪
k(n)
i=1 Cn

i ↓ T the projection of a coloring onto the traitor keys. Any pirate
decoder can easily compute ∪Cn

i ↓ T ; this is done by merely applying the de-
cryption algorithm with each traitor key onto the given element s. Since this
is a straightforward process we assume that any pirate decoder implements it.
Obviously, if ∪Cn

i ↓ T contains more than one color then the decoder “under-
stands” it is being traced. In some systems, rather than projecting on individual
traitor keys, one can project on combinations thereof (and thus reduce storage
and computation requirements).

Theorem 6. Suppose that a pirate decoder containing t(n) = ω(log n) traitor
keys, randomly distributed over all user keys, is given a query s ∈ Gvw that induces

a non-trivial coloring ∪
k(n)
i=1 Cn

i over the user population. Suppose further, that the
coloring has the property ¬(∃i ci(n) = n − o(n)). Then, the probability that the
pirate decoder does not detect it is being queried by the tracer is negligible in n.



10 Aggelos Kiayias and Moti Yung

Proof. (recall that |Cn
i | = ci(n) for i = 1, . . . , k; c1(n) + . . . + ck(n) = n) Since

t(n) and ci(n) for i = 1, . . . , k are elements of F , without loss of generality we
assume that ci(n) ≥ t(n) for all i = 1, . . . , ` with ` ≤ k, for sufficiently large n.
Obviously if ` = 0 the decoder detects it is being traced.
Recall that we occasionally write t instead of t(n) and ci instead of ci(n). The

total number of ways the pirate keys may be distributed over the user population
are

(

n
t

)

. Similarly, the number of ways in which the decoder cannot detect that it

is being traced is
∑`

i=1

(

ci
t

)

. The probability that the decoder cannot detect that

it is being traced is P :=

∑

`

i=1
(cit )

(nt)
= (c1)t+...+(c`)t

(n)t
, where (m)v := m!/(m− v)!.

For sufficiently large n there will be a m ∈ {1, . . . , `} s.t. cm(n) ≥ ci(n) for all
i = 1, . . . , k.

The probability P is then: (c1)t+...+(c`)t
(n)t

≤ `(cm)t
(n)t

≤ n(cm)t
(n)t

. Therefore we only

need to show that (cm(n))t/(n)t is negligible in n. We consider two sub-cases:
(i) There exists a real number α > 1 such that n ≥ αcm(n) for sufficiently
large n. Then, (cm)t/(n)t ≤ (cm)t/(αcm)t. It holds that

cm−i
αcm−i

≤ 1
α
for any

i = 0, . . . , t − 1, (recall that cm ≥ t). Then (cm)t/(n)t ≤ 1/α
t which obviously

is negligible since α > 1 and t = ω(log n): in details, 1/αt < 1/nd for any
constant d and sufficiently large n; equivalently nd < αt or αd logα n < αt or
t := t(n) > d logα n, which is true since t(n) = ω(log n).
(ii) There is no α > 1 with n ≥ αcm(n). Since cm(n) ≤ n though, there has
to be a function f(n) ∈ F s.t. cm(n) = n − f(n). If f(n) = Θ(n) there is a
0 < β ≤ 1 s.t. f(n) ≥ βn. The case β = 1 is not possible since we deal with
elements which induce coloring and cm = 0 is impossible. In the case β < 1 we
have that n− f(n) ≤ n− βn or equivalently n ≥ 1/(β − 1) · cm(n) therefore we
are in case (i) since 1/(β − 1) > 1 (i.e. α := 1/(β − 1)). Finally if f(n) = o(n)
we fall into the case excluded by the theorem. ut

The Theorem asserts that a decoder detects that it is being queried unless
most users are colored in the same way. Namely, the negation of the Theorem’s
condition ¬(∃i ci(n) = n − o(n)) is that there is an i s.t. almost all users are
colored in the same way (ci(n) = n − o(n)). By “almost all” we mean that
ci(n)/n→ 1 when n→∞.

4.2 Negative Results

In this section we discuss how a pirate decoder can take advantage of Theorem 6
in order to protect itself. Specifically we show that there is a deterministic self-
protecting strategy for any pirate decoder: when the pirate decoder detects tracing
it returns “0” (a predetermined output). This strategy is successful for decoders
containing enough traitor keys. The next Theorem asserts that any BBTTS
whose underlying MES can only produce ciphertexts that are either valid or do
not color most users in the same way (as discussed in the previous section) has
Θ(n) uncertainty for any pirate decoder that incorporates t(n) = ω(log n) traitor
keys.
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Theorem 7. Given an 〈t(n), f(n), v(n)〉-BBTTS s.t. the underlying MES can

only induce colorings ∪
k(n)
i=1 Cn

i with the property (k(n) = 1) ∨ ¬(∃i ci(n) = n −
o(n)) then it holds that if t(n) = ω(log n) then f(n) = Θ(n).

Proof. Assume that the decoder employs t(n) traitor keys. The algorithm fol-
lowed by the decoder is the following: before decrypting, it computes ∪Cn

i ↓ T .
If all traitor keys are colored in the same way, it decrypts using any key. If there
is more than one color the decoder returns “0”.
The coloring conditions on the MES assures that an invalid ciphertext will be

detected by the pirate decoder based on Theorem 6. Consequently the decoder
on an invalid ciphertext will return “0” with overwhelming probability. On the
other hand, any element in X1 will be properly decrypted. Since the tracer is
non-ambiguous, the oracle can be simulated with overwhelming probability. So
the tracer essentially operates without interacting with the decoder. By remark
3 the uncertainty of the scheme is Θ(n). ut

The pirate decoder strategy used in the proof above can be defeated by a
tracer that is able to produce colorings s.t. n−o(n) users are colored in the same
way. This is achieved in the MES of [CFNP00], and a black-box traitor tracing
method which uses such colorings is presented there.

4.3 Negative Results for Black-Box Confirmation

Black-Box Confirmation is an alternative form of revealing some information
about the keys hidden in the pirate decoder. Suppose that the tracer has some
information that traitors are included in a set of suspects S and wants to confirm
this. The fact that the tracer has some information about the traitor keys means
that they are not randomly distributed over all users’ keys and therefore Theorem
6 is not applicable (in fact, biasing the distribution of a potential adversary is,
at times, a way to model suspicion). Under such modeling, we can show a strong
negative result for single-query black-box confirmation, i.e. when a single query
is sent to the pirate-decoder that induces the same color on the suspects and
different color(s) on other users. If the pirate decoder returns the color label
associated to the suspect set then the suspicion is confirmed (note that this is
exactly the black-box confirmation method used in [BF99]).
The change of the distribution of the traitor keys can be modeled as follows:

the probability Prob[i ∈ T |i ∈ S] = α(n)Prob[i ∈ T ] where α(n) > 1 for
sufficiently large n; note that when the tracer has no information it holds that
α(n) = 1. Let us fix t the size of the traitor set. We will denote the distribution
of t-sets of potential traitor keys by DS,α, and refer to α(n) as the advantage
of the tracer. For example, for t = 1 the probability of all T inside S is α/n,
whereas the probability of all other T ’s is n−αs

n(n−s) . As usual, we allow the tracer

to know an upper bound on the number of traitors’ keys and therefore |S| ≥ |T |.

Lemma 8. Let S be a set of users such that s(n) := |S| and an α(n) ∈ F such
that s(n)α(n) ≤ cn for some c ∈ (0, 1). Suppose that a pirate decoder employing
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t(n) = ω(log n) traitor keys, distributed according to DS,α, is given a query
that induces the following coloring over the user population: the users in S are
colored in the same way and the remaining users in different color(s). Then, the
probability that the traitor set is included in the suspect set is negligible in n.

Proof. For simplicity we write s, α instead of s(n), α(n) respectively. We show
that the probability Prob[T ⊆ S], when T is distributed according to DS,α, is
negligible.
It is easy to see that Prob[T ] = αt/

(

n
t

)

(when T is distributed according

to DS,α and T ⊆ S), and as a result Prob[T ⊆ S] = αt
(

s
t

)

/
(

n
t

)

. The fact that

sα ≤ cn implies α(s−i)
n−i

≤ c for any i > 0; as a result it holds that αt
(

s
t

)

/
(

n
t

)

< ct.
Since 0 < c < 1 and t = ω(log n) the probability is negligible. ut

Theorem 9. Single-Query Black-Box Confirmation with a suspect set S and
confidence α(n) is not possible against any pirate-decoder which contains t(n) =
ω(log n) traitor keys, provided that |S|α(n) ≤ cn for some constant c ∈ (0, 1).

Proof. Suppose that the pirate decoder returns “0” when it detects an invalid
ciphertext. Then, by lemma 8 with overwhelming probability not all the traitors
are in the suspect set, thus the pirate decoder will return the color label of the
suspect set with negligible probability in n. As a result single-query black-box
confirmation will fail. ut

Note the trade-off between the size of S and the advantage α(n). How large
should be the advantage of the tracer so that single-query black-box confirmation
is possible? it should hold that α(n)|S| = n − o(n). In this case it holds that
Prob[i ∈ S|i ∈ T ] = Prob[(i ∈ S) ∧ (i ∈ T )]/Prob[i ∈ T ] = α(n)Prob[(i ∈
S) ∧ (i ∈ T )]/Prob[i ∈ T |i ∈ S] = α(n)Prob[i ∈ S] → 1, when n → ∞ (under
the condition that α(n)|S| = n− o(n)). This, together with the above Theorem
imply:

Corollary 10. Single-query Black-box confirmation is impossible against any
pirate decoder that includes t(n) = ω(log n) traitor keys, unless the probability
that a user is a suspect given that it is a traitor is arbitrarily close to 1.

Some remarks should be placed herein: (1) Prob[i ∈ S|i ∈ T ] is arbitrarily
close to 1, means that the confidence level of the tracer is so high that it “forces”
T to be a subset of S (for more discussion on confirmation in this case and the
relation to the black-box confirmation results of [BF01] see subsection 5.1). (2)
We do not rule-out black-box confirmation with smaller confidence levels in
different models or by multiple-queries that do not directly color the suspect set
in a single color and the remaining users differently.

5 From Necessary Conditions to Concrete Systems

In this section, we apply our generic necessary condition results to concrete
systems. We actually analyze specific properties of the schemes of [BF99,KD98];
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these properties in combination with the generic results reveal inherent black-box
tracing limitations of these schemes in the self-protecting model. This demon-
strates that these schemes are, in fact, sensitive to the self-protection property of
our model and the number of traitors. This shows the power of the self-protecting
pirate model, since in more restricted pirate models (restricting the power of the
pirate decoder or the number of traitors) tracing was shown possible, whereas
we get negative results for the more general model defined here. We note that
below we will assume that self-protection involves decryption with traitor keys.
However, achieving self-protection using a linear combination of traitor keys is
possible as well; in which case the actual traitor keys are not necessarily stored
and the storage as well as the computation of the pirate can be reduced.

Our results can be seen as a separation of the schemes of [BF99,KD98] and the
scheme of [CFN94,CFNP00] with respect to black-box traceability. In the latter
scheme our self-protection method fails to evade tracing, since the ciphertext
messages induce colorings which fall into the exception case of Theorem 6 and
the tracing method, in fact, employs such ciphertexts.

5.1 The [BF99]-scheme

Description. We present the basic idea of the Boneh and Franklin scheme
[BF99]. All base operations are done in a multiplicative group Gq in which
finding discrete logs is presumed hard, whereas exponent operations are done in
Zq. Vectors (denoted in bold face) are in Zv

q and a · b denotes the inner product
of a and b. Given a set Γ := {γ1, . . . ,γn} where γi is a vector of length v, and
given random r := 〈r1, . . . , rv〉 and c ∈ Zq, we select di = θiγi, i = 1, . . . , n such
that ∀i r ·di = c, where n is the number of users (i.e. we select θi := c/(r ·γi)).
The vector γi is selected as the i-th row of an (n×v)-matrix B where the columns
of B form a base for the null space of A, where A is an (n− v)×n matrix where
the i-th row of A is the vector 〈1i, 2i, . . . , ni〉, i = 0, . . . , n− v − 1.
The public key is 〈y, h1, . . . , hv〉, where hj = grj and y = gc, where g is a

generator of Gq. Note that all vectors di are representations of y w.r.t the base
h1, . . . , hv. Vector di is the secret key of user i. Encryption is done as follows:
given a message M ∈ Gq, a random a ∈ Zq is selected and the ciphertext is
〈Mya, ha1 , . . . , h

a
v〉. Given a ciphertext, decryption is done by applying di to the

“tail” of the ciphertext: ha
1 , . . . , h

a
v pointwise, in order to obtain ya by multiplica-

tion of the resulting points, and then M is recoverable by division (cf. ElGamal
encryption). In [BF99] a tracing algorithm is presented showing that the scheme
described above is a 〈t(n), 1, 2t(n)〉-TTS. It is also shown that their scheme is
black-box against pirate decoders of specific implementations (“single-key pi-
rate”, “arbitrary pirates”). We next investigate further black-box capabilities of
the [BF99]-scheme.

Negative Results. Suppose that we want to induce a coloring ∪
k(n)
i=1 Cn

i in the
[BF99] scheme. Given a (possibly invalid) ciphertext 〈C, gr1x1 , . . . , grvxv 〉, user i
decrypts as follows: C/gr1x1(di)1+...+rvxv(di)v . Thus, we can color user i by the
color label C/gθici (the value of the decryption by the user) provided that we
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find the x1, . . . , xv such that r1x1(di)1 + . . .+ rvxv(di)v = θici. This can be
done by finding a z := 〈z1, . . . , zv〉 s.t. γi · z = ci for all i = 1, . . . , n. Given
such a z we can compute the appropriate x-values to use in the ciphertext as
follows: xj = zj(rj)

−1 for j = 1, . . . , v. Note that for valid ciphertexts it holds
that z = ar for some a ∈ Zq (and as a result x1 = . . . = xv = a).
Next we present a property of the Boneh-Franklin scheme, showing that an

invalid ciphertext (namely, a ciphertext which induces more than one color),
cannot color too many users by the same color.

Theorem 11. In the [BF99]-MES, given a (possibly invalid) ciphertext that
induces a coloring over the user population so that v users are labelled by the
same color then all users are labelled by the same color.

Proof. Suppose that the ciphertext 〈C, gr1x1 , . . . , grvxv 〉 colors user i by label
C/gθici to user i, and that v users are colored by the same label. Let c′

i := r ·γi,
for i = 1, . . . , n. Without loss of generality assume that users 1, . . . , v are colored
by the same label. Then it holds that θ1c1 = . . . = θvcv or equivalently c1/c

′
1 =

. . . = cv/c
′
v. Let a := c1/c

′
1. Then we have that c1 = ac′

1, . . . , cv = ac′
v.

Define z = 〈z1, . . . , zv〉 s.t. zj = rjxj for j = 1, . . . , v. It follows that γi · z =
ci, for i = 1, . . . , n (we call this system of equations system 1). Because it holds
that γi · (ar) = ac′

i for i = 1, . . . , v (and this will hold for any v users) it
follows that z = ar provided (which we show next) that γ1, . . . ,γv are linearly
independent (since in this case system 1 is of full rank, and as a result it has
a unique solution). Since z = ar it follows that x1 = . . . = xv = a, i.e. the
ciphertext 〈C, gr1x1 , . . . , grvxv 〉 is valid.
To complete the proof we have to show that any v vectors of Γ = {γ1, . . . ,γn}

are linearly independent. Suppose, for the sake of contradiction, that γ1, . . . ,γv

are linearly dependent. Recall that γi is the i-th row of a (n×v)−matrix B where
the columns of B constitute a base of the null space of the (n − v) × n-matrix
A. Let us construct another base as follows: the null space of A contains all n-
vectors x := 〈x1, . . . , xn〉 such that Ax

T = 0. Choose x1, . . . , xv as free variables
and solve the system AxT = 0 (the system is solvable since if we exclude any
v columns of A the matrix becomes the transpose of a Vandermonde matrix of
size n − v; due to this fact the choice of the “first” v γ vectors is without loss
of generality). Solving the system like this will generate a base B ′ for the null
space of A so that the first v rows of B′ contain the identity matrix of size v.
But then it is easy to see that there are vectors in the span of B ′ that do not
belong in the span of B, a contradiction. As a result γ1, . . . ,γv should be linearly
independent. The same argument holds for any other v vectors of Γ . ut

By theorem 7 we know that almost all users (n − o(n)) should be colored
in the same way in order for the pirate-decoder to be unable to detect tracing.
However, by the previous Theorem it holds that at most v−1 users can be colored
in the same way (otherwise the coloring becomes trivial which means that the
ciphertext does not constitute a query which helps in tracing by Proposition 5).
As a result it should hold that v = n − o(n); note that in this case v/n → 1 if
n→∞. As a result we obtain the following corollary:
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Corollary 12. Let 〈t(n), f(n), v(n)〉-BBTTS be a scheme based on the [BF99]-
MES. If t(n) = ω(log n) then it holds that either f(n) = Θ(n) or that v(n) =
n− o(n).

Essentially this means that the [BF99]-scheme is incapable of black-box trac-
ing superlogarithmic self-protecting traitor collusions unless the ciphertext size
is linear in the number of users.

Regarding single-query black-box confirmation (introduced in [BF99]) we
showed that when suspicion is modeled as biasing the uniform distribution, where
suspects are distinguished by increasing the probabilistic confidence in them
being traitors, then as a result of section 4.3 it holds that:

Corollary 13. In the [BF99]-scheme, Single-query Black-box confirmation is
impossible against a pirate decoder which includes t(n) = ω(log n) traitor keys,
unless the probability that a user is a suspect given that it is a traitor, is arbi-
trarily close to 1.

Note: in [BF01], a more sophisticated combination of black-box confirmation
with traitor tracing is presented. The scheme is a single-query black-box confir-
mation in principle, but multiple queries that induce different colorings within
the suspect set are employed, until a traitor is pinned down. Our negative re-
sults for black-box confirmation (in the self-protecting model variant) apply to
this setting as well. The arguments in [BF01] are plausible in the “arbitrary pi-
rates” model (including self-protecting one). For the method to work, however,
they assume “compactness” (called confirmation requirement), namely that it
is given that all traitors are within the suspect list. Our results point out that
without this compactness, relying solely on likelihood (modeled as probability),
successful confirmation is unlikely unless there is a very high confidence level
(which will enforce the “compactness condition” almost always). Our results do
not dispute black-box confirmation under compactness but rather point to the
fact that obtaining (namely, biasing a uniform distribution to get) a “tight”
suspect set S which satisfies compactness at the same time can be hard.

5.2 The [KD98]-scheme

Description. The scheme of Kurosawa and Desmedt is defined as follows: a
random secret polynomial f(x) = a0 + a1x + . . . avx

v is chosen and the values
ga0 , . . . , gav are publicized (the public key of the system). User i is given f(i) as
its secret key. A message s is encrypted as follows: 〈gr, sgra0 , gra1 , . . . , grav 〉, were
r is chosen at random. User i decrypts as follows: sgra0gra1i . . . gravi

v

/grf(i) = s.
It is more convenient to think of the secret key of user i as 〈f(i), i〉 where
i := 〈1, i, i2, . . . , iv〉. In [KD98] it was proven that their scheme satisfies key-user
correspondence for collusions of up to v users provided the discrete-log problem
is hard. However non-ambiguity of collusions was overlooked, something pointed
out in [SW98a] and in [BF99].
The problem arises from the fact that the set of possible keys used also

includes linear combinations of user keys: 〈
∑t

m=1 αmf(im),
∑t

m=1 αmim〉 where
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αm ∈ Zq with
∑t

m=1 αm = 1 and i1, . . . , it ∈ {1, . . . , n}. This tuple can also be
used for decryption since: given 〈gr, sgra0 , gra1 , . . . , grav 〉, one may compute

sgra0gra1

∑

t

m=1
αm(im)1 . . . grav

∑

t

m=1
αm(im)v/gr

∑

t

m=1
αmf(im) = s

To achieve non-ambiguity of collusions we would like to show that given any
two subsets of users i1, . . . , it and j1, . . . , jt it should hold that {

∑t
m=1 αmim |

α1, . . . , αm}∩{
∑t

m=1 αmjm | α1, . . . , αm} = ∅. Something that can be true only
if v ≥ 2t i.e. v should be twice the size of the biggest traitor collusion allowed. In
the light of this, it is not known if it is possible to trace traitors in this scheme
(even in the non-black-box setting). The only known approach is the brute-force
“black-box confirmation” for all possible traitor subsets suggested in [BF99]
that needs exponential time (unless the number of traitors is assumed to be a
constant). Despite this shortcoming the [KD98]-scheme is a very elegant public-
key MES that inspired further work as seen in the schemes of [BF99,NP00]. In
the rest of the section we show that the [KD98]-scheme has similar black-box
traitor tracing limitations as the [BF99]-scheme.

Negative Results. Suppose we want to induce the coloring ∪ki=1C
n
i in the

[KD98]-MES. Given a (possibly invalid) ciphertext 〈gr, sgx0a0 , gx1a1 , . . . , gxvav 〉,

user i applies 〈f(i), i〉 to obtain sg

∑

v

j=0
xjaj(i)j−rf(i)

= sg

∑

v

j=0
(xj−r)aj(i)j . So

we can color each user by a color-label sgci , if we find a z s.t. z · i = ci for all
i = 1, . . . , n; given such a z we can compute the appropriate x0, . . . , xv values
to use in the ciphertext as follows: xj = zj(aj)

−1+ r for j = 0, . . . , v. The set of
all valid ciphertexts corresponds to the choice z = 0 (and in this case it follows
that x0 = . . . = xr), nevertheless the choice of z = 〈a, 0, . . . , 0〉 also colors all
users in the same way although in this case the decryption yields sga (instead
of s).
Next we present a property of the Kurosawa-Desmedt scheme, showing that

an invalid ciphertext (which induces more than one color), cannot color too many
users by the same color.

Theorem 14. In the [KD98]-MES, given a (possibly invalid) ciphertext that
induces a coloring over the user population so that v+1 users are labelled by the
same color then all users are labelled by the same color.

Proof. Suppose that the ciphertext 〈gr, sgx0a0 , gx1a1 , . . . , gxvav 〉 induces a color-
label sgci on user i so that v + 1 users are colored in the same way. Without
loss of generality we assume that c1 = . . . = cv+1. Define zj := (xj − r)aj for
j = 0, . . . , v. It follows that i·z = ci for i = 1, . . . , n. Seen as a linear system with
z as the unknown vector the equations i · z = ci for i = 1, . . . , n suggest that z
corresponds to the coefficients of a polynomial p(x) := z0 + z1x+ . . . zvx

v such
that p(i) = ci for i = 1, . . . , n. Because p(1) = . . . = p(v+1) and the degree of p
is at most v it follows immediately that p has to be a constant polynomial, i.e.
z = 〈a, 0, . . . , 0〉 with a = p(1) = . . . = p(v+1). (Any v+1 equal value points on
the polynomial will imply the above, which justifies the arbitrary choice of users).
If follows immediately that user i receives the color label sgci = sgi·z = sga and
as a result all users are labeled by the same color. ut
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With similar arguments as in section 5.1 we conclude:

Corollary 15. Let 〈t(n), f(n), v(n)〉-BBTTS be a scheme based on the [KD98]-
MES. If t(n) = ω(log n) then it holds that either f(n) = Θ(n) or that v(n) =
n− o(n).

Essentially this means that the [KD98]-scheme is incapable of black-box trac-
ing superlogarithmic self-protecting traitor collusions unless the ciphertext size
is linear in the number of users.

Corollary 16. In the [KD98]-scheme, Single-query Black-box confirmation is
impossible against a pirate decoder which includes t(n) = ω(log n) traitor keys,
unless the probability that a user is a suspect given that it is a traitor, is arbi-
trarily close to 1.
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