
Minimal Complete Primitives

for Secure Multi-Party Computation

Matthias Fitzi1, Juan A. Garay2, Ueli Maurer1, and
Rafail Ostrovsky3

1 Dept. of Computer Science, Swiss Federal Institute of Technology (ETH), CH-8092
Zürich, Switzerland. {fitzi,maurer}@inf.ethz.ch.

2 Bell Labs – Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974, USA.
garay@research.bell-labs.com.

3 Telcordia Technologies Inc., 445 South Street, Morristown, New Jersey 07960-6438,
USA. rafail@research.telcordia.com.

Abstract. The study of minimal cryptographic primitives needed to im-
plement secure computation among two or more players is a fundamental
question in cryptography. The issue of complete primitives for the case
of two players has been thoroughly studied. However, in the multi-party
setting, when there are n > 2 players and t of them are corrupted, the
question of what are the simplest complete primitives remained open for
t ≥ n/3. We consider this question, and introduce complete primitives of

minimal cardinality for secure multi-party computation. The cardinality
issue (number of players accessing the primitive) is essential in settings
where the primitives are implemented by some other means, and the sim-
pler the primitive the easier it is to realize it. We show that our primitives
are complete and of minimal cardinality possible.

1 Introduction

In this paper, with respect to the strongest, active adversary, we initiate the
study of minimal complete primitives for multi-party computation from the point
of view of the cardinality of the primitive — i.e., the number of players accessing
it. A primitive is called complete if any computation can be carried out by the
players having access (only) to the primitive and local computation. A primitive
is called minimal if any primitive involving less players is not complete.

For n players, t of which might be corrupted, the question is well understood
for t < n/3. In this paper we consider this question for t ≥ n/3. We show that
in fact there are three interesting “regions” for t: t < n/3, n/3 ≤ t < n/2,
and n/2 ≤ t < n, and present, for each region, minimal complete primitives for
t-resilient unconditional multi-party computation.

1.1 Prior and related work

Secure multi-party computation. Secure multi-party computation (MPC) has
been actively studied since the statement of the problem by Yao in [?]. For the

standard model with secure pairwise channels between the players, the first gen-
eral solution of the problem was given by Goldreich, Micali, and Wigderson [?]
with respect to computational security. Ben-Or, Goldwasser, and Wigderson [?]
and Chaum, Crépeau, and Damg̊ard [?] constructed the first general protocols
with unconditional security. Additionally, it was proven in [?] that uncondition-
ally secure MPC was possible if and only if less than half (one third) of the
players are corrupted passively (actively).

For the model where, in addition to the pairwise secure channels, a global
broadcast channel is available, Rabin and Ben-Or [?] constructed a protocol
that tolerates (less than) one half of the players being actively corrupted. Their
solution is not perfect, as it carries a small probability of error. However, it was
later shown by Dolev, Dwork, Waarts and Yung [?] that this is unavoidable
for the case t ≥ dn/3e (and the assumed communication primitives), as there
exist problems with no error-free solutions in this setting. Fitzi and Maurer [?]
recently proved that, instead of global broadcast, broadcast among three players
is sufficient in order to achieve unconditionally secure MPC for t < n/2.

Complete primitives. Another line of research deals with the completeness of
primitives available to the players. Kilian [?] proved that oblivious transfer
(OT) [?] is complete for two-party computation in the presence of an active
adversary. A complete characterization of complete functions for two-party com-
putation, for both active and passive adversaries, was given in [?] based on [?]
and results by Beimel, Micali, and Malkin [?]. These results are stated with re-
spect to asymmetric multi-party computation in the sense that the result of the
function is provided to one single (predefined) player.

A first generalization of completeness results to the more general n-party case
was made by Kilian, Kushilevitz, Micali, and Ostrovsky [?,?], who characterized
all complete boolean functions for multi-party computation secure against a
passive adversary that corrupts any number of players.

With the noted exception of Goldreich’s treatment of reductions in [?], pre-
vious work on complete primitives typically assumes that the cardinality of the
primitive is the same as the number of players involved in the computation. In
contrast, in this paper we are concerned with the minimal cardinality of complete
primitives for multi-party computation.

1.2 Our results

In this paper, for any primitive cardinality k, 2 ≤ k ≤ n, we give upper and
lower bounds on t such that there is a complete primitive gk for multi-party
computation secure against an active adversary corrupting that many players.
With one exception, all these bounds are tight. In particular, for each resiliency
“region” t < n

3 , t < n
2 , and t < n, we present minimal complete primitives for

t-resilient unconditional multi-party computation. To our knowledge, this is the
first time that the power of the cardinality of cryptographic primitives — and
their minimality — is rigorously studied.

Primitive Resiliency Primitive Number of
cardinality Efficient reduction Lower bound instances

k = 2 t < n/3 t < n/3 SC2 2
(

n

2

)

k = 3 t < n/2 t < n/2 OC3/CC3 3
(

n

3

)

4 ≤ k ≤ n− 1 t < n/2 t < n− 2 OC3/CC3 3
(

n

3

)

k = n t < n t < n UBBn 1

SC2: Secure Channel, OC3: Oblivious Cast, CC3: Converge Cast, UBBn: Universal
Black Box. OC3, CC3 and UBBn are primitives introduced in this paper.

Table 1. Complete primitives of cardinality k

When k = 2, it is well known that secure pairwise channels (or, more gener-
ally, OT) are enough (complete) for t < n/3, as it follows from [?,?] and [?]. We
show that, for n > 2, no primitive of cardinality 2 can go above this resiliency
bound, including primitives that are complete for 2-party computation.

The case k = 3 is of special interest. We introduce two primitives: oblivious
cast [?], a natural generalization of oblivious transfer to the three-party case,
and converge cast, a primitive that is related to the anonymous channel of [?],
and show that they are complete for t < n/2. In light of the impossibility result
for k = 2, these primitives are also minimal.

For the case k = n we introduce a new primitive, which we call the universal
black box (UBB), and show that it is complete for arbitrary resiliency (t < n).
This primitive has interesting implications for computations involving a trusted
third party (TTP), in that it enables oblivious TTPs, i.e., trusted parties that do
not require any prior knowledge of the function to be computed by the players
— even if a majority of the players are corrupted. The UBB is also minimal,
since we also show that no primitive of cardinality n − 1 can be complete for
t < n. These results are summarized in Table 1.

Multicast and “convergecast,” with a single sender and a single recipient,
respectively, constitute two natural communication models. We also show that
no primitive that conforms to these types — even of full cardinality — can
achieve more than t < n/2, and therefore be more powerful than our primitives
of cardinality 3. In other words, with respect to these types, Table 1 “collapses”
to two equivalence classes: k = 2 and 3 ≤ k ≤ n.

All the primitives we present allow for efficient multi-party computation.

2 Model and Definitions

In this paper we focus on secure function evaluation (SFE) [?] by a set P of
n players, where each player pi has an input value xi and obtains an output
value fi(x1, x2, · · ·xn), for a (probabilistic) function fi. We are interested in
unconditional security against an active adversary who may corrupt up to t of
the players; i.e., the adversary may make the corrupted players deviate from the

protocol in an arbitrarily malicious way, and no assumptions are made about his
computational power.

In contrast to the treatment of two-party computation (e.g. [?,?] and [?]),
where only one predefined player receives the final result of the computation,
our model allows every player to receive his own (in general, different) result —
which corresponds to the general notion of multi-party computation in [?,?,?].
Similarly, our definition of a primitive, as given in the next paragraph, also
allows every involved player to provide an input and get an output, as opposed
to just one player. Nonetheless, our constructions apply to the former model
as well since for each of our complete multiple-output primitives there is also a
single-output primitive that is complete with respect to single-output SFE.

Primitives of arbitrary cardinality. Our communication model is based on ideal
primitives that can be accessed by k players, 2 ≤ k ≤ n, implementing the secure
computation of some k-ary, possibly probabilistic function; k is called the cardi-
nality of the primitive. Besides this primitive, no other means of communication
is assumed among the players.

We view primitives as “black boxes” in the sense that all implementation de-
tails are hidden from the players. Depending on the function being implemented,
of the k players accessing the primitive one or more may secretly enter an input
to it, and one or more may secretly receive the value(s) of the function.

We use gk[i, j] to denote the primitive implementing k-ary function g, in
which i ≤ k players provide an input, and where j ≤ k players receive the
output of the function.1 We call [i, j] the type of the primitive. We will drop the
type when clear from the context. We focus on the following types: [1, 1], [1, k],
[k, 1], and [k, k].2

Note that a primitive of a given cardinality can always be simulated (when
applicable) by the same primitive with a larger cardinality by cutting some of the
“wires.” More formally, the following domination relation exists: Let (k′, i′, j′) ⊇
(k, i, j) (meaning k′ ≥ k, i′ ≥ i and j′ ≥ j); then for every primitive gk[i, j] there
exists a primitive g′k′ [i′, j′] that is as powerful as gk[i, j].

We assume that every subset S ⊂ P of k players shares k! instances of the
primitive — one for each permutation of the players; thus, we assume

(

n
k

)

k!
instances of the primitive in total. However, we will show that there is always
a (minimal complete) primitive such that, overall, polynomially-many instances
(specifically, less than n3) of the primitive are sufficient.

Security model. Several formal definitions of secure function evaluation exist
(e.g., [?,?,?,?,?]). The process is assumed to be synchronous, a fact that simplifies
the task of reasoning about security. In [?] (and in a nutshell), the computation to

1 A complete specification of the primitive should include additional aspects, such as
which i (j) out of the k players provide an input (resp., receive an output), etc., but
the simpler notation will be expressive enough for the primitives we will consider.

2 In the case of [1, 1], we always ignore the “reflexive” case (same player providing
input and receiving the output).

be performed among the n players is specified with respect to an incorruptible
trusted party τ who interacts securely with the players. For the special case
of secure function evaluation where a function on the players’ inputs is to be
computed and revealed, such a process can be defined by the players first secretly
handing their inputs to τ , τ computing the output corresponding to the (possibly
probabilistic) function, and then handing it back to the players. Such a protocol
among P ∪ {τ} is called an ideal process.

Of course, the goal of multi-party computation is to perform the same task
without the need for a trusted party; thus, a multi-party computation protocol
for evaluating a function is called secure if it emulates the ideal evaluation process
of the function, i.e., if for every strategy of the adversary in the real protocol
there is a corresponding adversary strategy that, with similar cost, achieves the
same effect in the ideal process. In particular, this means that whenever the
ideal process satisfies some consistency or privacy property with respect to the
players (e.g., privately computes some specific function on the players’ inputs),
then the secure protocol also satisfies them. This notion of security can then
be refined further by distinguishing among the different types of similarities
between the global outputs in both the ideal and real life computations. We are
interested in unconditional security, which is obtained by requiring that these
output distributions be indistinguishable, except for a negligible function of the
security parameter, independently of the adversary’s computational power.

The trusted party τ is assumed to be equivalent to a probabilistic Turing
machine with a memory tape of fixed (limited) size. This implies that τ can
perform any task a standard computer can but not more. On the other hand,
τ is also equivalent to an arithmetic circuit (though of potentially large size)
and hence can be modeled as a (stateless) circuit. Thus, the multi-party com-
putation specification simply defines a sequence of circuit evaluations on the
players’ inputs. Note that this ideal computation model, and hence the set of
problems computable with an SFE protocol, is as strong as the “standard” one
(e.g., [?,?,?]).

Reducibility and completeness. A main theme in this paper is that of reductions
“across” cardinalities. The notion of reduction generalizes to the case of an n-
ary function (n-player protocol) invoking another k-ary function (primitive of
cardinality k, resp.), with k ≤ n, in a natural way [?]:

Definition 1 (Reductions). An n-player protocol unconditionally reduces fn
to gk for a given t < n, if it computes fn unconditionally t-securely just by
black-box calls to gk and local computation. In such a case we say that fn un-
conditionally reduces (for short, reduces) to gk for that t.

3

3 Note that the definition of reduction also admits the opposite direction, i.e., from
smaller cardinality to larger cardinality. Occasionally in our constructions we will
also use this direction (for example, by implementing secure pairwise channels using
a three-player primitive).

The notion of completeness also generalizes to the different cardinality setting
in a natural way: if gk is complete one can use gk to perform secure n-party
computation. More formally:

Definition 2 (Completeness). We say a primitive gk is unconditionally com-
plete (for short, complete) for a given t < n, if every n-ary function uncondi-
tionally reduces to gk (for the same t).

Typically, the reduction step is applied more than once, by reducing a prim-
itive already known to be complete to another, perhaps simpler primitive. For
example, this is the case in the two-party case, where protocols are given that
implement oblivious transfer using a different primitive (see, e.g., [?]). This is
also the approach we will follow in this paper, by showing how to implement,
using our primitives, the “resources” that are known to be required for SFE.

Furthermore, all our reductions will be unconditionally secure in a way that
the simulation can fail with some negligible probability, but, in the non-failure
case, it perfectly provides the desired functionality; i.e., compared to an ideal im-
plementation of the functionality, the reductions leak no additional information
and provide perfect correctness. (Note that this allows for parallel composition.)
Hence, by estimating the overall error probability of the complete reduction from
the given SFE problem to the complete primitive as the probability that at least
one single implementation of a reduction step fails, we actually get an upper
bound on the probability that the whole protocol does not provide perfect se-
curity. Since our reductions keep this probability negligibly small, we achieve
unconditional security according to the definition above.

Finally, we note that all our reductions are efficient, i.e., polynomial in n
and a security parameter σ such that the overall error probability is smaller
than 2−σ.

3 Primitives of Cardinality 2

It is well known that secure channels (SC2) are sufficient for unconditional
SFE [?,?] with t < n/3. That is, in our parlance:

Proposition 1. For any n, there is a primitive of cardinality 2, the secure chan-
nel, that is complete for t < n/3.

Since we are assuming that every permutation of the players share a primitive,
the type of a secure channel is [1, 1]; hence, for t < n/3, the complete primitive is
of the weakest type. We now prove that, for t ≥ dn/3e, no primitive of cardinality
2 can be complete (if n > 2). This is done by showing that there is a problem,
namely broadcast (aka Byzantine agreement) [?], that cannot be solved in a
model where players are connected by “g2-channels” for any two-party primitive
g2. We first recall the definition of broadcast.

Definition 3. Broadcast is a primitive among n players, one sender and n− 1
recipients. The sender sends an input bit b ∈ {0, 1} and the recipients get an
output (decision) value v ∈ {0, 1} such that the following conditions hold:

Agreement: All correct recipients decide on the same value v ∈ {0, 1}.

Validity: If the sender is correct, then all correct recipients decide on the sender’s
input bit (v = b).

We first consider the special case of n = 3 and t ≥ 1, and then reduce the
general case of n ≥ 3 and t ≥ dn/3e to this special case. The impossibility
proof (for n = 3 and t ≥ 1) is based on the impossibility proof in [?], where
it is shown that broadcast for t ≥ dn/3e is not achievable in a model with
pairwise authentic channels. In the new model, however, every pair of players
can perform secure two-party computation. The idea in the proof is to assume
that there exists an unconditionally secure broadcast protocol involving three
players — interconnected by such a “g2 channel”, which then can be used to
build a different system with contradictory behavior, hence proving that such a
protocol cannot exist.

Lemma 1. Let n = 3. For any two-player primitive connecting each pair of
players, unconditionally secure broadcast is not possible if t ≥ 1.

Proof (sketch). Suppose, for the sake of contradiction, that there is a protocol
that achieves broadcast for three players p0, p1, and p2, with p0 being the sender,
even if one of the players is actively corrupted.

Let π0, π1, π2 denote the players’ corresponding processors with their local
programs and, for each i ∈ {0, 1, 2}, let πi+3 be an identical copy of processor πi;
and let the (set of) given two-party primitive(s) between two processors πi and
πj be called the channel between πi and πj . Instead of connecting the original
processors as required for the broadcast setting, we build a network involving
all six processors (i.e., the original ones together with their copies) by arranging
them in a circle, i.e., each processor πi (i ∈ {0, . . . , 5}) is connected (exactly) by
one channel with π(i−1) mod 6 and one with π(i+1) mod 6.

We now prove that for every pair of adjacent processors πi and π(i+1) mod 6 in
the new system and without the presence of an adversary, their common view is
indistinguishable from their view as two processors πimod 3 and π(i+1) mod 3 in the
original system with respect to an adversary that corrupts the remaining proces-
sor π(i+2) mod 3 in an admissible way.

4 Refer to Figure 1. The original system is
depicted in Figure 1-(a). Let the processors π0 and π1 be correct. An admissible
adversary strategy is to “split” π2 and to make it behave independently with
respect to π0 and π1 (Figure 1-(b)). Finally, by arranging the six processors in
a circle as described above and shown in Figure 1-(c), this particular adversary
strategy is simulated with respect to every pair πi and π(i+1) mod 6.

The new system involves two processors of the type corresponding to the
sender, namely, π0 and π3, and these are the only processors that enter an

4 I.e., for every pair of original processors, the rearrangement simultaneously simulates
some particular adversary strategy by corrupting the third processor.

Fig. 1. Rearrangement of processors in proof of Lemma 1

input. Let now π0 and π3 be initialized with different inputs, i.e., let’s assume
that π0 has input v0 ∈ {0, 1} and that π3 has input v3 = 1− v0.

5 We now show
that there are at least two pairs of adjacent processors in the new system, i.e.,
one third among all six such pairs, for which the broadcast conditions are not
satisfied despite being completely consistent with two correct processors in the
original system.

First, suppose that agreement holds with respect to every pair on, wlog,
the value v0. Then the validity condition is violated with respect to both pairs
involving processor π3 since v3 6= v0. On the other hand, suppose that the
agreement condition is violated with respect to at least one pair. Then there
must exist at least two such pairs because the processors are arranged in a
circle.

5 We assume that any input value from {0, 1} will be selected by the sender with
some non-negligible probability. Otherwise, the broadcast problem could be trivially
solved for any t < n.

Hence, on inputs v0 ∈ {0, 1} and v3 = 1 − v0, there must be some pair of
adjacent processors (α, β) = (πi, π(i+1) mod 6) that fails with a probability of at

least 1
3 . Otherwise, strictly less than two pairs would fail per such invocation

of the new system. The view of pair (α, β) is consistent with the view of the
pair (α0, β0) = (πi, π(i+1) mod 3) in the original system for one of the cases where
the sender inputs either v0 = 0 or v0 = 1. Let Pr0 be the probability that the
sender selects input 0 in the original system. Then, in the original system, the
adversary can force the pair (α0, β0) to be inconsistent with a probability of
at least 1

3 min(Pr0, 1 − Pr0), which is non-negligible, since Pr0 and 1 − Pr0 are
non-negligible by assumption. ut

Theorem 1. Let n ≥ 3. For any primitive g2, unconditionally secure broadcast
is not possible if t ≥ dn/3e.

Proof. Assume that there is an unconditionally secure broadcast protocol Π for
n ≥ 3 players and some t ≥ dn/3e with arbitrarily small error probability ε > 0.
Then we can let three players p0, p1, and p2 each simulate up to dn/3e of the
players in Π, with the sender in Π being simulated by p0. Thus, this protocol
among players {p0, p1, p2} achieves broadcast (with sender p0) secure against
one corrupted player because he simulates at most dn/3e of the players in Π,
which is tolerated by assumption. Since this contradicts Lemma 1, the theorem
follows. ut

4 Primitives of Cardinality 3

Evidently, a primitive g3[1, 1] is equivalent to g2[1, 1] since in g3 one of the
players neither provides an input nor receives an output. Hence, in this section
we consider primitives (of cardinality 3) of type different from [1, 1]. In fact, it
turns out that either two inputs (and single output) or two outputs (and single
input) is sufficient. For each type we introduce a primitive and show it to be
complete for t < n/2. Moreover, we show that no primitive of cardinality 3 can
be complete for t ≥ dn/2e.

It follows from [?,?] that pairwise secure channels and a global broadcast
channel are sufficient for SFE secure against t < n/2 active corruptions. Hence,
it is sufficient to show that the primitives introduced in this section imply both,
unconditionally secure pairwise channels and global broadcast.

4.1 g3[1, ∗] primitives: Oblivious cast

Definition 4. Oblivious cast (OC3) is a primitive among three players: a sender
s who sends a bit b ∈ {0, 1} and two recipients r0 and r1, such that the following
conditions are satisfied:

(1) The bit b is received by exactly one of the recipients, r0 or r1, each with
probability 1

2 .

(2) While both recipients learn who got the bit, the other recipient gets no
information about b. In case there are other players (apart from s, r0 and
r1), they get no information about b.

Implementing secure channels using oblivious cast. Secure pairwise channels can
be achieved by the simulation of authentic channels and the implementation of a
pairwise key-agreement protocol between every pair of players pi and pj . Players
pi and pj can then use the key (e.g., a one-time pad) to encrypt the messages to
be sent over the authentic channel.

Lemma 2. Let n ≥ 3. Then authentic channel reduces to oblivious cast for
t < n/2.

Proof (sketch). An authentic channel between players pi and pj can be achieved
from oblivious cast among pi, pj , and some arbitrary third player pk ∈ P \
{pi, pj}, by pi (or pj) oblivious-casting his bit (or whole message) σ times. Fi-
nally, pj decides on the first bit he has received in those oblivious casts.

Since it is sufficient to achieve authentic channels only between pairs of cor-
rect players we can assume that the sender is correct. The invocation of this
channel fails if pj does not receive any of the bits being sent by oblivious cast,

and this happens with a probability of at most Prautherr = 2−σ. ut

In order to generate a one-time pad (OTP) sij of one bit between two players
pi and pj , we can let pi generate some m random bits b1, . . . , bm and oblivious-
cast them to pj and some arbitrary third player pk, where m is chosen such
that, with overwhelming probability, pj receives at least one of those random
bits (every bit bx is received by pj with probability

1
2). Finally, pj uses his

authentic channel to pi (Lemma 2) to send to pi the index x ∈ {1, . . . ,m} of the
first bit bx that pj received. Since pk gets no information about the bit, bit bx
can be used as an OTP-bit between pi and pj . In order to get an OTP of length
` > 1 this process can be repeated ` times.6

In order to guarantee that the transmission of a bit through the secure chan-
nel thus obtained fails with an error probability of at most Prerr = 2

−σ, we can
parameterize m and the security parameter for the invocations of the authentic
channel, σauth, as follows:

Procerr ≤ 2−σ−1 — the probability that none of the m bits transmitted by
oblivious cast is received by player pj .

Prautherr ≤ 2−σ−1 — the probability that at least one of the invocations of the
authentic channel fails.

So we can choose m = σ + 1. The number of invocations of the authentic
channel is ` = dlogme + 1 (dlogme for the transmission of index x plus one
for the final transmission of the encrypted bit). Hence, σauth can be chosen as
σauth = σ + dlog `e+ 1.

6 A more efficient way to generate an OTP of length ` is to choose a larger m and
have pj send to pi the indices of the first ` bits he received. For simplicity we restrict
ourselves to the less efficient but simpler method.

Lemma 3. Let n ≥ 3. Then secure channel reduces to oblivious cast for t < n/2.

Proof. From Lemma 2 and the discussion above it follows that the secure channel
construction has an error probability of Prerr ≤ Pr

auth
err +Procerr ≤ 2

−σ. ut

Implementing broadcast using oblivious cast. It is shown in [?] that a three-
party primitive called weak 2-cast, defined below, yields global broadcast secure
against t < n/2 active corruptions. Thus, it is sufficient to show that, using
oblivious cast, an implementation of weak 2-cast in any set S ⊂ P , |S| = 3, and
for any selection of a sender among those players, is possible. We first recall the
definition of weak 2-cast from [?].

Definition 5. Weak 2-cast is a primitive among three players: one sender and
two recipients. The sender sends an input bit b ∈ {0, 1} and both recipients get
an output (decision) value v ∈ {0, 1,⊥} such that the following conditions hold:

(1) If both recipients are correct and decide on different values, then one of
them decides on ⊥.

(2) If the sender is correct, then all correct recipients decide on his input bit.

The idea behind the implementation of weak 2-cast using oblivious cast is
to have the sender repeatedly oblivious-cast his bit a given number of times.
Hence, a recipient who receives two different bits reliably detects that the sender
is faulty and may safely decide on ⊥. On the other hand, in order to make the
two recipients decide on different bits, a corrupted sender must oblivious-cast
0’s and 1’s in such a way that each recipient gets one value, but not the other
one. However, since the sender cannot influence which of the recipients gets a
bit, he can enforce this situation only with exponentially small probability. We
now describe the implementation in more detail.

Protocol Weak-2-Cast-Impl-1(s, {r0, r1}, σ):

1. Sender s oblivious-casts his bit (σ + 1) times to the recipients.

2. Recipients ri (i ∈ {0, 1}) decide vi =

0 if 0 received at least once, and no 1’s;
1 if 1 received at least once, and no 0’s;
⊥ otherwise.

Lemma 4. Protocol Weak-2-Cast-Impl-1 achieves weak 2-cast with an error
probability of at most 2−σ, by only using oblivious cast and local computation.

Proof. If the sender is correct, the protocol can only fail if one of the recipients
does not receive any bit from the sender, because the sender always transmits
the same bit. This happens with probability Prerr1 = 2

−σ.
If the sender is incorrect, the protocol may fail only if he manages to make

one of the recipients receive all 0’s and make the other one receive all 1’s. In
order to achieve this, after having transmitted the first bit, the sender must
correctly guess in advance the recipient of every subsequent bit. This happens
with probability Prerr2 = 2

−σ.
Hence, the error probability is Prerr ≤ max(Prerr1 ,Prerr2) = 2

−σ. ut

Lemma 4 together with the reduction of broadcast to weak 2-cast in [?]
(which does not require pairwise channels) immediately yield

Lemma 5. Broadcast among n ≥ 3 players reduces to oblivious cast for t < n/2.

Lemmas 3 and 5 and the constructions of [?,?] yield

Theorem 2. Let n ≥ 3. Then there is a single-input two-output primitive of
cardinality 3, oblivious cast, that is complete for t < n/2.

4.2 g3[∗, 1] primitives: Converge cast

We now show that a cardinality-3 primitive with two inputs and a single output
— i.e., the converse of oblivious cast (in several ways) — is also complete for
t < n/2. Specifically, we introduce converge cast, a primitive related to the
“anonymous channel” of [?], defined as follows:

Definition 6. Converge cast (CC3) is a primitive among three players: two
senders s0 and s1 and one recipient r. The senders send a value xi, i ∈ {0, 1},
from a finite domain D, |D| ≥ 3, such that the following conditions hold:

(1) The recipient r receives either x0 or x1, each with probability
1
2 .

(2) Neither sender learns the other sender’s input value, and none of the players
learns which of the senders was successful. In case there are other players
(apart from s0, s1 and r), they get no information about the input values
or the successful sender’s identity.

As in the previous section, we show how to implement secure channels and

broadcast (weak 2-cast). We use “pi, pj
?
−→ pk : (xi, xj)” to denote an invocation

of converge cast with senders pi and pj sending values xi and xj , respectively,
and recipient pk. Furthermore, for two sequences sa and sb of elements in {0, 1, 2}
of same length, we use H(sa, sb) to denote the Hamming distance (difference)
between the sequences.

Implementing secure channels using converge cast. We now present a protocol
to implement a secure channel from p0 to p1 for the transmission of one bit x0.
The idea is as follows: first, p1 and some other player, say, p2, choose two random
keys of an adequate length, one for 0 and for 1, and converge-cast them to p0. p0

stores the two received keys (note that each received key may contain elements
from both senders), using the corresponding key as input to a converge cast with
p1 as the recipient to communicate the desired bit.

Protocol Secure-Channel-Impl-2(p0, p1, `):

1. Player pi, i = 1, 2, computes random keys s
(0)
i and s

(1)
i of length ` over {0, 1, 2}

2. p1, p2
?
−→ p0: (s

(0)
1 , s

(0)
2); (s

(1)
1 , s

(1)
2) (element-wise) (p0 receives s

(0)
0 ; s

(1)
0)

3. p0, p2
?
−→ p1: (s

(x0)
0 , ∗) (element-wise) (p1 receives s′1)

4. p1: if H(s′1, s
(0)
1) < 7

12
` then y1 = 0, else y1 = 1 fi

The proof of the following lemma follows from elementary probability, inde-
pendently of p2’s strategy:

Lemma 6. Consider protocol Secure-Channel-Impl-2. If p0 and p1 are cor-
rect, then for every k, k ∈ {1, . . . , `},

(1) s′1[k] = s
(x0)
1 [k] with probability 1

2 ;

(2) s′1[k] = s
(1−x0)
1 [k] with probability 1

3 .

Lemma 7. Let n ≥ 3. Then secure channels reduces to converge cast for t <
n/2.

Proof. Consider protocol Secure-Channels-Impl-2. First, it is easy to see that
p2 gets no information about bit x0. We now show that the channel also pro-
vides authenticity. The only ways the protocol can fail is that either x0 = 0

and H(s′1, s
(0)
1) ≥ 7

12` (probability Pr0), or that x0 = 1 and H(s′1, s
(0)
1) < 7

12`
(probability Pr1). These probabilities can be estimated by Chernoff bounds:

Pr0: By Lemma 6(1), s
′
1[k] = s

(0)
1 [k] holds with probability 1

2 . Hence, Pr0
is the probability that out of ` trials with expected value 1

2 , at most
5
12 l do

match. We get Pr0 ≤ e−
`

4
(1

6
)2 = e−

`

144 .

Pr1: By Lemma 6(2), s
′
1[k] = s

(0)
1 [k] holds with probability 1

3 . Hence, Pr1 is
the probability that out of ` trials with expected value 1

3 , at least 1−
7
12 =

5
12`

do match. We get Pr1 ≤ e−
`

9
(1

4
)2 = e−

`

144 .

Thus, the overall error probability is Prautherr ≤ max (Pr0,Pr1) = e−
`

144 . ut

Implementing broadcast using converge cast. We now show how weak 2-cast of
a bit x0 from p0 to p1 and p2 can be simulated using CC3. Roughly, he protocol
can be described as follows: First, p1 and p2 choose two random keys of an
adequate length, one for 0 and for 1, and converge-cast them to p0. p0 stores
the two received (mixed) keys. p0 then sends his input bit to p1 and p2 using
secure channels. Additionally, p0 sends to p1 the (received) key corresponding
to his input bit. This key can then be used by p1 to “prove” to p2 which value
he received from p0. If things “look” consistent to p2 (see protocol below), he
adopts this value; otherwise, he outputs the value received directly from p0.

Let “pi
!
−→ pj” denote the secure channel from pi to pj (by means of protocol

Secure-Channels-Impl-2).

Protocol Weak-2-Cast-Impl-2(p0, {p1, p2}, `):

1. Player pi, i = 1, 2, computes random keys s
(0)
i and s

(1)
i of length 2` over {0, 1, 2}

2. p1, p2
?
−→ p0: (s

(0)
1 , s

(0)
2); (s

(1)
1 , s

(1)
2) (element-wise) (p0 receives s

(0)
0 ; s

(1)
0)

3. p0
!
−→ pi (i = 1, 2): x0 ∈ {0, 1} (pi receives xi ∈ {0, 1})

4. p0
!
−→ p1: s

(x0)
0 (p1 receives s′1)

5. p1: if H(s′1, s
(x1)
1) < 4

5
` then y1 = x1, else y1 =⊥ fi

6. p1
!
−→ p2: y1; s

′

1 (p2 receives y2; s
′

2)

7. p2: if (y2 =⊥) ∨
(

H(s′2, s
(y2)
2) > 5

4
`
)

then y2 = x2 fi

Lemma 8. Let n ≥ 3. Then weak 2-cast reduces to converge cast for t < n/2.

The proof appears in Section A.

As before, Lemmas 7 and 8 and the constructions of [?,?,?] yield

Theorem 3. Let n ≥ 3. Then there is a two-input single-output primitive of
cardinality 3, converge cast, that is complete for t < n/2.

We note that allowing the inputs of converge cast to be from a larger domain
(than {0, 1, 2}) considerably improves the efficiency of our reductions.

4.3 Impossibility of t ≥ dn/2e for g3

We now show that no primitive of cardinality 3 can be complete with respect
to half resiliency. We do so by generalizing the impossibility proof in [?] for
broadcast with t ≥ dn/2e using primitive 2-Cast, to arbitrary primitives of
cardinality 3.

Theorem 4. Let n ≥ 4. For any primitive g3, unconditionally secure broadcast
is not possible if t ≥ dn/2e.

Proof (sketch). Impossibility for n = 4 and t = 2: Suppose that there are four
processors (with local programs) that achieve broadcast for t = 2. Again, we
build a new system with the four processors and one copy of each, arranged in
a circle. Analogously to Lemma 1, the 3-player primitives can be reconnected
such that the view of any two adjacent processors is indistinguishable from their
view in the original system (i.e., they can be reconnected in the same way as in
the proof in [?]), and by assigning different inputs to the sender and its copy we
get the same kind of contradiction.
Impossibility for n > 4 and t ≥ dn/2e: Suppose now that there are n pro-

cessors and we want to achieve broadcast with t ≥ dn/2e. The processors are
partitioned into four sets and each set is duplicated. Instead of reconnecting
single processors, the connections between different sets are reconnected so that
the common view of all the processors in two adjacent sets is indistinguishable
from their view in the original system, and we get a contradiction along the lines
of [?]. ut

5 Primitives of Full Cardinality

In this section, we first show that even cardinality n does not help if the primitive
is restricted, in the sense of having either a single input or a single output. Such
a primitive is no more powerful than a primitive of cardinality 3 (Section 4). We
then introduce a new primitive of type [n, n], the universal black box (UBBn),
which allows for arbitrary resiliency (t < n). The UBBn has an interesting
application to computations involving a trusted third party: its functionality
enables oblivious trusted third parties, that is, trusted parties which do not
require any prior knowledge of the function to be computed by the players.
Finally, we show that full cardinality is necessary to achieve arbitrary resiliency.
We start with the impossibility results for restricted primitives.

5.1 gn[1, ∗] and gn[∗, 1] primitives

Theorem 5. There is no gn[1, ∗] primitive complete for t ≥ dn/2e.

Proof (sketch). Assume that a particular primitive gn[1, ∗] is complete for t ≥
dn/2e, and consider two players, p and q, who want to compute the logical OR
of their input bits. We can have both players each simulate up to dn/2e of the
players involved in the complete primitive gn (in such a way that every original
player is simulated either by p or q) which allows them to securely compute the
OR function. Since there is only one input to gn (to be given either by p or
by q), there must be a first invocation of the primitive that reveals some input
information to the other player. This is a contradiction to [?], where it is shown
that no player may reveal any information about his input to the other player
unless he knows that the other player’s input is 0. ut

Theorem 6. There is no gn[∗, 1] primitive complete for t ≥ dn/2e.

Proof (sketch). The proof is again by contradiction. Suppose that there is a
primitive of type [∗, 1] that is complete for t ≥ dn/2e. We can have two players
p and q each simulate up to dn/2e of the players involved in this primitive which
allows them to securely compute any function on their inputs. Thus, there is
a two-player primitive with a single output that is complete with respect to
any computation where both players learn the same result. This is a direct
contradiction to the “one-sidedness” observation in [?] that a protocol based on
an asymmetric two-player primitive cannot guarantee that both players learn
the result. ut

5.2 gn[n,n] primitives: The universal black box

We now introduce the universal black box (UBBn), a complete primitive for
t < n. At first, it might seem trivial to build a complete primitive for arbitrary
t by just implementing the functionality of a trusted party. However, computa-
tions by trusted parties are generally based on the fact that the trusted party
already knows the function to be computed. But since the primitive must be
universally applicable, it cannot have any prior information about what is to
be computed, i.e., what step of what computation is to be executed. Hence, the
specification of the computation step to be performed by the black box must
be entered by the players at every invocation of the black box. Although there
seems to be no apparent solution to this problem since a dishonest majority
might always overrule the honest players’ specification, we now describe how the
UBBn effectively overcomes this problem.

For simplicity, we first assume that exactly one function is to be computed on
the inputs of all players, and that exactly one player, p0, is to learn the result of
the computation. The more general cases (multiple functions, multiple/different
outputs) can be obtained by simple extensions to this case.

The main idea behind the UBBn is simple: It contains a universal circuit [?],
and has two inputs per involved player,

the function input, wherein the player specifies the function to be computed
on all argument inputs, and

the argument input, where the player inputs his argument to the function.

The UBBn now computes the function specified by player p0, but for every
player that does not input the same function as p0, it replaces his argument input
by some fixed default value. Finally, the function is computed by evaluating the
universal circuit on p0’s function and all argument inputs, and its output is
sent to player p0. Note that only one invocation of the UBBn is required per
computation.

Theorem 7. The universal black box is a complete primitive for t < n.

Proof (sketch). We show that privacy and correctness hold for arbitrary t.
Privacy: Trivially, no pi 6= p0 learns anything. On the other hand, p0’s output
can give information about player pi’s argument input only if pi entered the
same function input as p0 (which means that pi had “agreed” on exactly this
computation). Hence, p0 would get the same information about pi’s argument
as in an ideal process involving a trusted party. If p0 is corrupted and inputs a
wrong function input, no argument from a correct player will be used for this
computation.
Correctness: The function to be computed is selected by p0. Hence, if he’s correct,
the UBBn does compute the desired function. Corrupted players that input a
different function only achieve that their input be replaced by a default value
— a strategy that is also (easily) achievable in an ideal process by selecting the
default argument. ut

Corollary 1. [Oblivious TTPs] Computations involving a trusted third party
do not require the trusted party to have any prior knowledge of the task to be
completed by the players.

The single-output version of a UBBn can be generalized to a multi-output
UBBn by the following modification. The function input specifies n functions to
be computed on the inputs — one function per player. The function fi to be
computed and output to player pi is determined by player pi himself, and for
the computation of fi the argument inputs of only those players are considered
by the UBBn who agree on the same n functions f1, . . . , fn to be computed with
respect to the n players, i.e., whose function inputs match with the function
input of pi.

Finally, we show that full cardinality is necessary in order to achieve arbitrary
resiliency (proof in Section A):

Theorem 8. For k < n, there is no primitive gk complete for t < n.

Moreover, there is strong evidence that even a primitive of the most powerful
category for cardinalities k < n, i.e., a gn−1[n− 1, n− 1], cannot be complete for
t ≥ dn/2e, but we have no formal proof for it.

Conjecture 1. For k < n, there is no primitive gk complete for t ≥ dn/2e.

6 Summary and Open Problems

Originally (Section 2), we assumed that one primitive instance was available for
every permutation of every k-tuple of players, i.e.,

(

n
k

)

k! instances. In contrast,
it follows from Proposition 1 and from the constructions for the proofs of The-
orems 2, 3, and 7 that there is always a minimal complete primitive such that
at most 3

(

n
3

)

instances of the primitive are required for the computation of any
function.

Corollary 2. For each cardinality k, 2 ≤ k ≤ n, and each primitive type, there
is a complete primitive such that at most 3

(

n
3

)

instances are sufficient for un-
conditional SFE.

In this paper we have put forward the concept of minimal cardinality of
primitives that are complete for SFE. Since this is a new line of research, several
questions remain open.

We completely characterized the cases of types [1, 1], [1, k], and [k, 1], for
all cardinalities k ≤ n. In particular, for t < n/3 there is a complete primitive
SC2[1, 1] and no g2 can do any better; and, for t < n/2, there are complete
primitives OC3[1, 2] and CC3[2, 1] and no gk, k ≤ n, can do any better. For the
case of type [k, k] it remains to prove Conjecture 1, that no gn−1[n − 1, n − 1]
is complete for t ≥ dn/2e. This would partition the whole hierarchy into three
equivalence classes of cardinalities k = 2 (t < n/3), 2 < k < n (t < n/2), and
k = n (t < n).

It would also be interesting to analyze the completeness of primitives as
a function of the size of the input and output domains. For example, if the
primitive CC3 were restricted to one single input bit per player and one single
output bit, it would not be complete for t < n/2. Also the completeness of the
UBBn for t < n relies on the fact that inputs of large size are allowed.

Acknowledgements. We thank the anonymous referees for their valuable com-
ments. The work of Matthias Fitzi was partly done while visiting Bell Labs.

A Proofs

We repeat the statements here for convenience.

Lemma 8. Let n ≥ 3. Then weak 2-cast reduces to converge cast for t < n/2.

In the proof we will be using the following two lemmas. Their validity follows
from elementary probability.

Lemma 9. The probability that in protocol Weak-2-Cast-Impl-2 p0 receives at

least 9
8` elements of s

(x0)
1 and at most 7

8` elements of s
(x0)
2 , or vice versa, is

Pr1 ≤ 2e
− `

128 .

Lemma 10. Given is a set of pairs S = {(x1, y1), . . . , (xm, ym)} with elements
xi, yi ∈ {0, 1, 2}. If at least all elements xi or all elements yi are selected uni-
formly at random from {0, 1, 2}, then the following holds:

(1) If |S| ≥ 9
8`, then the probability that there are

13
40` or less indices i such

that xi = yi is Pr2 ≤ e−
`

300 .

(2) If |S| ≤ 7
8`, then the probability that there are

7
20` or more indices i such

that xi = yi is Pr3 ≤ e−
`

258 .

Proof of Lemma 8. Consider protocol Weak-2-Cast-Impl-2. Let us neglect the
error probabilities of the secure channel invocations (protocol Secure-Channels-
Impl-2) until the end of the proof. Assume that p0 receives at least

7
8` elements

from each of the players’ key during step 2 (by Lemma 9, this happens with
probability at least 1 − Pr1). Since the conditions for weak 2-cast are trivially
satisfied if more than one player is corrupted, we can distinguish three cases.

• All players correct or at most p2 corrupted. The only way the protocol can

fail is if p1 decides on ⊥ (H(s
′
1, s

(x1)
1) ≥ 4

5`); i.e., that at most
6
5` elements of s

′
1

match with p1’s key. We assume that p0 receives at least k ≥
7
8` elements of p1’s

key during step 2, k = 7
8` in the worst case. Hence, of all other 2` −

7
8` =

9
8`

elements (i.e., the elements of s′1 originating from p2), at most
6
5`−

7
8` =

13
40` are

identical to the element that p1 chose for the same invocation of “p1, p2
?
−→ p0”.

By Lemmas 9 and 10, this happens with probability Pr4 ≤ Pr1+Pr2 ≤ 3e
`

300 .

• p1 corrupted. In order to achieve that p2 decides on a wrong output it must

hold that y2 = 1 − x0 and H(s
′
2, s

(y2)
2) ≤ 5

4` before step 7; i.e., that at least
3
4` elements of s

′
2 match p2’s key. But since p1 does not learn anything about

the elements in s
(y2)
2 , he must guess 3

8 or more of those 2` elements correctly —
otherwise p2 would decide on x0. This probability can be estimated by Chernoff
bounds (2` trials with expected value 1

3) and we get Pr5 ≤ e−
`

288 . (In fact, this
holds independently of the assumption at the beginning of the proof.)

• p0 corrupted. Since p1 and p2 are correct, the following equalities hold before

step 7: s′1 = s′2
def
= s′ and x1 = y1 = y2

def
= y. In order to achieve that p1 and p2

decide on different bits p0 must select x2 = 1−y and achieve thatH(s′, s
(y)
1) < 4

5`

and H(s′, s
(y)
2) > 5

4`; i.e., p0 must prepare s′ such that at least 6
5` elements still

match p1’s key but at most
3
4` elements match p2’s key. Given that the CC3

statistics are good (which happens with probability 1 − Pr1; see above) s
(y)
0

contains at most 9
8` elements originating from player p1 and at least

7
8` elements

originating from player p2. In the sequel we assume that these quantities exactly
hold, which constitutes the best case for p0 to succeed (maximal number of
matches with p1’s key and minimal number for p2’s).

Suppose now that s′ is selected such that h = H(s′, s
(y)
0) > 3

4`. We show

that then H(s′, s
(y)
1) < 4

5` cannot be achieved almost certainly. By Lemma 10,

with probability 1 − Pr3, there are at most
7
20` elements in s′ that match s

(y)
1

at positions where the corresponding element of s
(y)
0 was actually received from

p2. Hence at least x > (2 − 4
5)` −

7
20` =

17
20` elements of s′ must match s

(y)
1

at positions where the corresponding element was actually received from p1;

i.e., of the h > 3
4` differences between s′ and s

(y)
0 , at most y = 9

8` − x < 11
40`

may be made up at positions where the corresponding element was received
from p1. The probability of this event can be estimated by Hoeffding bounds [?]
(Hypergeometric distribution; N = 2` elements, n = 3

4` trials, K = 9
8` “good”

elements, less than k = 11
40` hits), and we get Pra < e−

`

18 .

Suppose now that s′ is selected such that h = H(s′, s
(y)
0) ≤ 3

4`. We show

that then H(s′, s
(y)
2) > 5

4` cannot be achieved almost certainly. By Lemma 10,

with probability 1 − Pr2, there are at least
13
40` elements in s′ that match s

(y)
2

at positions where the corresponding element of s
(y)
0 was actually received from

p1. Hence at most x < (2 − 5
4)` −

13
40` =

17
40` elements of s

′ may match s
(y)
2 at

positions where the corresponding element was actually received from p2; in other

words, of the h ≤ 3
4` differences between s′ and s

(y)
0 , at least y = 7

8` − x > 9
20`

must be made up at positions where the corresponding element was received
from p2. The probability of this event can be estimated by the Hoeffding bound
(hypergeometric distribution; N = 2` elements, n = 3

4` trials, K = 7
8` “good”

elements, more than k = 9
20` hits), giving Pra < e−

`

26 .

Hence, when p0 is corrupted, we get an error probability of at most Pr6 ≤
Pr1+max(Pra+Pr3,Prb+Pr2) ≤ 4e

`

300 .

Since the error probability of protocol Secure-Channels-Impl-2 can be
made negligibly small, it can be parameterized such that the overall probability
that at least one invocation fails satisfies PrSC ≤ e−

`

300 . Thus, the overall error
probability of the weak 2-cast construction is at most

Prerr ≤ PrSC +max(Pr4,Pr5,Pr6) ≤ 5e
− `

300 .

For security parameter σ, we let ` ≥ 300(σ+ dln 5e), and hence Prerr ≤ e−σ. ut

Theorem 8. For k < n, there is no primitive gk complete for t < n.

Proof (sketch). Consider a UBB of cardinality k = n− 1. Since it is complete for
any computation among n− 1 players, it can securely simulate the functionality
of any k-player primitive with k < n; i.e., the existence of any k-player primitive
(k < n) complete for t < n would imply that the UBBn−1 is also complete.
Hence it is sufficient to show that there is no complete (n− 1)-player primitive
for t < n.

Suppose, for the sake of contradiction, that there is an (n − 1)-player black
box BBn−1 such that broadcast among the n players p0, . . . , pn−1 is reducible to
BBn−1 for t < n — and hence also for t = n− 2, i.e., in the presence of exactly
two correct players.7 Let π0, . . . , πn−1 denote the players’ processors with their
local programs and, for each i ∈ {0, . . . , n − 1} let πi+n be an identical copy

7 Since, by definition, broadcast is trivial if strictly less than two players are correct,
this is the non-trivial case that involves the least number of correct players.

Fig. 2. Reconnection of processors in the proof of Theorem 8: special case n = 4.

of processor πi. For every processor πk, k ∈ {0, . . . , 2n − 1}, let the number (k
modn) be called the type of pk. Similarly to the proof of Lemma 1, we now build
a new system involving all 2n processors but, instead of reconnecting them with
pairwise channels, the instances of BBn−1 have to be reconnected in such a way
that, again, for each pair of adjacent processors, πi and π(i+1) mod 2n, their view
in the new system is indistinguishable from their view in the original system,
for some particular strategy of an adversary corrupting all the remaining n− 2
processors.

In order to guarantee that the view of every processor pair πi and π(i+1) mod 2n

is consistent with their view in the original system, the following two conditions
must be satisfied:

1. For every processor πi, i ∈ {0, . . . , 2n− 1}, and for every selection of n− 2
processors of types different from (imodn), πi shares exactly one BBn−1

with these processors (as it does in the original system).

2. If processor πi, i ∈ {0, . . . , 2n − 1}, shares an instance of BBn−1 with a
processor of type π(i±1) modn (i.e., an adjacent type in the original system),
then it shares it with the concrete processor π(i±1) mod 2n (i.e., its adjacent
processor of this type in the new system).

This can be achieved by applying the following rule for every processor πi,
i ∈ {0, . . . , 2n − 1}. For each δ, δ = 1, . . . , n − 1, there is a BBn−1 that
originally connects πimodn with all other processors but π(i+δ) modn. For every

such δ, exactly one BBn−1 now connects πi with processors π(i+1) mod 2n, . . . ,
π(i+δ−1) mod 2n and π(i−1) mod 2n, . . . , π(i−n+δ+1) mod 2n. This principle is depicted
in Figure 2 for the special case of n = 4 and BB3.

Now the proof proceeds as the proof of Lemma 1 by assigning different input
values to both sender processors, and concluding that the broadcast conditions
are not satisfied with respect to at least 2 of the 2n pairs of adjacent processors.
This contradicts the assumption that broadcast is possible with an arbitrarily
small error probability. ut

