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Abstract. Building on a previous important work of Cachin, Crépeau,
and Marcil [15], we present a provably secure and more efficient protocol
for
(

2
1

)

-Oblivious Transfer with a storage-bounded receiver. A public ran-
dom string of n bits long is employed, and the protocol is secure against
any receiver who can store γn bits, γ < 1. Our work improves the work
of CCM [15] in two ways. First, the CCM protocol requires the sender
and receiver to store O(nc) bits, c ∼ 2/3. We give a similar but more effi-
cient protocol that just requires the sender and receiver to store O(

√
kn)

bits, where k is a security parameter. Second, the basic CCM Protocol
was proved in [15] to guarantee that a dishonest receiver who can store
O(n) bits succeeds with probability at most O(n−d), d ∼ 1/3, although
repitition of the protocol can make this probability of cheating exponen-
tially small [20]. Combining the methodologies of [24] and [15], we prove
that in our protocol, a dishonest storage-bounded receiver succeeds with
probability only 2−O(k), without repitition of the protocol. Our results
answer an open problem raised by CCM in the affirmative.

1 Introduction

Oblivious Transfer (OT) was introduced by Rabin [47] in 1981, and has since
then become one of the most fundamental and powerful tools in cryptography.
An important generalization, known as one-out-of-two oblivious transfer and
denoted

(

2
1

)

-OT, was introduced by Even, Goldreich, and Lempel [28] in 1982.

Informally speaking, in a
(

2
1

)

-OT, a sender Alice has two secret bits M0,M1 ∈
{0, 1}, and a receiver Bob has a secret bit δ ∈ {0, 1}. Alice sends M0,M1 in
such a way that Bob receives Mδ, but does not learn both M0 and M1, and
Alice learns nothing about δ. Crépeau proved in 1987 that OT and

(

2
1

)

-OT are
equivalent [19]. In 1988, Kilian proved that every secure two-party and multi-
party computation can be reduced to OT [33].

Traditionally, protocols for OT have been based on unproven complexity
assumptions that certains problems, such as integer factorization, are computa-
tionally hard, or that trapdoor permutations exist. The solutions so obtained,
although significant, have a drawback. Namely, they do not guarantee everlasting
security. A dishonest player can store the entire conversation during the proto-
col, and attempt to subvert the security of the protocol later, when enabled by
breakthroughs in computing technology and/or code-breaking algorithms. While



determining the computational complexity of factorization, or proving the exis-
tence of trapdoor permutations, is still beyond the reach of complexity theory,
continuing advances in factoring algorithms will jeopardize the security of pro-
tocols based on factoring. In addition, these protocols will become insecure if
quantum computers become available [50]. Similar threats exist for protocols
based on other hardness assumptions. We thus seek protocols that are provably
secure in face of any future advances in algorithms and computing technology.

The ground breaking work of Cachin, Crépeau, and Marcil [15] in 1998 gave
the first provably secure protocol for

(

2
1

)

-OT in the Bounded Storage Model,
without any complexity assumption. The bounded storage model, introduced
by Maurer [37], imposes a bound B on the adversary’s storage capacity only.
A public random string of n bits long, n > B, is employed in order to defeat
the adversary. Although a trusted third party is not necessary in principle, in a
practical implementation, the string α may be one in a steady flow of random
strings α1, α2, . . ., each of length n, broadcast from a satellite at a very high rate,
and available to all. When α is broadcast, the adversary is allowed to compute
an arbitrary function f on α, provided that the length |f(α)| ≤ B.

In the context of OT, the storage bound is placed on one of the two par-
ties, WLOG say the receiver. By the reversibility of OT [21], the case where
the storage bound is placed on the sender, is equivalent. The CCM protocol [15]
guarantees provable security against any dishonest sender who is unbounded in
every way, and against any computationally unbounded dishonest receiver who
stores no more than B = γn bits, γ < 1. Furthermore, the security against a
dishonest receiver is preserved regardless of future increases in storage capacity.
Together with the completeness of OT [33], a fundamental implication of [15] is
that every information-theoretically secure two-party and multi-party computa-
tion, in principle, is feasible in the bounded storage model.

The work of CCM [15], however, has two undesirable aspects. First, while
providing security against a dishonest receiver who stores B = O(n) bits, the
CCM protocol also requires honest sender and receiver to store O(nc) bits, c ∼
2/3. Since n is very large, this requirement could be rather excessive. Second,
the CCM protocol was proved in [15] to guarantee that a receiver who stores
O(n) bits succeeds with probability at most O(n−d), d ∼ 1/3. Note that this
probability is usually not as small as desired. Of course, repitition of the protocol
can make this probability of cheating exponentially small [20].

Our Results. Building on the work of Cachin, Crépeau, and Marcil [15], we give a
similar but more efficient protocol for

(

2
1

)

-OT in the bounded storage model. The
major difference between our protocol and the CCM Protocol is that the CCM
Protocol uses an extra distillation step, which involves many bits divided into
polynomially large blocks, and the extraction of a nearly random bit from each
block. Getting rid of this distillation step, we reduce the storage requirement
to O(

√
kn), where k is a security parameter. Combining the methodologies of

[24] and [15], we prove that in our protocol, any dishonest receiver who stores
O(n) bits succeeds with probability at most 2−O(k), without repetition of the
protocol. Our results answer positively an open problem raised in [15].



1.1 Related Work

OT and
(

2
1

)

-OT were introduced by Rabin [47] and Even et al [28] respectively.
Their equivalence was established by Crépeau [19]. There is a vast literature on
the relationships between OT and other cryptographic primitives, and between
OT variants. OT can be used to construct protocols for secret key agreement
[47], [8], [52], contract signing [28], bit commitment and zero-knowledge proof
[33], and general secure multi-party computation [52], [30], [31], [33], [32], [35],
[36], [22]. It was proved by Kilian that every secure two-party and multi-party
computation reduces to OT [33]. Information-theoretic reductions between OT
variants were studied in [10], [11], [19], [20], [21], [12], [9], [14], [25].

In traditional cryptography, protocols for OT have been designed under the
assumptions that factoring is hard [47], discret log is hard [6], and trapdoor
permutations exist [28], [52], [30], [31]. OT has also been studied in the quantum
model [7], and the noisy channel model [20]. Recently OT has been extended to
various distributed and concurrent settings [5], [49], [29], [44], and these protocols
are either based on complexity assumption, or information-theoretically secure
using private channels and auxilliary servers. Cachin, Crépeau, and Marcil [15]
gave the first secure two-party protocol for

(

2
1

)

-OT in the bounded storage and
public random string model, without any complexity assumption, and without
private channels or auxilliary servers.

The public random string model was introduced by Rabin [48]. The bounded
storage model was introduced by Maurer [37]. Secure encryption in the bounded
storage model was first studied in [37], [16], but later significantly stronger results
appeared in [1], [2], [24]. Information-theoretically secure key agreement was
investigated in [38], [39], [16], [40], [41], [42].

The bounded space model for zero-knowledge proof was studied in [18], [17],
[34], [23], [26], [27], [3]. Pseudorandomness in the bounded space model was stud-
ied in [45], [46]. However, note the important difference between the bounded
space model and the bounded storage model: the bounded space model imposes
a bound on the computation space of the adversary, whereas in the bounded
storage model the adversary can compute an function with arbitrarily high com-
plexity, provided that the length of the output is bounded.

2 Preliminaries

This section provides the building blocks for our protocol and analysis. Through-
out the paper, k is a security parameter, n is the length of a public random string,
and B = γn, γ < 1, is the storage bound on the receiver Bob. For simplicity and
WLOG, we consider B = n/6 (i.e. γ = 1/6). Similar results hold for any γ < 1.

Definition 1. Denote [n] = {1, . . . , n}. Let K d
= {s ⊂ [n] : |s| = k} be the set

of all k-element subsets of [n].

Definition 2. For s = {σ1, . . . , σk} ∈ K and α ∈ {0, 1}n, define s(α)
d
=

⊕k
i=1 α[σi], where ⊕ denotes XOR, and α[σi] is the σi-th bit of α.



Definition 3. Let H ⊂ {0, 1}n. Let s ∈ K. We say that s is good for H if

∣

∣

∣

∣

|{α ∈ H : s(α) = 0}|
|H| − |{α ∈ H : s(α) = 1}|

|H|

∣

∣

∣

∣

< 2−k/3. (1)

Thus, if s is good for H, then {s(α) : α ∈ H} is well balanced between 0’s and
1’s.

Definition 4. Let H ⊂ {0, 1}n. We say that H is fat if |H| ≥ 20.813n.

The following Lemma 1 says that if H is fat, then almost all s ∈ K are good
for H. The lemma follows directly from Main Lemma 1 of [24], by considering
k-tuples in [n]k with distinct coordinates.

Lemma 1. Let H ⊂ {0, 1}n. Denote

BH
d
= {s ∈ K : s is not good for H} . (2)

If H is fat, and k <
√
n 1, then

|BH | < |K| · 2−k/3 =

(

n

k

)

· 2−k/3. (3)

In Appendix A we will give a proof lemma 1 from Main Lemma 1 of [24].

Notation: Let F be a finite set. The notation x
R←− F denotes choosing x

uniformly from F .

Lemma 2. Let 0 < γ, ν < 1 and ν < 1 − γ. For any function f : {0, 1}n −→
{0, 1}γn, for α R←− {0, 1}n,

Pr
[

∣

∣f−1(f(α))
∣

∣ ≥ 2(1−γ−ν)n
]

> 1 − 2−νn.

Proof. Any function f : {0, 1}n −→ {0, 1}γn partitions {0, 1}n into 2γn disjoint
subsets Ω1, . . . , Ω2γn , one for each η ∈ {0, 1}γn, such that for each i, ∀α, β ∈ Ωi,
f(α) = f(β) = ηi ∈ {0, 1}γn. Let µ = 1 − γ − ν. We now bound the number of
α ∈ {0, 1}n s.t.

∣

∣f−1(f(α))
∣

∣ < 2µn. Since there are at most 2γn j’s such that
|Ωj | < 2µn, it follows that

∣

∣

{

α ∈ {0, 1}n : |f−1(f(α))| < 2µn
}∣

∣ =
∑

j:|Ωj |<2µn

|Ωj |

< 2γn · 2µn = 2(1−ν)n.

1 The condition k <
√
n in Lemma 1 is valid, because k, the security parameter (e.g.

k = 1000), is negligbly small compared to n (e.g. n = 1015), which is larger than the
adversary’s storage capacity.



Therefore, for α
R←− {0, 1}n,

Pr
[∣

∣f−1(f(α))
∣

∣ < 2µn
]

=

∣

∣

{

α ∈ {0, 1}n : |f−1(f(α))| < 2µn
}∣

∣

2n

<
2(1−ν)n

2n
= 2−νn.

ut

Corollary 1. For any function f : {0, 1}n −→ {0, 1}n/6, for α R←− {0, 1}n,

Pr
[

f−1(f(α)) is fat
]

> 1 − 2−0.02n.

Proof. Let γ = 1/6 and ν = 0.02 in Lemma 2. ut

The rest of this section is devoted to the crucial tools employed by the CCM
Protocol and our protocol.

2.1 Birthday Paradox

Lemma 3. Let A,B ⊂ [n] be two independent random subsets of [n] with |A| =
|B| = u. Then the expected size E[|A ∩ B|] = u2/n.

Corollary 2. Let A,B ⊂ [n] be two independent random subsets of [n] with
|A| = |B| =

√
kn. Then the expected size E[|A ∩ B|] = k.

We now wish to bound the probability that |A ∩ B| deviates from the ex-
pectation. Note that standard Chernoff-Hoeffding bounds do not directly apply,
since elements of the subsets A and B are chosen without replacement. We use
the following version of Chernoff-Hoeffding from [4].

Lemma 4. [4] Let Z1, . . . , Zu be Bernoulli trials (not necessarily independent),

and let 0 ≤ pi ≤ 1, 1 ≤ i ≤ u. Assume that ∀ i and ∀ (e1, · · · , ei−1) ∈ {0, 1}i−1
,

Pr [Zi = 1 | Z1 = e1, . . . , Zi−1 = ei−1] ≥ pi.

Let W =
∑u

i=1 pi. Then for δ < 1,

Pr

[

u
∑

i=1

Zi < W · (1− δ)
]

< e−δ2W/2. (4)

Corollary 3. Let A,B ⊂ [n] be two independent random subsets of [n] with
|A| = |B| = 2

√
kn. Then

Pr [|A ∩ B| < k] < e−k/4. (5)



Proof. Let u = 2
√
kn. Consider any fixed u-subset B ⊂ [n], and a randomly

chosen u-subset A = {A1, . . . ,Au} ⊂ [n]. For i = 1, . . . , u, let Zi be the Bernoulli
trial such that Zi = 1 if and only if Ai ∈ B. Then clearly

Pr [Zi = 1 | Z1 = e1, . . . , Zi−1 = ei−1] ≥
u − (i− 1)

n − (i− 1)
>

u − (i− 1)

n
. (6)

Let pi = u − (i−1)
n . Let W =

∑u
i=1 pi. Then by (6),

W >
1

n
·

u
∑

i=1

i >
u2

2n
= 2k. (7)

Therefore, (5) follows from (4) and (7), with δ = 1/2. ut

2.2 Interactive Hashing

Interactive Hashing is a protocol introduced by M. Noar, Ostrovsky, Venkate-
san, and Yung in the context of bit commitment and zero-knowledge proof [43].
Cachin, Crépeau, and Marcil [15] gave a new elegant analysis of interactive
hashing. The protocol involves two parties, Alice and Bob. Bob has a secret t-
bit string χ ∈ T ⊂ {0, 1}t, where |T | ≤ 2t−k and T is unknown to Alice. The
protocol is defined to be correct and secure if

1. Bob sends χ in such a way that Alice receives two strings χ0, χ1 ∈ {0, 1}t,
one of which is χ, but Alice does not know which one is χ.

2. Bob cannot force both χ0 and χ1 to be in T .

The following interactive hashing protocol is due to [43]. The same idea involv-
ing taking inner products over GF (2), was first introduced by Valiant and V.
Vazirani earlier in the complexity of UNIQUE SATISFIABILITY [51].

NOVY Protocol: Alice randomly chooses t − 1 linearly independent vectors
a1, . . . , at−1 ∈ {0, 1}t. The protocol then proceeds in t − 1 rounds. In Round i,
for each i = 1, . . . , t− 1,

1. Alice sends ai to Bob.
2. Bob computes bi = ai · χ, where · denotes inner product, and sends bi to

Alice.

After the t − 1 rounds, both Alice and Bob have the same system of linear
equations ai · x = bi over GF (2). Since the vectors a1, . . . , at−1 ∈ {0, 1}t are
linearly independent, the system of t − 1 linear equations over GF (2) with t
unknowns has exactly two solutions, one of which is χ. Therefore, by solving the
systems of equations ai ·x = bi, Alice receives two strings χ0, χ1, one of which is
χ. It is clear that information-theoretically, Alice does not know which solution
is χ. Thus Condition 1 of interactive hashing is satisfied.

The following important lemma, regarding Condition 2 of interactive hashing,
was proved in [15]. The same result in a non-adversarial setting, more precisely
in the case that the Bob is honest, was proved in [51].



Lemma 5. [15] Suppose Alice and Bob engage in interactive hashing of a t-bit
string, lg t ≤ k ≤ t, by the NOVY protocol. Let T ⊂ {0, 1}t be any subset with
|T | ≤ 2t−k. Then the probability that Bob can answer Alice’s queries in such a
way that T contains both strings χ0, χ1 received by Alice, is at most 2

−O(k).

Corollary 4. Let Alice and Bob engage in interactive hashing of a t-bit string
as above. Let T0, T1 ⊂ {0, 1}t be any two subsets with |T0|, |T1| ≤ 2t−k. Then
the probability that Bob can answer Alice’s queries in such a way that either
χ0 ∈ T0 ∧ χ1 ∈ T1, or χ0 ∈ T1 ∧ χ1 ∈ T0, is at most 2

−O(k).

Proof. Let T = T0 ∪ T1 in Lemma 5. ut

3 Protocol for
(

2

1

)

-OT

Recall that in a
(

2
1

)

-OT, the sender Alice has two secret bits M0,M1 ∈ {0, 1},
and the receiver Bob has a secret bit δ ∈ {0, 1}. By definition, a

(

2
1

)

-OT protocol
is correct and secure if the following three conditions are all satisfied:

1. Bob receives Mδ.
2. Bob learns nothing aboutM1⊕δ, except with a small probability ν(k), where

k is a security parameter.
3. Alice learns nothing about δ.

3.1 Outline of Basic Ideas

We first outline the basic ideas underling our protocol for
(

2
1

)

-OT. First, Alice
chooses random A ⊂ [n], and Bob chooses random B ⊂ [n], with |A| = |B| =
u = 2

√
kn. Public random string α

R←− {0, 1}n is broadcast. Alice retains α[i]
∀ i ∈ A, and Bob retains α[j] ∀ j ∈ B. Alice then sends her subset A to Bob,
and Bob computes A∩B. By the birthday paradox (Corollary 3), with very high
probability, |A ∩ B| ≥ k.

Fact 1 (Encoding of Subsets) [15] Each of the
(

u
k

)

k-element subsets of [u] =

{1, . . . , u} can be uniquely encoded as a lg
(

u
k

)

-bit string. See [15] for an efficient
method of encoding and decoding.

Next, Bob encodes a random k-subset s ⊂ A ∩ B as a lg
(

u
k

)

-bit string, and
sends s to Alice via the NOVY interactive hashing protocol. By the end of
interactive hashing, Alice and Bob will have created two “keys”, a good key
SG = s, and a bad key SB , each a k-subset of A, such that: Bob knows SG(α),
but learns nothing about SB(α), and Alice knows both SG(α) and SB(α), but
does not know which key is good and which key is bad.

Once the keys SG and SB are created, the rest of the protocol is trivial. If
Bob wants to read Mδ, then he simply asks Alice to encrypt Mδ with the good
key SG, and M1⊕δ with the good key SB , i.e. Bob ask Alice to send Mδ ⊕SG(δ)
and M1⊕δ ⊕SB(δ). The correctness and security of the protocol follow from the
properties of SB and SG described above.



3.2 The Protocol, and Main Results

Notation: For a bit Y ∈ {0, 1}, denote Y d
= 1⊕ Y .

Definition 5. Let X = {x1, . . . , xu} be an u-element set. For each subset J ⊂
[u], define XJ

d
= {xi : i ∈ J}.

Notation: From now on, let u = 2
√
kn.

Our protocol for
(

2
1

)

-OT, Protocol A, is described below. Protocol A uses

two public random strings α0, α1
R←− {0, 1}n. In each of Steps 2 and 3, Alice

and Bob each store u = 2
√
kn bits. In the interactive hashing of Step 4, Alice

transmits and Bob stores t2 bits, where t = lg
(

u
k

)

< k · (lg u − lg k/e). Since

k << n, the storage requirement is dominated by O(u) = O(
√
kn).

Protocol A:

1. Alice randomly chooses A(0) =
{

A(0)

1 , . . . ,A(0)
u

}

, A(1) =
{

A(1)

1 , . . . ,A(1)
u

}

⊂
[n], with |A(0)| = |A(1)| = u. Bob also chooses random B(0) =

{

B(0)

1 , . . . ,B(0)
u

}

,

B(1) =
{

B(1)

1 , . . . ,B(1)
u

}

⊂ [n], with |B(0)| = |B(1)| = u.

2. The first public random string α0
R←− {0, 1}n is broadcast. Alice stores the

u bits α0[A(0)

1 ], . . . , α0[A(0)
u ], and Bob stores α0[B(0)

1 ], . . . , α0[B(0)
u ].

3. After a short pause, the second public random string α1
R←− {0, 1}n is broad-

cast. Alice stores α1[A(1)

1 ], . . . , α1[A(1)
u ], and Bob stores α1[B(1)

1 ], . . . , α1[B(1)
u ].

4. Alice sends A(0),A(1) to Bob. Bob flips a coin c
R←− {0, 1}, and computes

A(c)∩B(c). If
∣

∣A(c) ∩ B(c)
∣

∣ < k, thenR aborts. Otherwise, Bob chooses a ran-

dom k-subset s =
{

A(c)
i1
, . . . ,A(c)

ik

}

⊂ A(c) ∩ B(c), and sets I = {i1, . . . , ik}.
Thus by Definition 5, s = A(c)

I .

5. Bob encodes I as a t-bit string, where t = lg
(

u
k

)

, and sends I to Alice via
the NOVY interactive hashing protocol in t − 1 rounds. Alice receives two
k-subsets I0 < I1 ⊂ [u]. For some b ∈ {0, 1}, I = Ib, but Alice does not know
b. Bob also computes I0, I1 by solving the same system of linear equations,
and knows b.

6. Bob sends ε = b ⊕ c and τ = δ ⊕ c to Alice, where c and b are defined in
Steps 4 and 5 respectively.

7. Alice sets s0 = A(0)

Iε
, X0 = s0(α0), s1 = A(1)

Iε
, and X1 = s1(α1). Alice then

computes C0 = Xτ ⊕M0, and C1 = Xτ ⊕M1, and sends C0, C1 to Bob.

8. Bob reads Mδ = Cδ ⊕Xc = Cδ ⊕
⊕k

j=1 αc[A(c)
ij

]. (Note that an honest Bob

following the protocol has stored αc[A(c)
ij

] ∀ 1 ≤ j ≤ k. Recall from Step 4

that ∀ 1 ≤ j ≤ k, A(c)
ij
∈ s ⊂ B(c)).



Remark: Each of A(0),A(1),B(0),B(1), as described in Protocol A, consists of
u independently chosen elements of [n], resulting in u lg n bits each. However,
as noted in [15], we can reduce the number of bits for describing the sets to
O(k log n), by choosing the elements with O(k)-wise independence, without sig-
nificantly affecting the results.

Lemma 6. The probability that an honest receiver Bob aborts in Step 4 of the
protocol, is at most e−k/4.

Proof. By Corollary 3, Pr
[∣

∣A(c) ∩ B(c)
∣

∣ < k
]

< e−k/4. ut

The following two lemmas about Protocol A are immediate.

Lemma 7. The receiver Bob can read Mδ simply by following the protocol.

Lemma 8. The sender Alice learns nothing about δ.

Proof. Because Alice does not learn c (defined in Step 4) and b (defined in Step
5) in Protocol A. ut

Therefore, Conditions 1 and 2 for a correct and secure
(

2
1

)

-OT, are satisfied.
We now come to the most challenging part, namely, Condition 3 regarding the
security against a dishonest receiver Bob, who can store B = n/6 bits, and whose
goal is to learn bothM0 andM1. While α0 is broadcast in Step 2, Bob computes
an arbitrary function η0 = A0(α0) using unlimited computing power, provided
that |η0| = n/6; and while α1 is broadcast in Step 3, Bob computes an arbitrary
function η1 = A1(η0, α1), |η1| = n/6. In Steps 4 - 6, using η1 and A(0),A(1),
Bob employs an arbitrary strategy in interacting with Alice. At the end of the
protocol, Bob attempts to learn both M0 and M1, using his information η1 on
(α0, α1), C0, C1 received from Alice in Step 7, and all information I he obtains
in Steps 4 - 6. Thus in particular, I includes A(0),A(1) received from Alice in
Step 4, and I0, I1 obtained in Step 5.

Theorem 1. For any A0 : {0, 1}n −→ {0, 1}n/6 and A1 : {0, 1}n/6×{0, 1}n −→
{0, 1}n/6, for any strategy Bob employs in Steps 4 - 6 of Protocol A, with proba-
bility at least 1− 2−O(k)− 2−0.02n+1, ∃ β ∈ {0, 1} such that for any distinguisher
D,

∣

∣

∣
Pr [D(η1, I, Xβ , Xβ) = 1] − Pr [D(η1, I, Xβ , 1⊕Xβ) = 1]

∣

∣

∣
< 2−k/3, (8)

where η1 = A1(η0, α1), η0 = A(0)

0 (α0), I denotes all the information Bob obtains
in Steps 4 - 6, and X0, X1 are defined in Step 7 of Protocol A.

Theorem 1 says that using all the information he has in his bounded storage,
Bob is not able to distinguish between (Xβ , Xβ) and (Xβ , 1 ⊕ Xβ), for some

β ∈ {0, 1}, where X0, X1 are defined in Step 7 of Protocol A. From Theorem 1,
we obtain:



Theorem 2. For any A0 : {0, 1}n −→ {0, 1}n/6 and A1 : {0, 1}n/6×{0, 1}n −→
{0, 1}n/6, for any strategy Bob employs in Steps 4 - 6 of Protocol A, with proba-
bility at least 1 − 2−O(k) − 2−0.02n+1, ∃ β ∈ {0, 1} such that ∀ M0,M1 ∈ {0, 1},
∀ δ ∈ {0, 1}, for any distinguisher D,

∣

∣

∣
Pr [D(η1, I, Xβ ⊕Mδ, Xβ ⊕Mδ) = 1]

− Pr [D(η1, I, Xβ ⊕Mδ, Xβ ⊕M δ) = 1]
∣

∣

∣
< 2−k/3, (9)

where X0, X1, η1 and I are as above. Therefore, the VIEW of Bob is essentially
the same if Mδ is replaced by M δ = 1⊕Mδ. Hence, in Protocol A, Bob learns
essentially nothing about any non-trivial function or relation involving both M0

and M1.

Proof. It is clear that (9) follows from (8). Therefore, Theorem 2 follows from
Theorem 1. ut

4 Proof of Theorem 1

In this section, we consider a dishonest receiver Bob, and prove Theorem 1.
We first note that it suffices to prove the theorem in the case that Bob’s

recording functions A0, A1 are deterministic. This does not detract from the
generality of our results for the following reason. By definition, a randomized
algorithm is an algorithm that uses a random help-string r for computing its
output. A randomized algorithm A with each fixed help-string r gives rise to a
deterministic algorithm Ar. Therefore, that Theorem 1 holds for any determin-
istic recording algorithm implies that for any randomized recording algorithm
A, for each fixed help-string r, A using r cannot succeed. Hence, by an averag-
ing argument, A using a randomly chosen r does not help. The reader might
notice that the help-string r could be arbitrarily long since Bob has unlimited
computing power. In particular, it could be that |r| > B, thereby giving rise to
a deterministic recording algorithm with length |Ar| = |A| + |r| > B. But our
model imposes no restriction on the program size of the recording algorithm.
The only restriction is that the length of the output |Ar(α)| = B for each r.
In the formal model, A is an unbounded non-uniform Turing Machine whose
output tape is bounded by B bits.

We prove a slightly stronger result, namely, Theorem 1 holds even if Bob
stores not only η1, but also η0, where η0 = A0(α0) and η1 = A1(η0, α1), A0, A1

are Bob’s recording functions, and α0, α1 are the public random strings used in
Steps 2 and 3 of Protocol A. Let

H0
d
= A−1

0 (η0) = {α ∈ {0, 1}n : A0(α) = η0} ;
H1

d
= {α ∈ {0, 1}n : A1(η0, α) = η1} .

After η0 and η1 are computed in Steps 2 and 3 of Protocol A, the receiver Bob
can compute H0 and H1, using unlimited computing power and space. But given



η0 and η1, all Bob knows about (α0, α1) is that it is uniformly random inH0×H1,
i.e. each element of H0 ×H1 is equally likely to be (α0, α1) .

Recall from Definition 4 that H ⊂ {0, 1}n is fat if |H| > 20.813n. By Corollary

1 and a union bound, for α0, α1
R←− {0, 1}n, for any recording functions A0, A1,

Pr [Both H0 and H1 are fat] > 1 − 2−0.02n+1. (10)

Thus, consider the case that both H0 and H1 are fat. By Lemma 1, for any fat
H ⊂ {0, 1}n,

|BH | < |K| · 2−k/3 =

(

n

k

)

· 2−k/3, (11)

where BH is defined in (2), i.e. almost all k-subsets of [n] are good for H (See
Definition 3 for the definition of goodness). Next, we show that if H is fat, then
for a uniformly random A ⊂ [n] s.t. |A| = u, with overwhelming probability,
almost all k-subsets of A are good for H.

Definition 6. For A ⊂ [n], define KA d
= {s ⊂ A : |s| = k}, i.e. KA is the set

of all k-subsets of A.

Definition 7. For A ⊂ [n] and H ⊂ {0, 1}n, define

BAH
d
= {s ∈ KA : s is not good for H} .

Lemma 9. Let H ⊂ {0, 1}n be fat. For a uniformly random A ⊂ [n] with
|A| = u,

Pr

[

∣

∣BAH
∣

∣ < |KA| · 2−k/6 =

(

u

k

)

· 2−k/6

]

> 1 − 2−k/6.

In other words, for almost all A ⊂ [n] with |A| = u, almost all k-subsets of A
are good for any fat H.

Proof. Let U be the set of all the
(

n
u

)

u-subsets of [n]. For each A ∈ U , let
WA

d
=
∣

∣BAH
∣

∣, i.e. WA is the number of k-subsets of A that are bad for H. Let

W
d
=
∑

A∈U WA. Since each k-subset of [n] is contained in exactly
(

n−k
u−k

)

u-
subsets, in the sum W each bad k-subset of [n] for H, i.e. every element of BH

(defined in (2)), is counted exactly
(

n−k
u−k

)

times. Together with (11), we have

W =
∑

A∈U

WA = |BH | ·
(

n− k
u− k

)

<

(

n− k
u− k

)(

n

k

)

· 2−k/3. (12)

Fact 2 For k ≤ u ≤ n,

(

n

k

)(

n− k
u− k

)

=

(

n

u

)(

u

k

)

. (13)



Therefore, by (12) and (13),

W =
∑

A∈U

WA <

(

n

u

)(

u

k

)

· 2−k/3. (14)

It follows that there can be at most a 2−k/6 fraction of u-subsets A such that
∣

∣BAH
∣

∣ ≥
(

u
k

)

·2−k/6, for otherwise we would have W ≥
(

u
k

)

·2−k/6 ·
(

n
u

)

·2−k/6 =
(

n
u

)(

u
k

)

· 2−k/3, contradicting (14). The lemma thus follows. ut
Again let A(0),A(1) be the random u-subsets of [n] Alice chooses in Step 1 of

Protocol A. By (10), Lemma 9 and a union bound, for α0, α1
R←− {0, 1}n, and

uniformly random A(0),A(1) ⊂ [n] with |A(0)| = |A(1)| = u, with probability at
least 1− 2−k/6+1 − 2−0.02n+1,

∣

∣

∣
BA

(0)

H0

∣

∣

∣
,
∣

∣

∣
BA

(1)

H1

∣

∣

∣
<

(

u

k

)

· 2−k/6. (15)

Thus consider the case that both BA
(0)

H0
, BA

(1)

H1
satisfy (15).

For each c ∈ {0, 1}, denote A(c) =
{

A(c)
1 , . . . ,A(c)

u

}

. Recall from Definition

5 that for J = {j1, . . . , jk} ⊂ [u], A(c)
J

d
=
{

A(c)
j1
, . . . ,A(c)

jk

}

. By Definition 6,

A(c)
J ∈ KA(c) . Define

T0
d
=

{

J ⊂ [u] : |J | = k ∧ A(0)

J ∈ BA
(0)

H0

}

,

T1
d
=

{

J ⊂ [u] : |J | = k ∧ A(1)

J ∈ BA
(1)

H1

}

.

Clearly |T0| =
∣

∣

∣
BA

(0)

H0

∣

∣

∣
, and |T1| =

∣

∣

∣
BA

(1)

H1

∣

∣

∣
. Thus by (15), we have

|T0| , |T1| <

(

u

k

)

· 2−k/6. (16)

Consider I0, I1 defined in Step 5 of Protocol A. Let ε be the first bit Bob sends
Alice in Step 6 of Protocol A. Then by (10), (15), (16), and Corollary 4 of
Lemma 5 on interactive hashing, for any strategy Bob uses in Steps 4 - 6, with
probability at least 1− 2−O(k) − 2−0.02n+1, Iε 6∈ T0 ∨ Iε 6∈ T1, where ε = 1⊕ ε.
WLOG, say Iε 6∈ T1. Let s0 = A(0)

Iε
, X0 = s0(α0), s1 = A(1)

Iε
, and X1 = s1(α1),

as defined in Step 7 of Protocol A. Since Iε 6∈ T1, by definition s1 6∈ BA
(1)

H1
, i.e.

s1 is good for H1. Note again that given η0 and η1, and thus H0 and H1, all Bob
knows about (α0, α1) is that (α0, α1) is uniformly random in H0 ×H1. Since s1

is good for H1, by (1) for the definition of goodness, for α1
R←− H1,

|Pr [X1 = 0] − Pr [X1 = 1]| < 2−k/3. (17)

For (α0, α1)
R←− H0×H1, X0 and X1 are independent. Thus together with (17),

for (α0, α1)
R←− H0 ×H1, for any b0 ∈ {0, 1},

|Pr [X1 = 0 | X0 = b0] − Pr [X1 = 1 | X0 = b0]| < 2−k/3. (18)

Thus, from (18) and all the above, Theorem 1 follows (with β = 1).



5 Discussion

Building on the work of Cachin, Crépeau, and Marcil [15], we have given a
similar but more efficient protocol for

(

2
1

)

-OT in the bounded storage model,
and provided a stronger security analysis.

Having proved a stronger result than that of [15], we note that the model of
[15] is slightly stronger than ours in the following sense. In [15], the dishonest
receiver Bob computes an arbitrary function on all public random bits, and
stores B bits of output. In our model, α0 is first broadcast, Bob computes and
stores η0 = A0(α0), which is a function of α0. Then α0 disappears. After a short
pause, α1 is broadcast, and Bob computes and stores η1 = A1(η0, α1), which is a
function of η0 and α1. However, we claim that our model is reasonable, as with
limited storage, in practice it is impossible for Bob to compute a function on all
of α0 and α1, with |α0| = |α1| > B, that are broadcast one after another, with
a pause in between. Furthermore, we believe that by a more detailed analysis, it
is possible to show that our results hold even in the stronger model, where Bob
computes an arbitrary function A(α0, α1) on all bits of α0 and α1.

As the CCM Protocol, our protocol employs interactive hashing, resulting in
an inordinate number of interactions. Further, the communication complexity of
the NOVY protocol is quadratic in the size of the string to be transmitted. It
thus remains a most important open problem to make this part of the protocol
non-interactive and more communication efficient.

Can the storage requirement of our protocol be further improved? For very
large n, Ω(

√
kn) may not be small enough to be practical. It becomes another

important open problem to investigate the feasibility of reducing the storage
requirement for OT in the bounded storage model, and establish lower bounds.

We also note that the constant hidden by O(·) in our results is not optimized.
We believe that this can be improved by refining the analysis of Lemma 9, as
well as the analysis of interactive hashing in [15].
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11. G. Brassard, C. Crépeau, and J-M. Roberts. All-or-nothing disclosure of secrets.

In Advances in Cryptology - CRYPTO ’86, pages 234-238, 1986.
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Appendix A: Proof of Lemma 1

Definition 8. Let s = (σ1, . . . , σk) ∈ [n]k. For α ∈ {0, 1}n, define s(α) as in
Definition 2, i.e. s(α)

d
=
⊕k

i=1 α[σi].

Definition 9. Let s ∈ [n]k. Let H ⊂ [n]. Define the goodness of s for H as in
Definition 3, i.e. s is good for H if (1) holds.

The following main lemma is proved in [24].

Main Lemma 1 [24] Let H ⊂ {0, 1}n. Denote

B̂H
d
=

{

s ∈ [n]k : s is not good for H
}

. (19)

If H is fat, then

|B̂H | < nk · 2−k/3−1. (20)

We now prove Lemma 1 from Main Lemma 1. Let B̃H ⊂ B̂H be the subset
of bad k-tuples with k distinct coordinates, i.e.

B̃H
d
=
{

s = (σ1, . . . , σk) ∈ B̂H : σi 6= σj ∀ i 6= j
}

. (21)

Then clearly

|B̃H | = |BH | · k!, (22)

where BH is defined in (2). By way of contradiction, suppose that Lemma 1 does
not hold, i.e.

|BH | ≥
(

n

k

)

· 2−k/3. (23)

Then by (22) and (23), and the fact that B̃H ⊂ B̂H , we have

|B̂H | ≥ |B̃H | = |BH | · k! ≥
(

n

k

)

· k! · 2−k/3. (24)

Observe that
(

n

k

)

· k! = nk ·
(

1− 1

n

)

· · ·
(

1− k − 1

n

)

> nk ·
(

1 −
∑k−1

i=1 i

n

)

> nk ·
(

1 − k2

2n

)

>
nk

2
for k <

√
n. (25)

Therefore, if Lemma 1 does not hold, i.e. if (23) holds, then by (24) and (25),

|B̂H | > nk · 2−k/3−1, (26)

contradicting (20). Thus, Lemma 1 must hold.


