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Abstract. We propose a fully functional identity-based encryption scheme
(IBE). The scheme has chosen ciphertext security in the random oracle
model assuming an elliptic curve variant of the computational Diffie-
Hellman problem. Our system is based on the Weil pairing. We give
precise definitions for secure identity based encryption schemes and give
several applications for such systems.

1 Introduction

In 1984 Shamir [27] asked for a public key encryption scheme in which the public
key can be an arbitrary string. In such a scheme there are four algorithms: (1)
setup generates global system parameters and a master-key, (2) extract uses the
master-key to generate the private key corresponding to an arbitrary public key
string ID ∈ {0, 1}∗, (3) encrypt encrypts messages using the public key ID, and
(4) decrypt decrypts messages using the corresponding private key.
Shamir’s original motivation for identity-based encryption was to simplify

certificate management in e-mail systems. When Alice sends mail to Bob at
bob@hotmail.com she simply encrypts her message using the public key string
“bob@hotmail.com”. There is no need for Alice to obtain Bob’s public key cer-
tificate. When Bob receives the encrypted mail he contacts a third party, which
we call the Private Key Generator (PKG). Bob authenticates himself to the PKG
in the same way he would authenticate himself to a CA and obtains his private
key from the PKG. Bob can then read his e-mail. Note that unlike the existing
secure e-mail infrastructure, Alice can send encrypted mail to Bob even if Bob
has not yet setup his public key certificate. Also note that key escrow is inherent
in identity-based e-mail systems: the PKG knows Bob’s private key. We discuss
key revocation, as well as several new applications for IBE schemes in the next
section.
Since the problem was posed in 1984 there have been several proposals for

IBE schemes (e.g., [7, 29, 28, 21]). However, none of these are fully satisfactory.
Some solutions require that users not collude. Other solutions require the PKG
to spend a long time for each private key generation request. Some solutions
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require tamper resistant hardware. It is fair to say that constructing a usable
IBE system is still an open problem. Interestingly, the related notions of identity-
based signature and authentication schemes, also introduced by Shamir [27], do
have satisfactory solutions [11, 10].

In this paper we propose a fully functional identity-based encryption scheme.
The performance of our system is comparable to the performance of ElGamal
encryption in F∗

p. The security of our system is based on a natural analogue
of the computational Diffie-Hellman assumption on elliptic curves. Based on
this assumption we show that the new system has chosen ciphertext security in
the random oracle model. Using standard techniques from threshold cryptogra-
phy [14, 15] the PKG in our scheme can be distributed so that the master-key is
never available in a single location. Unlike common threshold systems, we show
that robustness for our distributed PKG is free.

Our IBE system can be built from any bilinear map e : G1 × G1 → G2

between two groups G1,G2 as long as a variant of the Computational Diffie-
Hellman problem in G1 is hard. We use the Weil pairing on elliptic curves as
an example of such a map. Until recently the Weil pairing has mostly been
used for attacking elliptic curve systems [22, 13]. Joux [17] recently showed that
the Weil pairing can be used for “good” by using it in a protocol for three
party one round Diffie-Hellman key exchange. Using similar ideas, Verheul [30]
recently constructed an ElGamal encryption scheme where each public key has
two corresponding private keys. In addition to our identity-based encryption
scheme, we show how to construct an ElGamal encryption scheme with “built-in”
key escrow, i.e., where one global escrow key can decrypt ciphertexts encrypted
under any public key.

To argue about the security of our IBE system we define chosen ciphertext
security for identity-based encryption. Our model is slightly stronger than the
standard model for chosen ciphertext security [25, 1]. While mounting a chosen
ciphertext attack on the public key ID, the attacker could ask the PKG for
the private key of some public key ID′ 6= ID. This private key might help the
attacker. Hence, during the chosen ciphertext attack we allow the attacker to
obtain the private key for any public key of her choice other than the one on
which the attacker is being challenged. Even with the help of such queries the
attacker should have negligible advantage in defeating the semantic security of
the system.

The rest of the paper is organized as follows. Several applications of identity-
based encryption are discussed in Section 1.1. We then give precise definitions
and security models in Section 2. Basic properties of the Weil pairing – sufficient
for an understanding of our constructions – are discussed in Section 3. Our main
identity-based encryption scheme is presented in Section 4. Some extensions and
variations (efficiency improvements, distribution of the master-key) are consid-
ered in Section 5. Our construction for ElGamal encryption with a global escrow
key is described in Section 6. Conclusions and open problems are discussed in
Section 7.



1.1 Applications for Identity-Based Encryption

The original motivation for identity-based encryption is to help the deployment
of a public key infrastructure. In this section, we show several other unrelated
applications.

Revocation of Public Keys Public key certificates contain a preset expiration
date. In an IBE system key expiration can be done by having Alice encrypt e-
mail sent to Bob using the public key: “bob@hotmail.com ‖ current-year”.
In doing so Bob can use his private key during the current year only. Once a
year Bob needs to obtain a new private key from the PKG. Hence, we get the
effect of annual private key expiration. Note that unlike the existing PKI, Alice
does not need to obtain a new certificate from Bob every time Bob refreshes his
certificate.

One could potentially make this approach more granular by encrypting e-mail
for Bob using “bob@hotmail.com ‖ current-date”. This forces Bob to obtain
a new private key every day. This might be feasible in a corporate PKI where
the PKG is maintained by the corporation. With this approach key revocation
is quite simple: when Bob leaves the company and his key needs to be revoked,
the corporate PKG is instructed to stop issuing private keys for Bob’s e-mail
address. The interesting property is that Alice does not need to communicate
with any third party to obtain Bob’s daily public key. This approach enables
Alice to send messages into the future: Bob will only be able to decrypt the
e-mail on the date specified by Alice (see [26, 8] for methods of sending messages
into the future using a stronger security model).

Delegation of Decryption Keys Another application for IBE systems is
delegation of decryption capabilities. We give two example applications. In both
applications the user Bob plays the role of the PKG. Bob runs the setup algorithm
to generate his own IBE system parameters params and his own master-key. Here
we view params as Bob’s public key. Bob obtains a certificate from a CA for his
public key params. When Alice wishes to send mail to Bob she first obtains Bob’s
public key params and public key certificate.

1. Delegation to a laptop. Suppose Alice encrypts mail to Bob using the
current date as the IBE encryption key (she uses Bob’s params as the IBE
system parameters). Since Bob has the master-key he can extract the private
key corresponding to this IBE encryption key and then decrypt the message.
Now, suppose Bob goes on a trip for seven days. Normally, Bob would put his
private key on his laptop. If the laptop is stolen the private key is compromised.
When using the IBE system Bob could simply install on his laptop the seven
private keys corresponding to the seven days of the trip. If the laptop is stolen,
only the private key for those seven days are compromised. The master-key is
unharmed. This is analogous to the delegation scenario for signature schemes
considered by Goldreich et al. [16].



2. Delegation of duties. Suppose Alice encrypts mail to Bob using the subject
line as the IBE encryption key. Bob can decrypt mail using hismaster-key. Now,
suppose Bob has several assistants each responsible for a different task (e.g.
one is ‘purchasing’, another is ‘human-resources’, etc.). Bob gives one private
key to each of his assistants corresponding to the assistant’s responsibility.
Each assistant can then decrypt messages whose subject line falls within its
responsibilities, but it cannot decrypt messages intended for other assistants.
Note that Alice only obtains a single public key from Bob (params), and she
uses that public key to send mail with any subject line of her choice. The mail
can only be read by the assistant responsible for that subject.

More generally, IBE can simplify various systems that manage a large number
of public keys. Rather than storing a big database of public keys the system
can either derive these public keys from usernames, or simply use the integers
1, . . . , n as distinct public keys.

2 Definitions

Bilinear Map. Let G1 and G2 be two cyclic groups of order q for some large
prime q. In our system, G1 is the group of points of an elliptic curve over Fp
and G2 is a subgroup of F∗

p2 . Therefore, we view G1 as an additive group and
G2 as a multiplicative group. A map ê : G1 × G1 → G2 is said to be bilinear
if ê(aP, bQ) = ê(P,Q)ab for all P,Q ∈ G1 and all a, b ∈ Z. As we will see
in Section 3, the Weil pairing is an example of an efficiently computable non-
degenerate bilinear map.

Weil Diffie-Hellman Assumption (WDH). Our IBE system can be built from any
bilinear map ê : G1 ×G1 → G2 for which the following assumption holds: there
is no efficient algorithm to compute ê(P, P )abc ∈ G2 from P, aP, bP, cP ∈ G1

where a, b, c ∈ Z. This assumption is precisely defined in Section 3. We note that
this WDH assumption implies that the Diffie-Hellman problem is hard in the
group G1.

Identity-Based Encryption. An identity-based encryption scheme is specified by
four randomized algorithms: Setup, Extract, Encrypt, Decrypt:

Setup: takes a security parameter k and returns params (system parameters) and
master-key. The system parameters include a description of a finite message
space M, and a description of a finite ciphertext space C. Intuitively, the
system parameters will be publicly known, while the master-key will be known
only to the “Private Key Generator” (PKG).

Extract: takes as input params, master-key, and an arbitrary ID ∈ {0, 1}∗, and
returns a private key d. Here ID is an arbitrary string that will be used as
a public key, and d is the corresponding private decryption key. The Extract

algorithm extracts a private key from the given public key.

Encrypt: takes as input params, ID, andM ∈M. It returns a ciphertext C ∈ C.



Decrypt: takes as input params, ID, C ∈ C, and a private key d. It return
M ∈M.

These algorithms must satisfy the standard consistency constraint, namely when
d is the private key generated by algorithm Extract when it is given ID as the
public key, then

∀M ∈M : Decrypt(params, ID, C, d) =M where C = Encrypt(params, ID,M)

Chosen ciphertext security. Chosen ciphertext security (IND-CCA) is the stan-
dard acceptable notion of security for a public key encryption scheme [25, 1, 9].
Hence, it is natural to require that an identity-based encryption scheme also sat-
isfy this strong notion of security. However, the definition of chosen ciphertext
security must be strengthened a bit. The reason is that when an attacker attacks
a public key ID in an identity-based system, the attacker might already possess
the private keys of users ID1, . . . , IDn of her choice. The system should remain
secure under such an attack. Hence, the definition of chosen ciphertext security
must allow the attacker to obtain the private key associated with any identity
IDi of her choice (other than the public key ID being attacked). We refer to such
queries as private key extraction queries. Another difference is that the attacker
is challenged on a public key ID of her choice (as opposed to a random public
key).

We say that an identity-based encryption scheme is semantically secure against
an adaptive chosen ciphertext attack (IND-ID-CCA) if no polynomially bounded
adversary A has a non-negligible advantage against the Challenger in the fol-
lowing game:

Setup: The challenger takes a security parameter k and runs the Setup algo-
rithm. It gives the adversary the resulting system parameters params. It keeps
the master-key to itself.

Phase 1: The adversary issues queries q1, . . . , qm where query qi is one of:

– Extraction query 〈IDi〉. The challenger responds by running algorithm Extract

to generate the private key di corresponding to the public key 〈IDi〉. It sends
di to the adversary.

– Decryption query 〈IDi, Ci〉. The challenger responds by running algorithm
Extract to generate the private key di corresponding to IDi. It then runs
algorithm Decrypt to decrypt the ciphertext Ci using the private key di. It
sends the resulting plaintext to the adversary.

These queries may be asked adaptively, that is, each query qi may depend on
the replies to q1, . . . , qi−1.

Challenge: Once the adversary decides that Phase 1 is over it outputs two
plaintextsM0,M1 ∈M and an identity ID on which it wishes to be challenged.
The only constraint is that ID did not appear in any private key extraction
query in Phase 1.

The challenger picks a random bit b ∈ {0, 1} and sets C = Encrypt(params, ID,Mb).
It sends C as the challenge to the adversary.



Phase 2: The adversary issues more queries qm+1, . . . , qn where query qi is one
of:

– Extraction query 〈IDi〉 where IDi 6= ID. Challenger responds as in Phase 1.

– Decryption query 〈IDi, Ci〉 6= 〈ID, C〉. Challenger responds as in Phase 1.

These queries may be asked adaptively as in Phase 1.

Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1}. The adversary wins
the game if b = b′.

We refer to such an adversary A as an IND-ID-CCA attacker. We define adversary
A’s advantage in attacking the scheme as: Adv(A) =

∣

∣Pr[b = b′]− 1
2

∣

∣.
The probability is over the random bits used by the challenger and the adversary.
We say that the IBE system is semantically secure against an adaptive chosen
ciphertext attack (IND-ID-CCA) if no polynomially bounded adversary has a
non-negligible advantage in attacking the scheme. As usual, “non-negligible”
should be understood as larger than 1/f(k) for some polynomial f (recall k is
the security parameter). Note that the standard definition of chosen ciphertext
security (IND-CCA) [25, 1] is the same as above except that there are no private
key extraction queries and the attacker is challenged on a random public key
(rather than a public key of her choice).

Private key extraction queries are related to the definition of chosen cipher-
text security in the multiuser settings [4]. After all, our definition involves mul-
tiple public keys belonging to multiple users. In [4] the authors show that that
multiuser IND-CCA is reducible to single user IND-CCA using a standard hybrid
argument. This does not hold in the identity-based settings, IND-ID-CCA, since
the attacker gets to choose which public keys to corrupt during the attack. To
emphasize the importance of private key extraction queries we note that our IBE
system can be easily modified (by removing one of the hash functions) into a
system which has chosen ciphertext security when private extraction queries are
disallowed. However, the scheme is completely insecure when extraction queries
are allowed.

One way identity-based encryption. The proof of security for our IBE system
makes use of a weak notion of security called one-way encryption (OWE) [12].
OWE is defined for standard public key encryption schemes (not identity based)
as follows: the attacker A is given a random public key Kpub and a ciphertext C
which is the encryption of a random message M using Kpub. The attacker’s goal
is to recover the corresponding plaintext. It has advantage ε in attacking the
system if Pr[A(Kpub, C) =M ] = ε. We say that the public key scheme is a one-
way encryption scheme (OWE) if no polynomial time attacker has non-negligible
advantage in attacking the scheme. See [12] for precise definitions.

For identity-based encryption, we strengthen the definition as follows. We say
that an IBE scheme is a one-way identity-based encryption scheme (ID-OWE)
if no polynomially bounded adversary A has a non-negligible advantage against
the Challenger in the following game:



Setup: The challenger takes a security parameter k and runs the Setup algo-
rithm. It gives the adversary the resulting system parameters params. It keeps
the master-key to itself.

Phase 1: The adversary issues private key extraction queries ID1, . . . , IDm. The
challenger responds by running algorithm Extract to generate the private key
di corresponding to the public key IDi. It sends di to the adversary. These
queries may be asked adaptively.

Challenge: Once the adversary decides that Phase 1 is over it outputs a public
key ID 6= ID1, . . . , IDm on which it wishes to be challenged. The challenger
picks a random M ∈ M and encrypts M using ID as the public key. It then
sends the resulting ciphertext C to the adversary.

Phase 2: The adversary issues more extraction queries IDm+1, . . . , IDn. The
only constraint is that IDi 6= ID. The challenger responds as in Phase 1.

Guess: Finally, the adversary outputs a guessM ′ ∈M. The adversary wins the
game if M =M ′.

We refer to such an attacker A as an ID-OWE attacker. We define adversary’s
A’s advantage in attacking the scheme as: Adv(A) = Pr[M = M ′]. The prob-
ability is over the random bits used by the challenger and the adversary. Note
that the definitions of OWE is the same as ID-OWE except that there are no
private key extraction queries and the attacker is challenged on a random public
key (rather than a public key of her choice).

3 Properties of the Weil Pairing

The bilinear map ê : G1 × G1 → G2 discussed in Section 2 is implemented via
the Weil pairing. In this section we describe the basic properties of this pairing
and the complexity assumption needed for the security of our system. To make
the presentation concrete we consider a specific supersingular elliptic curve. In
Section 5 we describe several extensions and observations for our approach. The
complete definition and algorithm for computing the pairing are given in the full
version of the paper [2].
Let p be a prime satisfying p = 2 mod 3 and p = 6q−1 for some prime q. Let

E be the elliptic curve defined by the equation y2 = x3 + 1 over Fp. We state a
few elementary facts about this curve:

Fact 1: Since x3+1 is a permutation on Fp it easily follows that E/Fp contains
p+1 points. We let O denote the point at infinity. Let P ∈ E/Fp be a generator
of the group of points of order q = (p+ 1)/6. We denote this group by Gq.

Fact 2: For any y0 ∈ Fp there is a unique point (x0, y0) on E/Fp. Hence, if
(x, y) is a random non-zero point on E/Fp then y is uniform in Fp. We use
this property to simplify the proof of security.

Fact 3: Let 1 6= ζ ∈ Fp2 be a solution of x3 − 1 = 0 mod p. Then the map
φ(x, y) = (ζx, y) is an automorphism of the group of points on the curve
E. Note that when P = (x, y) ∈ E/Fp we have that φ(P ) ∈ E/Fp2 , but
φ(P ) 6∈ E/Fp. Hence, P ∈ E/Fp is linearly independent of φ(P ) ∈ E/Fp2 .



Fact 4: Since the points P and φ(P ) are linearly independent they generate a
group isomorphic to Zq × Zq. We denote this group of points by E[q].

Let µq be the subgroup of F∗
p2 containing all elements of order q = (p + 1)/6.

The Weil pairing on the curve E/Fp2 is a mapping e : E[q] × E[q] → µq. We
define the modified Weil pairing ê : Gq ×Gq → µq to be:

ê(P,Q) = e(P, φ(Q))

The modified Weil pairing satisfies the following properties:

1. Bilinear: For all P,Q ∈ Gq and for all a, b ∈ Z we have ê(aP, bQ) = ê(P,Q)ab.

2. Non-degenerate: ê(P, P ) ∈ Fp2 is an element of order q, and in fact a generator
of µq.

3. Computable: Given P,Q ∈ Gq there is an efficient algorithm, due to Miller, to
compute ê(P,Q). This algorithm is described in [2]. Its run time is comparable
to a full exponentiation in Fp.

3.1 Weil Diffie-Hellman Assumption

Joux and Nguyen [18] point out that although the Computational Diffie-Hellman
problem (CDH) appears to be hard in the group Gq, the Decisional Diffie-
Hellman problem (DDH) is easy in Gq. Observe that given P, aP, bP, cP ∈ Gq

we have

c = ab mod q ⇐⇒ ê(P, cP ) = ê(aP, bP )

Hence, the modified Weil pairing provides an easy test for Diffie-Hellman tuples.
Consequently, one cannot use the DDH assumption to build cryptosystems in the
group Gq. The security of our system is based on the following natural variant
of the Computational Diffie-Hellman assumption.

Weil Diffie-Hellman Assumption (WDH): Let p = 2 mod 3 be a k-bit prime and
p = 6q−1 for some prime q. Let E/Fp be the curve y2 = x3+1 and let P ∈ E/Fp
be a point of order q. The WDH problem is as follows: Given 〈P, aP, bP, cP 〉 for
random a, b, c ∈ Z∗

q compute W = ê(P, P )abc ∈ Fp2 . The WDH Assumption
states that when p is a random k-bit prime there is no probabilistic polynomial
time algorithm for the WDH problem. An algorithm A has advantage ε in solving
WDH if Pr

[

A(P, aP, bP, cP ) = ê(P, P )abc
]

≥ ε. Joux [17] previously used an
analogue of the WDH assumption to construct a one-round three party Diffie-
Hellman protocol. Verheul [30] recently used a related hardness assumption.
To conclude this section we point out that the discrete log problem in Gq

is easily reducible to the discrete log problem in F∗
p2 (see [22, 13]). To see this

observe that given P ∈ Gq and Q = aP we can define g = ê(P, P ) and h =
ê(Q,P ). Then h = ga and h, g ∈ F∗

p2 . Hence, computing discrete log in F∗
p2 is

sufficient for computing discrete log in Gq. For proper security of discrete log in
F∗
p one often uses primes p that are 1024-bits long. Since we need discrete log in

Gq to be difficult our system also uses primes p that are at least 1024-bits long.



4 Our Identity-Based Encryption Scheme

We describe our scheme in stages. First we give a basic identity-based encryption
scheme which is not secure against an adaptive chosen ciphertext attack. The
only reason for describing the basic scheme is to make the presentation easier
to follow. Our full scheme, described in Section 4.3, extends the basic scheme to
get security against an adaptive chosen ciphertext attack (IND-ID-CCA) in the
random oracle model.

4.1 MapToPoint

Let p be a prime satisfying p = 2 mod 3 and p = 6q−1 for some prime q > 3. Let
E be the elliptic curve y2 = x3+1 over Fp. Our IBE scheme makes use of a simple
algorithm for converting an arbitrary string ID ∈ {0, 1}∗ to a point QID ∈ E/Fp
of order q. We refer to this algorithm as MapToPoint. We describe one of several
ways of doing so. Let G be a cryptographic hash function G : {0, 1}∗ → Fp (in
the security analysis we view G as a random oracle). Algorithm MapToPointG
works as follows:
1. Compute y0 = G(ID) and x0 = (y

2
0 − 1)

1/3 = (y2
0 − 1)

(2p−1)/3 mod p.

2. Let Q = (x0, y0) ∈ E/Fp. Set QID = 6Q. Then QID has order q as required.
This completes the description of MapToPoint. We note that there are 5 values
of y0 ∈ Fp for which 6Q = (x0, y0) = O (these are the non-O points of order
dividing 6). When G(ID) is one of these 5 values QID will not have order q. Since
it is extremely unlikely for G(ID) to hit one of these five points, for simplicity
we say that such ID’s are invalid. It is easy to extend algorithm MapToPoint to
handle these five y0 values as well.

4.2 BasicIdent

To explain the basic ideas underlying our IBE system we describe the following
simple scheme, called BasicIdent. We present the scheme by describing the four
algorithms: Setup, Extract, Encrypt, Decrypt. We let k be the security parameter
given to the setup algorithm.

Setup: The algorithm works as follows:

Step 1: Choose a large k-bit prime p such that p = 2 mod 3 and p = 6q− 1 for
some prime q > 3. Let E be the elliptic curve defined by y2 = x3 + 1 over
Fp. Choose an arbitrary P ∈ E/Fp of order q.

Step 2: Pick a random s ∈ Z∗
q and set Ppub = sP .

Step 3: Choose a cryptographic hash function H : Fp2 → {0, 1}n for some
n. Choose a cryptographic hash function G : {0, 1}∗ → Fp. The security
analysis will view H and G as random oracles.

The message space isM = {0, 1}n. The ciphertext space is C = E/Fp×{0, 1}n.
The system parameters are params = 〈p, n, P, Ppub, G,H〉. The master-key is
s ∈ Zq.



Extract: For a given string ID ∈ {0, 1}∗ the algorithm builds a private key d as
follows:

Step 1: Use MapToPointG to map ID to a point QID ∈ E/Fp of order q.
Step 2: Set the private key dID to be dID = sQID where s is the master key.

Encrypt: To encrypt M ∈ M under the public key ID do the following: (1)
use MapToPointG to map ID into a point QID ∈ E/Fp of order q, (2) choose a
random r ∈ Zq, and (3) set the ciphertext to be

C = 〈rP, M ⊕H(gr
ID
)〉 where gID = ê(QID, Ppub) ∈ Fp2

Decrypt: Let C = 〈U, V 〉 ∈ C be a ciphertext encrypted using the public key
ID. If U ∈ E/Fp is not a point of order q reject the ciphertext. Otherwise, to
decrypt C using the private key dID compute:

V ⊕H(ê(dID, U)) =M

This completes the description of BasicIdent. We first verify consistency. When
everything is computed as above we have:
1. During encryption M is Xored with the hash of: gr

ID
.

2. During decryption V is Xored with the hash of: ê(dID, U).
These masks used during encryption and decryption are the same since:

ê(dID, U) = ê(sQID, rP ) = ê(QID, P )
sr = ê(QID, Ppub)

r = gr
ID

Thus, applying decryption after encryption produces the original message M
as required. We note that there is no need to devise attacks against this basic
scheme since it is only presented for simplifying the exposition. The next section
describes the full scheme.

Performance. Algorithms Setup and Extract are very simple algorithms. At the
heart of both algorithms is a standard multiplication on the curve E/Fp. Algo-
rithm Encrypt requires that the encryptor compute the Weil pairing of QID and
Ppub. Note that this computation is independent of the message, and hence can
be done once and for all. Once gID is computed the performance of the system is
almost identical to standard ElGamal encryption. We also note that the cipher-
text length is the same as in regular ElGamal encryption in Fp. Decryption is a
simple Weil pairing computation.

Security. Next, we study the security of this basic scheme. The following theorem
shows that the scheme is a one-way identity based encryption scheme (ID-OWE)
assuming WDH is hard.

Theorem 1. Let the hash functions H,G be random oracles. Suppose there is an
ID-OWE attacker A that has advantage ε against the scheme BasicIdent. Suppose
A make at most qE > 0 private key extraction queries and qH > 0 hash queries.
Then there is an algorithm B for computing WDH with advantage at least

ε
e(1+qE)·qH

− 1
qH ·2n . Here e ≈ 2.71 is the base of the natural logarithm. The

running time of B is O(time(A)).



To prove the theorem we need to define a related Public Key Encryption
scheme (not an identity scheme), called PubKeyEnc. PubKeyEnc is described by
three algorithms: keygen, encrypt, decrypt.
keygen: The algorithm works as follows:

Step 1: Choose a large k-bit prime p such that p = 2 mod 3 and p = 6q − 1
for some prime q > 3. Let E be the elliptic curve defined by y2 = x3 + 1
over Fp. Choose an arbitrary P ∈ E/Fp of order q.

Step 2: Pick a random s ∈ Z∗
q and set Ppub = sP .

Pick a random point QID ∈ E/Fp of order q. Then QID is in the group
generated by P .

Step 3: Choose a cryptographic hash function H : Fp2 → {0, 1}n for some n.

Step 4: The public key is 〈p, n, P, Ppub, QID, H〉. The private key is dID = sQID.

encrypt: To encryptM ∈ {0, 1}n choose a random r ∈ Zq and set the ciphertext
to be:

C = 〈rP, M ⊕H(gr)〉 where g = ê(QID, Ppub) ∈ Fp2

decrypt: Let C = 〈U, V 〉 ∈ C be a ciphertext encrypted using the public key
〈p, n, P, Ppub, QID, H〉. To decrypt C using the private key dID compute:

V ⊕H(ê(dID, U)) =M

This completes the description of PubKeyEnc. We now prove Theorem 1 in two
steps. We first show that an ID-OWE attack on BasicIdent can be converted to a
OWE attack on PubKeyEnc. This step shows that private key extraction queries
do not help the attacker. We then show that PubKeyEnc is OWE if the WDH
assumption holds. The proofs of these two lemmas appear in the full version of
the paper [2].

Lemma 1. Let G be a random oracle from {0, 1}∗ to Fp. Let A be an ID-OWE

attacker that has advantage ε against BasicIdent. Suppose A makes at most
qE > 0 private key extraction queries. Then there is a OWE attacker B that
has advantage ε/e(1 + qE) against PubKeyEnc. Its running time is O(time(A)).

Lemma 2. Let H be a random oracle from Fp2 to {0, 1}n. Let A be a OWE

attacker that has advantage ε against PubKeyEnc. Suppose A makes a total of
qH > 0 queries to H. Then there is an algorithm B that solves the WDH problem
with advantage at least (ε− 1

2n )/qH and a running time O(time(A)).

Proof of Theorem 1. The theorem follows directly from Lemma 1 and Lemma 2.
Composing both reductions shows that an ID-OWE attacker on BasicIdent with
advantage ε gives an algorithm for WDH with advantage (ε/e(1+qE)−1/2

n)/qH ,
as required. ¤

4.3 Identity-Based Encryption with Chosen Ciphertext Security

We use a technique due to Fujisaki-Okamoto [12] to convert the BasicIdent

scheme of the previous section into a chosen ciphertext secure IBE system (in the



sense of Section 2) in the random oracle model. Let E be a public key encryption
scheme. We denote by Epk(M ; r) the encryption of M using the random bits r
under the public key pk. Fujisaki-Okamoto define the hybrid scheme Ehy as:

Ehypk (M) = Epk(σ;H1(σ,M))

∥

∥

∥

∥

G1(σ)⊕M

Here σ is generated at random and H1, G1 are cryptographic hash functions.
Fujisaki-Okamoto show that if E is a one-way encryption scheme then Ehy is a
chosen ciphertext secure system (IND-CCA) in the random oracle model (assum-
ing Epk satisfies some natural constraints).
We apply this transformation to BasicIdent and show that the resulting IBE

system is IND-ID-CCA. We obtain the following IBE scheme which we call FullI-

dent. Recall that n is the length of the message to be encrypted.
Setup: As in the BasicIdent scheme. In addition, we pick a hash function H1 :
{0, 1}n × {0, 1}n → Fq, and a hash function G1 : {0, 1}

n → {0, 1}n.

Extract: As in the BasicIdent scheme.

Encrypt: To encrypt M ∈ {0, 1}n under the public key ID do the following: (1)
use algorithm MapToPointG to convert ID into a point QID ∈ E/Fp of order
q, (2) choose a random σ ∈ {0, 1}n, (3) set r = H1(σ,M), and (4) set the
ciphertext to be

C = 〈rP, σ ⊕H(gr
ID
), M ⊕G1(σ)〉 where gID = ê(QID, Ppub) ∈ Fp2

Decrypt: Let C = 〈U, V,W 〉 ∈ C be a ciphertext encrypted using the public
key ID. If U ∈ E/Fp is not a point of order q reject the ciphertext. To decrypt
C using the private key dID do:

1. Compute V ⊕H(ê(dID, U)) = σ.

2. Compute W ⊕G1(σ) =M .

3. Set r = H1(σ,M). Test that U = rP . If not, reject the ciphertext.

4. Output M as the decryption of C.
This completes the description of FullIdent. Note that M is encrypted as W =
M ⊕G1(σ). This can be replaced by W = EG1(σ)(M) where E is a semantically
secure symmetric encryption scheme (see [12]).

Security. The following theorem shows that FullIdent is a chosen ciphertext se-
cure IBE (i.e. IND-ID-CCA), assuming WDH is hard.

Theorem 2. Let A be a t-time IND-ID-CCA attacker on FullIdent that achieves
advantage ε. Suppose A makes at most qE extraction queries, at most qD decryp-
tion queries, and at most qH , qG1, qH1 queries to the hash functions H,G1, H1

respectively. Then there is a t1-time algorithm for WDH that achieves advantage
ε1 where

t1 = FOtime(t, qG1
, qH1

)

ε1 =
(

FOadv(ε(
1
eqE

− qD

q ), qG1
, qH1

, qD)− 1/2
n
)

/qH

where the functions FOtime and FOadv are defined in Theorem 3.



The proof of the theorem is based on the theorem below due to Fujisaki and
Okamoto (Theorem 14 in [12]). We state their theorem as it applies to the public
key encryption scheme PubKeyEnc of the previous section. Let PubKeyEnchy be
the result of applying the Fujisaki-Okamoto transformation to PubKeyEnc.

Theorem 3 (FO). Suppose there is a (t, qG1
, qH1

, qD) IND-CCA attacker that
achieves advantage ε when attacking PubKeyEnchy. Then there is a (t1, ε1) OWE

attacker on PubKeyEnc where

t1 = FOtime(t, qG1
, qH1

) = t+O((qG1
+ qH1

) · n), and

ε1 = FOadv(ε, qG1
, qH1

, qD) =
1

2(qG1
+ qH1

)
[(ε+ 1)(1− 2/q)qD − 1]

We also need the following lemma to translate between an IND-ID-CCA cho-
sen ciphertext attack on FullIdent and an IND-CCA chosen ciphertext attack on
PubKeyEnchy. The proof appears in the full version of the paper [2].

Lemma 3. Let A be an IND-ID-CCA attacker that has advantage ε against the
IBE scheme FullIdent. Suppose A makes at most qE > 0 private key extraction
queries and at most qD decryption queries. Then there is an IND-CCA attacker
B that has advantage at least ε( 1

eqE
− qD

q ) against PubKeyEnchy. Its running time

is O(time(A)).

Proof of Theorem 2. By Lemma 3 an IND-ID-CCA attacker on FullIdent im-
plies an IND-CCA attacker on PubKeyEnchy. By Theorem 3 an IND-CCA attacker
on PubKeyEnchy implies a OWE attacker on PubKeyEnc. By Lemma 2 a OWE

attacker on PubKeyEnc implies an algorithm for WDH. Composing all these re-
ductions gives the required bounds. ¤

5 Extensions and Observations

Tate pairing and other curves. Our IBE system has some flexibility in terms
of the curves being used and the definition of the pairing. For example, one
could use the curve y2 = x3 + x with its endomorphism φ : (x, y) → (−x, iy)
where i2 = −1. We do not explore this here, but note that both encryption and
decryption in FullIdent can be made faster by using the Tate pairing. In general,
one can use any efficiently computable bilinear pairing ê : G1 × G1 → G2

between two groups G1,G2 as long as the WDH assumption holds. One would
also need a way to map identities in {0, 1}∗ uniformly onto G1.

Distributed PKG. In the standard use of an IBE in an e-mail system the
master-key stored at the PKG must be protected in the same way that the pri-
vate key of a CA is protected. One way of protecting this key is by distributing
it among different sites using techniques of threshold cryptography [14]. Our
IBE system supports this in a very efficient and robust way. Recall that the
master-key is some s ∈ Fq. in order to generate a private key the PKG com-
putes Qpriv = sQID, where QID is derived from the user’s public key ID. This can



easily be distributed in a t-out-of-n fashion by giving each of the n PKGs one
share si of a Shamir secret sharing of s mod q. When generating a private key

each of the t chosen PKGs simply responds with Q
(i)
priv = siQID. The user can

then construct Qpriv as Qpriv =
∑

λiQ
(i)
priv where the λi’s are the appropriate

Lagrange coefficients.

Furthermore, it is easy to make this scheme robust against dishonest PKGs
using the fact that DDH is easy in Gq (the group generated by P ). During

setup each of the n PKGs publishes P
(i)
pub = siP . During a key generation

request the user can verify that the response from the i’th PKG is valid by
testing that:

ê(Q
(i)
priv, P ) = ê(QID, P

(i)
pub)

Thus, a misbehaving PKG will be immediately caught. There is no need for
zero-knowledge proofs as in regular robust threshold schemes. The PKG’s
master-key can be generated in a distributed fashion using the techniques
of [15].

Note that a distributed master-key also enables decryption on a per-message
basis, without any need to derive the corresponding decryption key. For exam-
ple, threshold decryption of BasicIdent ciphertext (U, V ) is straightforward if
each PKG responds with ê(siQID, U).

Working in subgroups. The performance of our IBE system can be improved
if we work in a small subgroup of the curve. For example, choose a 1024-bit
prime p = 2 mod 3 with p = aq − 1 for some 160-bit prime q. The point P
is then chosen to be a point of order q. Each public key ID is converted to a
group point by hashing ID to a point Q on the curve and then multiplying the
point by a. The system is secure if the WDH assumption holds in the group
generated by P . The advantage is that Weil computations are done on points
of small order, and hence is much faster.

IBE implies signatures. Moni Naor has observed that an IBE scheme can
be immediately converted into a public key signature scheme. The intuition
is as follows. The private key for the signature scheme is the master key for
the IBE scheme. The public key for the signature scheme is the global system
parameters for the IBE scheme. The signature on a message M is the IBE
decryption key for ID = M . To verify a signature, choose a random message
M ′, encrypt M ′ using the public key ID = M , and then attempt to decrypt
using the given signature on M as the decryption key. If the IBE scheme is
IND-ID-CCA, then the signature scheme is existentially unforgeable against
a chosen message attack. Note that, unlike most signature schemes, the sig-
nature verification algorithm here is randomized. This shows that secure IBE
schemes require both public key encryption and digital signatures. We note
that the signature scheme derived from our IBE system has some interesting
properties [3].



6 Escrow ElGamal encryption

In this section we note that the Weil pairing enables us to add a global escrow
capability to the ElGamal encryption system. A single escrow key enables the
decryption of ciphertexts encrypted under any public key. Paillier and Yung
have shown how to add a global escrow capability to the Paillier encryption
system [24]. Our ElGamal escrow system works as follows:

Setup: The algorithm works as follows:

Step 1: Choose a large k-bit prime p such that p = 2 mod 3 and p = 6q− 1 for
some prime q > 3. Let E be the elliptic curve defined by y2 = x3 + 1 over
Fp. Choose an arbitrary P ∈ E/Fp of order q.

Step 2: Pick a random s ∈ Zq and set Q = sP .

Step 3: Choose a cryptographic hash function H : Fp2 → {0, 1}n.

The message space isM = {0, 1}n. The ciphertext space is C = E/Fp×{0, 1}n.
The system parameters are params = 〈p, n, P,Q,H〉. The escrow key is s ∈ Zq.

keygen: A user generates a public/private key pair for herself by picking a
random x ∈ Zq and computing Ppub = xP . Her private key is x, her public
key is Ppub.

Encrypt: To encrypt M ∈ {0, 1}n under the public key Ppub do the following:
(1) pick a random r ∈ Zq, and (2) set the ciphertext to be:

C = 〈rP, M ⊕H(gr)〉 where g = ê(Ppub, Q) ∈ Fp2

Decrypt: Let C = 〈U, V 〉 be a ciphertext encrypted using Ppub. If U ∈ E/Fp
is not a point of order q reject the ciphertext. To decrypt C using the private
key x do:

V ⊕H(ê(U, xQ)) =M

Escrow-decrypt: To decrypt C = 〈U, V 〉 using the escrow key s do:

V ⊕H(ê(U, sPpub)) =M

A standard argument shows that assuming WDH the system has semantic
security in the random oracle model (recall that since DDH is easy we cannot
prove semantic security based on DDH). Yet, the escrow agent can decrypt any
ciphertext encrypted using any user’s public key. The decryption capability of the
escrow agent can be distributed using the PKG distribution techniques described
in Section 5.

Using a similar hardness assumption, Verheul [30] has recently described
an ElGamal encryption system with non-global escrow. Each user constructs a
public key with two corresponding private keys, and gives one of the private keys
to the trusted third party. Although both private keys can be used to decrypt,
only the user’s private key can be used simultaneously as the signing key for a
discrete logarithm based signature scheme.



7 Summary and open problems

We defined chosen ciphertext security for identity-based systems and proposed
a fully functional IBE scheme. The scheme has chosen ciphertext security in
the random oracle model assuming WDH, a natural analogue of the compu-
tational Diffie-Hellman problem. The WDH assumption deserves further study
considering the powerful cryptosystems derived from it. For example, it could
be interesting to see whether the techniques of [20] can be used to prove that
the WDH assumption is equivalent to the discrete log assumption on the curve
for certain primes p.
It is natural to try and build chosen ciphertext secure identity based systems

that are secure under standard complexity assumptions (rather than the ran-
dom oracle model). One might hope to use the techniques of Cramer-Shoup [6]
to provide chosen ciphertext security based on DDH. Unfortunately, as men-
tioned in Section 2 the DDH assumption is false in the group of points on the
curve E. However, a natural variant of DDH does seem to hold. In particular,
the following two distributions appear to be computationally indistinguishable:
〈P, aP, bP, cP, abcP 〉 and 〈P, aP, bP, cP, rP 〉 where a, b, c, r are random in Zq. We
refer to this assumption as WDDH. It is natural to ask whether there is a chosen
ciphertext secure identity-based system strictly based on WDDH. Such a scheme
would be the analogue of the Cramer-Shoup system.
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