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Abstract. We initiate a study of on-line ciphers. These are ciphers that
can take input plaintexts of large and varying lengths and will output the
ith block of the ciphertext after having processed only the first i blocks of
the plaintext. Such ciphers permit length-preserving encryption of a data
stream with only a single pass through the data. We provide security
definitions for this primitive and study its basic properties. We then
provide attacks on some possible candidates, including CBC with fixed
IV. Finally we provide a construction called HCBC which is based on a
given block cipher E and a family of AXU functions. HCBC is proven
secure against chosen-plaintext attacks assuming that E is a PRP secure
against chosen-plaintext attacks.

1 Introduction

We begin by saying what we mean by on-line ciphers. We then describe a notion
of security for them, and discuss constructions and analyses. Finally, we discuss
usage, applications, and related work.

1.1 On-line ciphers

A cipher over domain D is a function F : {0, 1}k×D → D such that for each key
K the map F (K, ·) is a length-preserving permutation on D, and possession of
K enables one to both compute and invert F (K, ·). The most popular examples
are block ciphers, where D = {0, 1}n for some n called the block length; these are
fundamental tools in cryptographic protocol design. However, one might want to
encipher data of large size, in which case one needs a cipher whose domain D is
appropriately large. (A common choice, which we make, is to set the domain to
Dd,n , the set of all strings having a length that is at most some large value d, and
is also divisible by n.) Matyas and Meyer refer to these as “general” ciphers [10].



In this paper, we are interested in general ciphers that are computable in
an on-line manner. Specifically, cipher F is said to be on-line if the following
is true. View the input plaintext M = M [1] . . .M [l] to an instance F (K, ·) of
the cipher as a sequence of n-bit blocks, and similarly for the output ciphertext
F (K,M) = C[1] . . . C[l]. Then, given the key K, for all i, it should be possible
to compute output block C[i] after having seen input blocks M [1] . . .M [i]. That
is, C[i] does not depend on blocks i+ 1, . . . , l of the plaintext.
An on-line cipher permits real-time, length-preserving encryption of a data

stream without recourse to buffering, which can be attractive in some practical
settings.
The intent of this paper is to find efficient, proven secure constructions of

on-line ciphers and to further explore the applications. Let us now present the
relevant security notions and our results.

1.2 A notion of security for on-line ciphers

A commonly accepted notion of security to target for a cipher is that it be a
pseudorandom permutation (PRP), as defined by Luby and Rackoff [9]. Namely,
for a cipher F to be a PRP, it should be computationally infeasible, given an
oracle g, to have non-negligible advantage in distinguishing between the case
where g is a random instance of F and the case where g is a randomly-chosen,
length-preserving permutation on the domain of the cipher. However, if a cipher
is on-line, then the ith block of the ciphertext does not depend on blocks i +
1, i + 2, . . . of the plaintext. This is necessary, since otherwise it would not be
possible to output the ith ciphertext block having seen only the first i plaintext
blocks. Unfortunately, this condition impacts security, since a cipher with this
property certainly cannot be a PRP. An easy distinguishing test is to ask the
given oracle g the two-block queries AB and AC, getting back outputs WX and
Y Z respectively, and if W = Y then bet that g is an instance of the cipher. This
test has a very high advantage since the condition being tested fails with high
probability for a random length-preserving permutation.
For an on-line cipher, then, we must give up on the requirement that it

meet the security property of being a PRP. Instead, we define and target an
appropriate alternative notion of security. This is quite natural; we simply ask
that the cipher behave “as randomly as possible” subject to the constraint of
being on-line. We say that a length-preserving permutation π is on-line if for all
i the ith output block of π depends only on the first i input blocks to π, and
let OPermd,n denote the set of all length-preserving permutations π on domain
Dd,n . The rest is like for a PRP, with members of this new set playing the
role of the “ideal” objects to which cipher instances are compared: it should be
computationally infeasible, given an oracle g, to have non-negligible advantage
in distinguishing between the case where g is a random instance of F and the
case where g is a random member of OPermd,n. A cipher secure in this sense is
called an on-line-PRP.
The fact that an on-line-PRP meets a notion of security that is relatively

weak compared to a PRP might at first lead one to question the introduction



of such a notion. However, finding appropriate balances between security and
practical constraints is an impactful and active research endeavor where the
goal is not necessarily to achieve some strong notion of security but to have the
“best possible” security under given practical constraints, so that weaker notions
of security are useful. Furthermore, we will see that in this case, even this weak
primitive, if properly used, can provide strong security.

1.3 Candidates for on-line ciphers

To the best of our knowledge, the problem of designing on-line ciphers with
security properties as strong as those required by our definition has not been
explicitly addressed before. When one comes to consider this problem, however,
it is natural to test first some existing candidate ciphers or natural constructions
from the literature. We consider some of them and present attacks that are
helpful to gather intuition about the kinds of security properties we are seeking.
It is natural to begin with standard modes of operation of a block cipher, such

as CBC. However, CBC is an encryption scheme, not a cipher; each invocation
chooses a new random initial vector as a starting point and makes this part of the
ciphertext. In particular, it is not length-preserving. The natural way to modify
it to be a cipher is to fix the initial vector. There are a couple of choices: make it
a known public value, or, hopefully better for security, make it a key that will be
part of the secret key of the cipher. The resulting ciphers are certainly on-line,
but they do not meet the notion of security we have defined. In other words, the
CBC cipher with fixed IV, whether public or private, can be easily distinguished
from a random on-line permutation. Attacks demonstrating this are provided in
Section 4.
We then consider the Accumulated Block Chaining (ABC) mode proposed by

Knudsen in [7], which is a generalization of the Infinite Garble Extension mode
proposed by Campbell [5]. It was designed to have “infinite error propagation,”
a property that intuitively seems necessary for a secure on-line cipher but which,
as we will see, is not sufficient. In Section 4, we present attacks demonstrating
that this is not a secure on-line cipher.

1.4 The HCBC on-line cipher and its security

We seek a construction of a secure on-line cipher based on a given block cipher
E: {0, 1}ek×{0, 1}n → {0, 1}n. We provide a construction called HCBC that uses
a family H: {0, 1}hk ×{0, 1}n → {0, 1}n of Almost-XOR-Universal (AXU) hash
functions [8]. The key eK‖hK for an instance HCBC(eK‖hK , ·) of the cipher
consists of a key eK for the block cipher and a key hK specifying a member
H(hK , ·) of the family H. The construction is just like CBC, except that a
ciphertext block is first hashed via H(hK , ·) before being XORed with the next
plaintext block. (The initial vector is fixed to 0n.) A picture is in Figure 3, and
a full description of the construction is in Section 6. It is easy to see that this
cipher is on-line.



We stress that the hash functions map n bits to n bits, meaning work on
inputs of the block length, as does the given block cipher. Numerous designs of
fast AXU families are known, so that our construction is quite efficient. For an
overview of the state-of-the-art of AXU families refer to [12].
We prove that HCBC meets the notion of security for an on-line cipher that

we discussed above, assuming that the underlying block cipher E is a PRP. The
proof involves finding and exploiting a way of looking at an on-line cipher as a
2n-ary tree of permutations on n bits, and then going through a hybrid argument
involving a sequence of different games that “move” from OPermd,n to HCBC.

1.5 Security against chosen ciphertext attacks

The notions of PRPs and on-line PRPs that we have discussed above represent
security under chosen-plaintext attack. A stronger requirement is security under
chosen-ciphertext attack. For a PRP this means that the adversary has an oracle
not just for the challenge permutation, but also for its inverse. (An object secure
in this sense was called a strong PRP in [11] and a super-PRP in [9].) This
notion is easily adapted to yield a notion of on-line PRPs secure against chosen-
ciphertext attack. We provide an attack showing that HCBC is not secure against
chosen-ciphertext attack. The question of finding a construction of an on-line
PRP secure against chosen ciphertext attack, based on a block cipher assumed
to be a PRP secure against chosen-ciphertext attack, is open. In the full version
of this paper [1] we report on some efforts to this end.

1.6 Usage and application of on-line ciphers

There are settings in which the input plaintext is being streamed to a device
that has limited memory for buffering and wants to produce output at the same
rate at which it is getting input. The on-line property becomes desirable in
these settings. The most direct usage of an on-line cipher will be in settings
where, additionally, there is a constraint requiring the length of the ciphertext
to equal the length of the plaintext. (Otherwise, one can use a standard mode of
encryption like CBC, since it has the on-line property. But it is length expanding
in the sense that the length of the ciphertext exceeds that of the plaintext, due
to the changing initial vector.) This type of constraint occurs when one is dealing
with fixed packet formats or legacy code.
However, an on-line cipher is more generally useful, via the “encode-then-

encipher” paradigm discussed in [4]. This paradigm was presented for ciphers
that are PRPs, and says that enciphering yields an IND-CPA secure encryption
scheme if the message space has enough entropy, and provides integrity (meaning
achieves INT-CTXT) if the message space contains enough redundancy. (The
privacy requires that the PRP be secure against chosen-plaintext attack, while
the integrity requires security against chosen-ciphertext attack.) Entropy and
redundancy might be present in the data, as often happens when enciphering
structured data like packets, which have fixed formats and often contain counters.
Or, entropy and redundancy can be explicitly added, for example by inserting a



random value and a constant string in the message. (This will of course increase
the size of the plaintext, so is only possible when data expansion is permitted.)
Claims similar to those made in [4] remain true even if the cipher is an on-

line-PRP rather than a PRP. Specifically, the requirement on the message space
must be strengthened to require not just that entropy be present, but that it
be in the first blocks of the message; and similarly, that redundancy not just
be present, but be at the end of the data. Again, one might already have data
of such structure, in which case the encryption will be length preserving yet
provide semantic security and integrity, or one can prepend a random number
and append a constant to the message, getting the same properties but at the
cost of data expansion.

1.7 Related work

The problem addressed by our Hash-CBC construction is that of building a
general cipher from a block cipher. Naor and Reingold [11] consider this problem
for the case where the general cipher is to be a PRP or strong PRP, while
we want the general cipher to be an on-line-PRP or strong-on-line-PRP. The
constructions of [11, Section 7] are not on-line; indeed, they cannot be, since they
achieve the stronger security notion of a PRP. Our construction, however, follows
that of [11] in using hash functions in combination with block ciphers. A problem
that has received a lot of attention is to take a PRP and produce another having
twice the input block length of the original [9, 11]. We are, however, interested
in allowing inputs of varying and very large size, not merely twice the block size.

2 Definitions

We recall basic definitions of families of functions and ciphers following [2].

Notation. A string is a member of {0, 1}∗. If x is a string, then |x| denotes
its length. The empty string is denoted ε. If x, y ∈ {0, 1}∗ are strings, then we
denote by LCPn(x, y) the longest common n-prefix of x, y. This is the longest
string s such that |s| is a multiple of n, and s is a prefix of both x and y. A
map f : D → R is a permutation if D = R and f is a bijection (i.e. one-to-one
and onto). A map f : D → R is length-preserving if |f(x)| = |x| for all x ∈ D. If
n ≥ 1, d ≥ 1 are integers, then Dd,n denotes the set of all strings whose length is
a positive multiple of n bits and at most dn bits. If P ∈ Dd,n , then P [i] denotes
its ith block, meaning P = P [1] . . . P [l] where l = |P |/n and |P [i]| = n for all
i = 1, . . . , l. We will typically consider functions whose inputs and outputs are in
Dd,n , so that both are viewed as sequences of blocks where each block is n bits
long. We let f (i) denote the function which on input M returns the ith block of
f(M). (Or ε if |f(M)| < ni.)

Function families and ciphers. A family of functions is a map F : Keys(F )×
Dom(F )→ Ran(F ) where Keys(F ) is the key space of F ; Dom(F ) is the domain
of F ; and Ran(F ) is the range of F . If Keys(F ) = {0, 1}k, then we refer to k as



the key-length. The two-input function F takes a key K ∈ Keys(F ) and an input
x ∈ Dom(F ) to return a point F (K,x) ∈ Ran(F ). For each key K ∈ Keys(F ),
we define the map FK :Dom(F ) → Ran(F ) by F (K,x) for all x ∈ Dom(F ).
Thus, F specifies a collection of maps from Dom(F ) to Ran(F ), each map being
associated with a key. (That is why F is called a family of functions.) We refer
to F (K, ·) as an instance of F . The operation of choosing a key at random from

the key space is denoted K
R
← Keys(F ). We write f

R
← F for the operation

K
R
← Keys(F ) ; f ← F (K, ·). That is, f

R
← F denotes the operation of selecting

at random a function from the family F . When f is so selected it is called
a random instance of F . Let Randn,n be the family of all functions mapping

{0, 1}n to {0, 1}n so that f
R
← Randn,n denotes the operation of selecting at

random a function from {0, 1}n to {0, 1}n. Similarly, let Permn be the family

of all permutations mapping {0, 1}n to {0, 1}n so that π
R
← Permn denotes the

operation of selecting at random a permutation on {0, 1}n. We say that F is
a cipher if Dom(F ) = Ran(F ) and each instance F (K, ·) of F is a length-
preserving permutation. A block cipher is a cipher whose domain and range
equal {0, 1}n for some integer n called the block size. (For example, the AES

has block size 128.) If F is a cipher, then F−1 is the inverse cipher, defined by
F−1(K,x) = F (K, ·)−1(x) for all K ∈ Keys(F ) and x ∈ Dom(F ).

Pseudorandomness of ciphers. A “secure” cipher is one that approximates a
family of random permutations; the “better” the approximation, the more secure
the cipher. This is formalized following [6, 9]. A distinguisher is an algorithm that
has access to one or more oracles and outputs a bit. Let F : Keys(F )×{0, 1}n →
{0, 1}n be a family of functions with domain and range {0, 1}n. Let A1 be a
distinguisher with one oracle and A2 a distinguisher with two oracles. Let

Adv
prp-cpa
F (A1) = Pr

[

g
R
← F : Ag

1 = 1
]

− Pr
[

g
R
← Permn : Ag

1 = 1
]

.

If F :Keys(F )× {0, 1}n → {0, 1}n is a cipher, then we also let

Adv
prp-cca
F (A2) = Pr

[

g
R
← F : Ag,g−1

2 = 1
]

−Pr
[

g
R
← Permn : Ag,g−1

2 = 1
]

.

These capture the advantage of the distinguisher in question in the task of dis-
tinguishing a random instance of F from a random permutation on D. In the
first case, the distinguisher gets to query the challenge instance. In the sec-
ond, it also gets to query the inverse of the challenge instance. For any integers
t, qe, qd, µe, µd, we now let

Adv
prp-cpa
F (t, qe, µe) = max

A1

{

Adv
prp-cpa
F (A1)

}

Adv
prp-cca
F (t, qe, µe, qd, µd) = max

A2

{

Adv
prp-cca
F (A2)

}

.

The maximum is over all distinguishers having time-complexity t, making to
the g oracle at most qe queries totaling at most µe bits, and, in the second
case, also making to the g−1 oracle at most qd queries totaling at most µd bits.
We say that a PRP F is secure against chosen-plaintext attacks if the func-
tion Adv

prp-cpa
F (t, qe) grows “slowly.” Similarly, we say that a PRP F is se-



cure against chosen-ciphertext attacks if the function Advprp-cca
F (t, qe, qd) grows

“slowly.” Time complexity includes the time to reply to oracle calls by compu-
tation of F (K, ·) or F (K, ·)−1.

3 On-line ciphers and their basic properties

We say that a function f : Dd,n → Dd,n is n-on-line if the i-th block of the
output is determined completely by the first i blocks of the input. A more formal
definition follows. We refer the reader to Section 2 for the definition of f (i).

Definition 1. Let n, d ≥ 1 be integers, and let f : Dd,n → Dd,n be a length-
preserving function. We say that f is n-on-line if there exists a function X:
Dd,n → {0, 1}

n such that for every M ∈ Dd,n and every i ∈ {1, . . . , |M |/n} it is
the case that

f (i)(M) = X(M [1] . . .M [i]) .

A cipher F having domain and range a subset of Dd,n is said to be n-on-line if
for every K ∈ Keys(F ) the function F (K, ·) is on-line.

Definition 2. Let f be an n-on-line function. Let i ≥ 1. FixM [1], . . . ,M [i−1] ∈

{0, 1}n. Define the function Πf

M [1]...M [i−1]: {0, 1}
n → {0, 1}n by

Πf

M [1]...M [i−1](x) = f (i)(M [1] . . .M [i− 1]x)

for all x ∈ {0, 1}n.

Proposition 1. If f is an n-on-line permutation, i ≥ 1 and M [1], . . . ,M [i−1] ∈

{0, 1}n, then the map Πf

M [1]...M [i−1] is a permutation on {0, 1}n.

The proof of proposition 1 is in the full version of this paper [1].

Pseudorandomness of on-line ciphers. Let OPermd,n denote the family
of all n-on-line, length-preserving permutations on Dd,n . A “secure” on-line ci-
pher is one that closely approximates OPermd,n; the “better” the approxima-
tion, the more “secure” the on-line cipher. This formalization is analogous to
the previously presented formalization of the pseudorandomness of ciphers. Let
F : Keys(F ) × Dd,n → Dd,n be a family of functions with domain and range
Dd,n . Let A1 be a distinguisher with one oracle and A2 a distinguisher with two
oracles. Let

Adv
oprp-cpa
F (A1) = Pr

[

g
R
← F : Ag

1 = 1
]

− Pr
[

g
R
← OPermd,n : Ag

1 = 1
]

.

If F :Keys(F )× {0, 1}n → {0, 1}n is a cipher, then we also let

Adv
oprp-cca
F (A2) = Pr

[

g
R
← F : Ag,g−1

2 = 1
]

−Pr
[

g
R
← OPermd,n : Ag,g−1

2 = 1
]

.

These capture the advantage of the distinguisher in question in the task of dis-
tinguishing a random instance of F from a random, length-preserving, n-on-line



permutation on Dd,n . In the first case, the distinguisher gets to query the chal-
lenge instance. In the second, it also gets to query the inverse of the challenge
instance. For any integers t, qe, µe, qd, µd, we now let

Adv
oprp-cpa
F (t, qe, µe) = max

A1

{

Adv
oprp-cpa
F (A1)

}

Adv
oprp-cca
F (t, qe, µe, qd, µd) = max

A2

{

Adv
oprp-cca
F (A2)

}

.

The maximum is over all distinguishers having time-complexity t, making to
the oracle g at most qe queries totaling at most µe bits, and, in the second
case, also making to the g−1 oracle at most qd queries totaling at most µd
bits. We say that an online PRP (OPRP) F is secure against chosen plaintext
attacks if the function Advoprp-cpa

F (t, qe, µe) grows “slowly.” Similarly, we say
that an OPRP F is secure against chosen ciphertext attacks if the function
Adv

oprp-cca
F (t, qe, µe, qd, µd) grows “slowly.” Time complexity includes the time

to reply to oracle calls by computation of F (K, ·) or F (K, ·)−1.

Tree-based characterization. We present a tree-based characterization of
n-on-line ciphers that is useful to gain intuition and to analyze constructs. Let
N = 2n. An N -ary tree of functions is an N -ary tree T each node of which
is labeled by a function mapping {0, 1}n to {0, 1}n. We label each edge in the
tree in a natural way via a string in {0, 1}n. Then, each node in the tree is
described by a sequence of edge labels defining the path from the root to the
node in question. The function labeling node x in the tree, where x is a string
of length ni for some 0 ≤ i ≤ d, is then denoted Tx. A tree defines a function T
from Dd,n to Dd,n as described below. If the nodes in the tree are labeled with
permutations, then the tree also defines an inverse function T−1.

T (M [1] . . .M [l])
x← ε
For i = 1, . . . , l do

C[i]← Tx(M [i])
x← x‖C[i]

EndFor
Return C[1] . . . C[l]

T−1(C[1] . . . C[l])
x← ε
For i = 1, . . . , l do

M [i]← T−1
x (C[i])

x← x‖C[i]
EndFor
Return M [1] . . .M [l]

Here, 1 ≤ l ≤ d. Let G : Keys(G) × {0, 1}n → {0, 1}n be a function family.
(We are most interested in the case where G is Permn or Randn,n.) We let
Tree(n,G, d) denote the set of all 2n-ary trees of functions in which each function
is an instance of G and the depth of the tree is d. This set is viewed as equipped
with a distribution under which each node of the tree is assigned a random
instance of G, and the assignments to the different nodes are independent. We
claim that a tree-based construction defined above is a valid characterization of
on-line ciphers, as stated in the following proposition and proven in [1].

Proposition 2. There is a bijection between Tree(n,Permn, d) and OPermd,n.

Inversion. It turns out that the inverse of an on-line permutation is itself on-
line, as stated below and proven in [1].



Proposition 3. Let f : Dd,n → Dd,n be an n-on-line permutation, and let g =
f−1. Then g is an n-on-line permutation.

We note that the proof does not tell us anything about the computational com-
plexity of function f−1, meaning it could be the case that f is efficiently com-
putable, but the f−1 given by Proposition 3 is not. However, whenever we design
a cipher F , we will make sure that both F (K, ·) and F−1(K, ·) are efficiently
computable given K, and will explicitly specify F−1 in order to make this clear.

4 Analysis of some candidate ciphers

We consider several candidates for on-line ciphers. First, we consider one based
on the basic CBC mode. Then, we consider the Accumulated Block Chain-
ing (ABC) proposed by Knudsen in [7], which is a generalization of the Infi-
nite Garble Extension mode proposed by Campbell [5]. In this section, we let
E: {0, 1}ek × {0, 1}n → {0, 1}n be a given block cipher with key size ek and
block size n.

CBC as an on-line cipher. In CBC encryption based on E, one usually uses
a new, random IV for every message. This does not yield a cipher, let alone an
on-line one. To get an on-line cipher, we fix the IV. We can, however, make it
secret; this can only increase security. In more detail, the CBC cipher associated

to E, denoted OCBC, has key space {0, 1}ek+n. For M,C ∈ Dd,n , eK ∈ {0, 1}
ek

and C[0] ∈ {0, 1}n, we define

OCBC(eK‖C[0],M)
Parse M as M [1] . . .M [l] with l ≥ 1
For i = 1, . . . , l do

C[i]← E(eK ,M [i]⊕C[i− 1])
Return C[1] . . . C[l]

OCBC
−1(eK‖C[0], C)

Parse C as C[1] . . . C[l] with l ≥ 1
For i = 1, . . . , l do

M [i]← E−1(eK , C[i])⊕C[i− 1]
Return M [1] . . .M [l]

Here, C[0] is the IV. The key is the pair eK‖C[0], consisting of a key eK for the
block cipher, and the IV. It is easy to check that the above cipher is on-line. For
clarity, we have also shown the inverse cipher. We now present the attack. The
adversary A shown in Figure 1 gets an oracle g where g is either an instance of
OCBC or an instance of OPermd,n. We claim that

Adv
oprp-cpa
OCBC

(A) ≥ 1− 2−n . (1)

We justify Equation (1) in the full version of this paper [1]. Since A made only
3 oracle queries, this shows that the CBC mode with a fixed IV is not a secure
on-line cipher.
The idea of the attack is to gather some input-output pairs for the cipher.

Then we use these values to construct a new sequence of input blocks so that
one of the input blocks to E collides with one of the previous input blocks to
E. This enables us to predict an output block of the cipher. If our prediction is
correct, then we know that the oracle is an instance of OCBC with overwhelming
probability.



Distinguisher Ag

Let M [2], . . . , M [l] be any n-bit strings
Let M1 = 0

nM [2] . . . M [l] and let M2 = 1
nM [2] . . . M [l]

Let C1[1] . . . C1[l]← g(M1) and let C2[1] . . . C2[l]← g(M2)
Let M3[2] =M [2]⊕C1[1]⊕C2[1] and let M3 = 1

nM3[2]M [3] . . . M [l]
Let C3[1] . . . C3[l]← g(M3)
If C3[2] = C1[2] then return 1 else return 0

Fig. 1. Attack on the CBC based on-line cipher.

ABC as an on-line cipher. Knudsen in [7] proposes the Accumulated Block
Chaining (ABC) mode of operation for block ciphers. This is an on-line cipher
that is a natural starting point in the problem of finding a secure on-line cipher
because it has the property of “infinite error propagation.” We formalize and
analyze ABC with regard to meeting our security requirements.
The mode is parameterized by initial values P [0], C[0] ∈ {0, 1}n and also

by a public function h: {0, 1}n → {0, 1}n. (Instantiations for h suggested in [7]
include the identity function, the constant function always returning 0n, and the
function which rotates its input by one bit.) We are interested in the security of
the mode across various settings and choices of these parameters. (In particular,
we want to consider the case where the initial values are public and also the case
where they are secret, and see how the choice of h impacts security in either
case.) Accordingly, it is convenient to first introduce auxiliary functions EABC
and DABC. For M,C ∈ Dd,n and eK ∈ {0, 1}

k, we define

EABC(eK , P [0], C[0],M)
Parse M as M [1] . . .M [l] with l ≥ 1
For i = 1, . . . , l do

P [i]←M [i]⊕h(P [i− 1])
C[i]← E(eK , P [i]⊕C[i− 1])

⊕P [i− 1]
EndFor
Return C[1] . . . C[l]

DABC(eK , P [0], C[0], C)
Parse C as C[1] . . . C[l] with l ≥ 1
For i = 1, . . . , l do

P [i]← E−1(eK , C[i]⊕P [i− 1])
⊕C[i− 1]

M [i]← P [i]⊕h(P [i− 1])
EndFor
Return M [1] . . .M [l]

We now define two versions of the ABC cipher. The first uses public initial
values, while the second uses secret initial values. The ABC cipher with public

initial values associated to E, denoted PABC, has key space {0, 1}k and domain
and range Dd,n . We fix values P [0], C[0] ∈ {0, 1}

n which are known to all parties
including the adversary. We then define the cipher and the inverse cipher as
follows:

PABC(eK ,M)
Return EABC(eK , P [0], C[0],M)

PABC
−1(eK , C)

Return DABC(eK , P [0], C[0], C)

The ABC cipher with secret initial values associated to E, denoted SABC, has
key space {0, 1}k+2n and domain and range Dd,n . The key is eK‖P [0]‖C[0]. We
then define the cipher and the inverse cipher as follows:



Distinguisher Ag

Let M [2], . . . , M [l] be any n-bit strings
Let M1 = 0

nM [2] . . . M [l] and let M2 = 1
nM [2] . . . M [l]

Let C1[1] . . . C1[l]← g(M1) and let C2[1] . . . C2[l]← g(M2)
Let M3[2] =M [2]⊕ C1[1]⊕ C2[1]⊕ h(0n⊕h(P [0]))⊕ h(1n⊕h(P [0]))
Let M3 = 1

nM3[2]M [3] . . . M [l]
Let C3[1] . . . C3[l]← g(M3)
If C3[2] = C1[2]⊕1

n, then return 1 else return 0

Fig. 2. Attack on the ABC based on-line cipher.

SABC(eK‖P [0]‖C[0],M)
Return EABC(eK , P [0], C[0],M)

SABC
−1(eK‖P [0]‖C[0], C)

Return DABC(eK , P [0], C[0], C)

It is easy to check that both the above ciphers are n-on-line.
We show that the ABC cipher with public initial values is not a secure OPRP

for all choices of the function h. The attack is shown in Figure 2. The adversary
A gets an oracle g where g is either an instance of PABC or an instance of
OPermd,n. The adversary can mount this attack because the function h as well
as the value P [0] are public. We claim that

Adv
oprp-cpa
PABC

(A) ≥ 1− 2 · 2−n . (2)

Since A made only three oracle queries, this means that PABC is not a secure
on-line cipher.
We show that the ABC cipher with secret initial values is not a secure OPRP

for a class of functions h that includes the ones suggested in [7]. Specifically, let
us say that a function h: {0, 1}n → {0, 1}n is linear if h(x⊕y) = h(x)⊕h(y)
for all x, y ∈ {0, 1}n. (Notice that the identity function, the constant function
always returning 0n, and the function which rotates its input by one bit are all
linear.) For any linear hash function h, we simply note that the above attack
applies. This is because the fourth line of the adversary’s code can be replaced
by

Let M3[2] =M [2]⊕ C1[1]⊕ C2[1]⊕ h(0n)⊕ h(1n)

The adversary can compute M3[2] because h is public. The fact that h is linear
means that the value M3[2] is the same as before, so the attack has the same
success probability. The analysis for the attacks against both PABC and SABC

appear in the full version of this paper [1].

5 Lemmas about AXU families

Our constructions of on-line ciphers will use the families of AXU (Almost Xor
Universal) functions as defined by Krawczyk [8]. We recall the definition, and
then prove some lemmas that will be helpful in our analyses.



Definition 3. Let n, hk ≥ 1 be integers, and let H: {0, 1}hk×{0, 1}n → {0, 1}n

be a family of functions. Let

Advaxu
H = max

x1,x2,y

{

Pr
[

K
R
← {0, 1}hk : H(K,x1)⊕H(K,x2) = y

] }

where the maximum is over all distinct x1, x2 ∈ {0, 1}
n and all y ∈ {0, 1}n.

The “advantage function” based notation we are introducing is novel: previous
works used instead the term “ε-AXU” family to refer to a family H that, in our
notation, has Advaxu

H ≤ ε. We find the “advantage function” based notation
more convenient, and more consistent with the rest of our security definitions.
The definition is information-theoretic, talking of the maximum value of some

probability. We will find it convenient to think in terms of an adversary attacking
the scheme, and will use the following lemma. We stress that below there are no
limits on the running time of the adversary. This lemma is standard, and follows
easily from Definition 3, so we omit the proof.

Lemma 1. Let n, hk ≥ 1 be integers, and let H: {0, 1}hk × {0, 1}n → {0, 1}n

be a family of functions. Let A be any possibly probabilistic algorithm that takes

no inputs and returns a triple (x1, x2, y) of n-bit strings. Then

Pr
[

(x1, x2, y)
R
← A ; K

R
← {0, 1}hk : H(K,x1)⊕H(K,x2) = y

]

≤ Advaxu
H .

In the formulation of Lemma 1, it is important that the adversary is constrained
to pick x1, x2, y before the K is chosen. In our upcoming analyses, we will,
in contrast, be considering an adversary that obtains some partial information
regarding H(K, ·) in the course of its search for a certain kind of “collision,”
and uses this to guide its search. Specifically, our adversary B can be viewed
as having access to an oracle that knows a key K. The adversary functions in
stages. In stage i, it produces a pair (xi, yi) of values which it submits to the
oracle. The latter responds with a bit indicating whether or not there exists
some j ∈ {1, . . . , i − 1} such that H(K,xj)⊕H(K,xi) = yj⊕yi. (The oracle is
stateful because it has to remember the adversary queries from previous stages in
order to be able to answer the current query.) We wish to argue that the partial
information about H(K, ·) that is obtained by the adversary via this process is
not too large. Specifically, we argue that the probability that the adversary ever
gets back a positive response from the oracle is O(q2) ·Advaxu

H .
In the formal definition that follows, we first describe an algorithm that serves

as a stateful oracle discussed above. Then, we describe an experiment in which
the adversary B with oracle access to the algorithm is executed.

Definition 4. LetH: {0, 1}hk×{0, 1}n → {0, 1}n be a family of hash functions,
and let hK be a string of length hk . We define the following stateful algorithm
D. It maintains a counter i and arrays X,Y , and takes n-bit strings x, y as
inputs. Then, we let B be an adversary with oracle access to DhK and define an
experiment in which B executes.

Algorithm DhK (x, y)
i← i+ 1 ; r ← 0 ; X[i]← x ; Y [i]← y



For j = 1, . . . , i− 1 do
If (H(hK , X[j])⊕Y [j] = H(hK , X[i])⊕Y [i]) and (X[j] 6=X[i]) then r←j

EndFor
Return r

Experiment Expaxu-cr
H (B)

hK
R
← {0, 1}hk

Initialize DhK with i = 0 and X,Y empty
Run BDhk(·,·) until it halts
If B made some oracle query that received a non-zero response,
then return 1, else return 0.

We define the advantage of the adversary B and the AXU-Collision advantage

function of H as follows. For any integer q,

Advaxu-cr
H (B) = Pr[Expaxu-cr

H (B) = 1 ]

Advaxu-cr
H (q) = max

B

{

Advaxu-cr
H (B)

}

where the maximum is taken over all adversaries making q queries.

The following lemma states the relationship between Definition 3 and Definition 4.
The proof is presented in the full version of this paper [1].

Lemma 2. Let H: {0, 1}hk × {0, 1}n → {0, 1}n be a family of hash functions.

Then,

Advaxu-cr
H (q) ≤ q(q − 1) ·Advaxu

H .

6 The HCBC cipher

In this section, we suggest a construction of an on-line cipher. We call it HCBC
and prove its security against chosen-plaintext attacks. This construction is sim-
ilar to the CBC mode of encryption. The only difference is that each output
block passes through a keyed hash function before getting exclusive-or-ed with
the next input block. The key of the hash function is kept secret.

Construction 1. Let n, d ≥ 1 be integers, and let E: {0, 1}ek × {0, 1}n →
{0, 1}n be a block cipher. Let H: {0, 1}hk × {0, 1}n → {0, 1}n be a family of
hash functions. We associate to them a cipher HCBC: {0, 1}ek+hk×Dd,n → Dd,n .
A key for it is a pair eK‖hK where eK is a key for E and hK is a key for H. The
cipher and its inverse are defined as follows forM,C ∈ Dd,n . Figure 3 illustrates
the cipher.



0n

HhK

M[1]

⊕

EeK

C[1]

HhK

M[2]

⊕

EeK

C[2]

HhK

· · ·

· · ·

M[n]

⊕

EeK

C[n]

Fig. 3. The HCBC cipher.

HCBC(eK‖hK ,M)
Parse M as M [1] . . .M [l] with l ≥ 1
C[0]← 0n

For i = 1, . . . , l do
P [i]← H(hK , C[i− 1])⊕M [i]
C[i]← E(eK , P [i])

EndFor
Return C[1] . . . C[l]

HCBC
−1(eK‖hK , C)

Parse C as C[1] . . . C[l] with l ≥ 1
C[0]← 0n

For i = 1, . . . , l do
P [i]← E−1(eK , C[i])
M [i]← H(hK , C[i− 1])⊕ P [i]

EndFor
Return M [1] . . .M [l]

The following theorem implies that, if E is a PRP secure against chosen-plaintext
attacks andH is an AXU family of hash functions, then HCBC is an OPRP secure
against chosen-plaintext attacks.

Theorem 1. Let E: {0, 1}ek × {0, 1}n → {0, 1}n be a block cipher, and let

H: {0, 1}hk × {0, 1}n → {0, 1}n be a family of hash functions. Let HCBC be

the n-on-line cipher associated to them as per Construction 1. Then, for any

integers t, qe, µe ≥ 0 such that µe/n ≤ 2
n−1, we have

Adv
oprp-cpa
HCBC

(t, qe, µe) ≤

Adv
prp-cpa
E (t, µe/n, µe) +

(

µ2
e − nµe
n2

)

·Advaxu
H +

µ2
e + 2n(qe + 1)µe

n2 · 2n
.

HCBC is not secure against chosen-ciphertext attacks. We present an attack in
the full version of this paper [1].
A complete proof of Theorem 1 can be found in the full version of this paper

[1]. In the rest of this section, we provide an overview of this proof.
We introduce the notation HCBCπ(hK , ·) to denote an instance of a cipher

defined by Construction 1 where a permutation π and π−1 are used in place of a
permutation from the family E and its inverse, respectively. The proof looks at
an on-line cipher as a 2n-ary tree of permutations on {0, 1}n, and goes through
a hybrid argument involving a sequence of different games that “move” from
OPermd,n to HCBC. Let A be an adversary that has oracle access to a length-
preserving function f : Dd,n → Dd,n. We assume that A makes at most qe oracle



queries the sum of whose lengths is at most µe bits. We define three games
associated with the adversary A as follows.

Game 1. Choose a tree of random permutations T
R
← Tree(n,Permn, d). Run

A, replying to its oracle queries via T as described in Section 3. Let P1 be the
probability that A returns 1.

Game 2. Choose a random permutation, π
R
← Permn, and choose a random key

for H via hK
R
← {0, 1}hk . Run A, replying to its oracle queries via HCBCπ(hK , ·).

Let P2 be the probability that A returns 1.

Game 3. Choose random keys for E and H via eK
R
← {0, 1}ek and hK

R
←

{0, 1}hk , respectively. Run A, replying to its oracle queries via HCBC(eK‖hK , ·).
Let P3 be the probability that A returns 1.

By the definition of Advoprp-cpa
HCBC

(A), we have

Adv
oprp-cpa
HCBC

(A) = P3 − P1 = (P3 − P2) + (P2 − P1) . (3)

We bound the difference terms via the following lemmas:

Lemma 3. P3 − P2 ≤ Adv
prp-cpa
E (t, µe/n, µe)

Lemma 4. P2 − P1 ≤
µ2
e + 2n(qe + 1)µe

n2 · 2n
+Advaxu-cr

H (µe/n)

Equation (3), Lemma 2, and the above lemmas imply the statement of the the-
orem. We proceed to discuss the proofs of the lemmas.
The proof of Lemma 3 is a standard simulation argument, detailed in [1]. The

rest of this section is devoted to an overview of the proof of Lemma 4. We let
M1, . . . ,Mqe

denote A’s queries, where Mj = Mj [1] . . .Mj [lj ] for j = 1, . . . , qe.
Let hK denote the key of the hash function, and π the choice of permutation
from Permn, that underly Game 2. Then we introduce the following notation in
this game:

For each j = 1, . . . , qe
Let Cj [0] = 0

n

For i = 1, . . . , lj
Let Pj [i] = H(hK , Cj [i− 1])⊕Mj [i] and let Cj [i] = π(Pj [i])

We now define some events in Game 2:

Event ZO2 : There exist (i, j) such that 1 ≤ j ≤ qe, 1 ≤ i ≤ lj and
Cj [i] = 0

n

Event HC : There exist (i, j), (i′, j′) such that 1 ≤ j < j′ ≤ qe, 1 ≤ i ≤ lj ,
1 ≤ i′ ≤ lj′ and Pj [i] = Pj′ [i

′], but Cj [i− 1] 6= Cj′ [i
′ − 1]

Event B2 : ZO2 ∨ HC.

Now let T denote the random choice of tree from Tree(n,Permn, d) that underlies
Game 1 and introduce the following notation in this game:



For each j = 1, . . . , qe
Let xj [0] = ε
For i = 1, . . . , lj
Let Cj [i] = Txj [i−1](Mj [i]) and let xj [i] = xj [i− 1]‖Cj [i]

We now define some events in Game 1:

Event ZO1 : There exist (i, j) such that 1 ≤ j ≤ qe, 1 ≤ i ≤ lj and
Cj [i] = 0

n

Event OC : There exist (i, j), (i′, j′) such that 1 ≤ j < j′ ≤ qe, 1 ≤ i ≤ lj ,
1 ≤ i′ ≤ lj′ and xj [i− 1] 6= xj′ [i

′ − 1] but Cj [i] = Cj′ [i
′]

Event B1 : ZO1 ∨ OC

Let Pr1[ · ] denote the probability function underlying Game 1, namely that

created by the random choice T
R
← Tree(n,Permn, d), and let Pr2[ · ] denote the

probability function underlying Game 2, namely that created by the random
choices of π and hK . Let F denote HCBCπ(hK , ·).

Claim. Pr2[A
F = 1 |B2 ] = Pr1[A

T = 1 |B1 ]

Given this claim, a conditioning argument can be used to show that

P2 − P1 ≤ Pr2[HC ] + Pr2[ZO2 ] + Pr1[B1 ] .

The terms are bounded via the following claims:

Claim. Pr2[HC ] ≤ Advaxu-cr
H (µe/n)

Claim. Pr2[ZO2 ] ≤
2µe
n · 2n

Claim. Pr1[B1 ] ≤
µ2
e + 2nqeµe
n2 · 2n

The proofs of the four claims above can be found in [1]. We conclude this sketch
by providing some intuition regarding the choice of the “bad” events, beginning
with the following definition.

Definition. Suppose 1 ≤ j, j′ ≤ q, 1 ≤ i ≤ lj and 1 ≤ i′ ≤ lj′ . We say that
(i, j) ≺ (i′, j′) if: either j = j′ and i < i′, or j < j′. We say that (i′, j′) is trivial
if there exists some j < j′ such that ni′ ≤ |LCPn(Mj ,Mj′)|.

We claim that the bad event B2 has been chosen so that, in its absence, the
following is true for every non-trivial (i′, j′): If (i, j) ≺ (i′, j′) then Pj [i] 6= Pj′ [i

′].
In other words, any two input points to the function π are unequal unless they
are equal for the trivial reason that the corresponding message prefixes are equal.
This means that in the absence of the bad event, ciphertext blocks whose value
is not “forced” by message prefix conditions are random but distinct, being
outputs of a random permutation. We have choosen event B1 in Game 1 so that
the output distribution here, conditioned on the absence of this event, is the
same.



7 Usage of on-line ciphers

The use of an on-line ciphers can provide strong privacy and authenticity prop-
erties, even though the cipher itself is weak compared to a standard one, if
the plaintext space has appropriate properties. This follows via the the encode-
then-encipher paradigm of [4], under which we imagine an explicit encoding step
applied to the raw data before enciphering. While [4] say that randomness and
redundancy anywhere in the message suffices, we have to be more constrained:
we prepend randomness and append redundancy.

Construction 2. Let n, d be integers, and let F : Keys(F ) × Dd,n → Dd,n

be a cipher. We associate to them the following symmetric encryption scheme
SE = (K, E ,D):

Algorithm K

K
R
← Keys(F )

Return K

Algorithm E(K,M)

r
R
← {0, 1}n

x← r‖M‖0n

C ← F (K,x)
Return C

Algorithm D(K,C)
x← F−1(K,C)
If |x| < 3n then return ⊥
Parse x as r‖M‖τ with |r| = |τ | = n
If τ = 0n then return M
Else return ⊥

We want to show that this scheme provides privacy, when F is an n-on-line
cipher secure against chosen-plaintext attacks, and authenticity, when F is an
n-on-line cipher secure against chosen-ciphertext attacks. Definitions for these
privacy and authenticity notions are standard (see for example [3]). Briefly, the
symmetric encryption scheme achieves privacy and is called IND-CPA-secure if
no polynomial time adversary, which gets to see ciphertexts for plaintexts of its
choice and is given a challenge ciphertext, can get “any” information about the
underlying plaintext. The symmetric encryption scheme achieves integrity and
is called INT-CTXT-secure if no polynomial time adversary, which gets to see
ciphertexts of plaintexts of its choice, can create a “new” valid ciphertext. The
following claims state our results.

Proposition 4. Let F : Keys(F )×Dd,n → Dd,n be an n-on-line cipher, and let
SE = (K, E ,D) be the symmetric encryption scheme defined in Construction 2.

Then, for any integers t, qe, µe ≥ 0,

Adv
ind-cpa
SE (t, qe, µe) ≤ 2Adv

oprp-cpa
F (t, qe, µe) +

q2
e

2n
.

Also, for any integers t, qe, qd, µe, µd ≥ 0,

Advint-ctxt
SE (t, qe, qd, µe, µd) ≤ 2Adv

oprp-cca
F (t, qe, µe, qd, µd) +

qd
2n

.

That is, if F is an n-on-line cipher secure against chosen-plaintext attacks, then
SE is IND-CPA secure, and if F is also secure against chosen-ciphertext attacks,
then SE is INT-CTXT secure.
The proof of Proposition 4 is simple and follows [4]. We present it in [1]. Note

that if n-on-line ciphers are used to encrypt messages which by their nature start
with at least n random bits and end with some fixed sequence of n bits than



we get a symmetric encryption scheme that achieves privacy and integrity and,
moreover, is length-preserving.
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