
Improved On-line/Off-line Signature Schemes

Adi Shamir and Yael Tauman

Applied Math. Dept.
The Weizmann Institute of Science

Rehovot 76100, Israel
email: {shamir,tauman}@wisdom.weizmann.ac.il

Abstract. The notion of on-line/off-line signature schemes was intro-
duced in 1990 by Even, Goldreich and Micali. They presented a general
method for converting any signature scheme into an on-line/off-line sig-
nature scheme, but their method is not very practical as it increases
the length of each signature by a quadratic factor. In this paper we use
the recently introduced notion of a trapdoor hash function to develop a
new paradigm called hash-sign-switch, which can convert any signature
scheme into a highly efficient on-line/off-line signature scheme: In its rec-
ommended implementation, the on-line complexity is equivalent to about
0.1 modular multiplications, and the size of each signature increases only
by a factor of two. In addition, the new paradigm enhances the security of
the original signature scheme since it is only used to sign random strings
chosen off-line by the signer. This makes the converted scheme secure
against adaptive chosen message attacks even if the original scheme is
secure only against generic chosen message attacks or against random
message attacks.

Keywords: signature schemes, on-line/off-line, trapdoor hash functions.

1 Introduction

Digital signature schemes are among the most fundamental and useful inven-
tions of modern cryptography. In such schemes, each user generates a (private)
signing key and a (public) verification key. A user signs a message using his pri-
vate signing key, and anyone can authenticate the signer and verify the message
by using the signer’s public verification key. A signature scheme is considered
to be secure if signatures on new messages cannot be forged by any attacker
who knows the user’s public key but not his private key. Many constructions of
signature schemes appear in the literature, but most of these schemes have un-
proven security, and the few schemes that are provably secure (under standard
cryptographic assumptions) are not fast enough for many practical applications.
Signature schemes that are efficient and provably secure are interesting both
from a practical and a theoretical point of view.
In this paper, we introduce a general method for simultaneously improving

both the security and the real-time efficiency of any signature scheme by con-
verting it into an efficient on-line/off-line signature scheme. This notion was first

introduced by Even, Goldreich and Micali [1]. The idea is to perform the sig-
nature generating procedure in two phases. The first phase is performed off-line
(before the message to be signed is given) and the second phase is performed on-
line (after the message to be signed is given). On-line/off-line signature schemes
are useful, since in many applications the signer has a very limited response time
once the message is presented, but he can carry out costly computations between
consecutive signing requests. On-line/off-line signature schemes are particularly
useful in smart card applications: The off-line phase is implemented either dur-
ing the card manufacturing process or as a background computation whenever
the card is connected to power, and the on-line phase uses the stored result of
the off-line phase to sign actual messages. The on-line phase is typically very
fast, and hence can be executed efficiently even on a weak processor.

Some signature schemes can be naturally partitioned into off-line and on-
line phases. For example, the first step in the Fiat-Shamir, Schnorr, El-Gamal
and DSS signature schemes does not depend on the given message, and can
thus be carried out off-line. However, these are particular schemes with special
structure and specific security assumptions rather than a general and provably
secure conversion technique for arbitrary signature schemes.

Even, Goldreich and Micali presented a general method for converting any
signature scheme into an on-line/off-line signature scheme. Their method uses a
one-time signature scheme, i.e., a scheme which can securely sign only a single
message. The essence of their method is to apply (off-line) the ordinary signing
algorithm to authenticate a fresh one-time verification key, and then to apply
(on-line) the one-time signing algorithm, which is typically very fast. In the basic
[1] construction of a one-time bit-oriented signature scheme, the size of each
signature is k2 (where k is the size of the message and the security parameter).
Additional constructions were proposed in [1], but they offer a very inefficient
tradeoff between the size of the keys and the complexity of the one-time signing
algorithm. In this paper, we present a method that increases the length of the
signatures by an additive (rather than multiplicative) factor of k bits.

Our method uses a special type of hash functions, called trapdoor hash func-
tions. These functions were recently introduced by Krawczyk and Rabin [3], who
used them to construct chameleon signatures. Chameleon signatures are signa-
tures that commit the signer to the contents of the signed message (as regular
signatures do) but do not allow the recipient of the signature to convince third
parties that a particular message was signed, since the recipient can change the
signed message to any other message of his choice.

A trapdoor hash function is associated with a public key and a private key,
referred to as the hash key HK and the trapdoor key TK, respectively. Loosely
speaking, a trapdoor hash function is a probabilistic function h, such that colli-
sions are difficult to generate when onlyHK is known, but easy to generate when
TK is also known. More formally, given only HK, it is hard to find two messages
m,m′ and two auxiliary numbers r, r′ such that h(m; r) = h(m′; r′), but given
(HK,TK) and m,m′, r′, it is easy to find r such that h(m; r) = h(m′; r′). Note
that this requirement is weaker than the requirement of trapdoor permutations,

and thus it may be easier to find efficient trapdoor hash functions than to find
efficient signature schemes based on trapdoor permutations.
The essence of our method is to hash the given message using a trapdoor

hash function (rather than a regular hash function) and then to sign the hashed
value using the given signature scheme. The resultant signature scheme can be
implemented as an on-line/off-line signature scheme as follows: The off-line phase
uses the original signature scheme to sign the hash value h(m′; r′) of a random
message m′ and a random auxiliary number r′. Given an actual message m,
the on-line phase uses the same precomputed signature of the randomly chosen
m′ as a signature of the given message m, by using the trapdoor key to find
a collision of the form h(m′; r′) = h(m; r). The signature of m consists of the
new auxiliary number r and the precomputed signature of h(m′; r′). We call this
paradigm a hash-sign-switch scheme. Notice that the on-line phase is completely
independent of the original signature scheme, and consists only of finding a
collision of the trapdoor hash function. In particular, we describe a trapdoor
hash function in which collisions can be found with time complexity equivalent
to about 0.1 modular multiplications. Hence, for any signature scheme, its on-
line/off-line version can be implemented such that the on-line phase requires only
this negligible time complexity, and the size of the signature is only increased
by adding r to the original signature.
For any signature scheme, we prove that our on-line/off-line version is at

least as secure as the original scheme, provided that the trapdoor hash family is
secure. In fact, we prove that the converted scheme is even more secure than the
original scheme, since the original scheme is only applied to random messages
chosen exclusively by the signer. In particular, we can show that the on-line/off-
line signature scheme is secure against adaptive chosen message attacks even
if the original signature scheme is secure only against generic chosen message
attacks or random message attacks. Note for example, that the Rabin signature
scheme [5] and the RSA signature scheme [6] are not secure against adaptive
chosen message attacks, but are believed to be secure against random message
attacks, and hence we believe that our method enhances the security of these
schemes.

2 Definitions and Constructions

In this section, we introduce the basic notations and definitions used in this paper
and present some constructions of trapdoor hash functions. For any binary string
x, we denote by |x| the length of x. For any finite set V , the notation x ∈R V

implies that x is uniformly distributed in V .
We consider the following types of attacks:

– Random message attack: The attacker has access to an oracle that signs (with
the unknown signing key SK) random message chosen by the oracle.

– Generic chosen message attack: The attacker is given signatures for a list of
messages of his choice. However, this list should be produced before any
signature is given, and should be independent of the verification key V K.

– Adaptive chosen message attack: The attacker has access to an oracle that
signs any queried message m. In particular, the choice of each query m

can depend on the verification key V K and on the signature produced for
previous messages.

– Q-adaptive chosen message attack: An adaptive chosen message attack where
the attacker can query the oracle at most Q times.

In this work, a signature scheme is considered to be secure (against a certain
type of attack) if there does not exist a probabilistic polynomial-time forger
that generates a pair consisting of some new message (that was not previously
presented to the oracle) and a valid signature, with a probability which is not
negligible. This property was called existential unforgeability in [2].
In the remaining part of this section, we concentrate on the notion of a

trapdoor hash function [3]. A trapdoor hash function is a special type of hash
function, whose collision resistance depends on the user’s state of knowledge.
Every trapdoor hash function is associated with a pair of public key and private
key, referred to as the hash key HK and the trapdoor key TK, respectively:

Definition 1. (trapdoor hash family) A trapdoor hash family consists of a pair
(I,H) such that:

– I is a probabilistic polynomial-time key generation algorithm that on input
1k outputs a pair (HK,TK), such that the sizes of HK,TK are polynomially
related to k.

– H is a family of randomized hash functions. Every hash function in H is
associated with a hash key HK, and is applied to a message from a space
M and a random element from a finite space R. The output of the hash
function hHK does not depend on TK.

A trapdoor hash family (I,H) has the following properties:

1. Efficiency: Given a hash key HK and a pair (m, r) ∈M×R, hHK(m; r) is
computable in polynomial time.

2. Collision resistance: There is no probabilistic polynomial-time algorithm A
that on input HK outputs, with a probability which is not negligible, two
pairs (m1, r1), (m2, r2) ∈ M×R that satisfy m1 6= m2 and hHK(m1; r1) =
hHK(m2; r2) (the probability is over HK, where (HK,TK) ← I(1k), and
over the random coin tosses of algorithm A). 1

3. Trapdoor collisions: There exists a probabilistic polynomial time algorithm
that given a pair (HK,TK) ← I(1k), a pair (m1, r1) ∈ M × R, and an
additional message m2 ∈M, outputs a value r2 ∈ R such that:
– hHK(m1; r1) = hHK(m2; r2).
– If r1 is uniformly distributed in R then the distribution of r2 is compu-
tationally indistinguishable from uniform in R.

1 Note that it is not required that given one collision it remains hard to find new
collisions. Indeed, all the constructions that we present have the property that given
a hash keyHK and given a single collision of hHK , one can easily compute a trapdoor
key TK such that the pair (HK,TK) is in the range of I(1k).

We refer to every member of a trapdoor hash family as a trapdoor hash function.
We now present three constructions of trapdoor hash families. The first two
constructions were presented in [3], and the third construction is a new one.

1. A trapdoor hash function based on the Factoring assumption.
– The key generation algorithm I: Choose at random two primes p, q ∈
{0, 1}k/2 such that p ≡ 3 (mod 8) and q ≡ 7 (mod 8), and compute
n = pq. The public hash key is n and the private trapdoor key is (p, q).

– The hash family H: For a hash key n, hHK is a function from M ×

QRn, where M is any suffix free subset of {0, 1}∗ and QRn
def
= {x ∈

Z∗
n|(

x
p) = (

x
q) = 1}. Given a message m = m[1]m[2] . . .m[|m|] and a

random value r ∈R QRn, hHK(m; r)
def
= fm[1] ◦ fm[2] ◦ · · · ◦ fm[|m|](r),

where f0(x)
def
= x2 (mod n) and f1(x)

def
= 4x2 (mod n). (Note that

h(m; r) = 4mr2
|m|

(mod n)).

Remark 1. The functions f0 and f1 were introduced in [2], who proved that
they are claw free permutations, and used this property to construct an
(inefficient) provably secure signature scheme.

Lemma 1. The pair (I,H) is a trapdoor hash family, under the Factoring
Assumption.

A proof of this lemma appears in Appendix A. This trapdoor hash function
has the following additional property: There exists a probabilistic polynomial-
time algorithm that given a pair (HK,TK) (of hash key and trapdoor key),
a message m ∈M and any value c in the image of hHK , outputs r ∈ R such
that:
– hHK(m; r) = c.
– If c is uniformly distributed (in the image of hHK) then the distribution
of r is computationally indistinguishable from uniform (in R).

Note that this inversion property is stronger than the ability to generate
collisions. We will use it to convert any signature scheme which is provably
secure only against random message attacks into a signature scheme which
is provably secure against adaptive chosen message attacks.

2. A trapdoor hash family based on the Discrete Log Assumption
– The key generation algorithm I. Choose at random a safe prime p ∈

{0, 1}k (i.e., a prime p such that q
def
= p−1

2 is prime) and an element
g ∈ ZZ∗p of order q. Choose a random element α ∈R Z∗

q and compute
y = gα (mod p). The public hash key is (p, g, y) and the private trapdoor
key is α.

– The hash family H. For HK = (p, g, y), hHK : Zq ×Zq −→ Z∗
p is defined

as follows: hHK(m; r)
def
= gmyr (mod p).

Lemma 2. The pair (I,H) is a trapdoor hash family, under the Discrete
Log Assumption.

A proof of this lemma appears in Appendix B.
3. A new trapdoor hash family based on the Factoring Assumption.
– The key generation Algorithm I. Choose at random two safe primes p, q ∈

{0, 1}k/2 (i.e., primes such that p′
def
= p−1

2 and q′
def
= q−1

2 are primes) and
compute n = pq. Choose at random an element g ∈ Z∗

n of order λ(n)

(λ(n)
def
= lcm(p− 1, q− 1) = 2p′q′). The public hash key is (n, g) and the

private trapdoor key is (p, q).
– The hash family H. For HK = (n, g), hHK : Zn × Zλ(n) −→ Z∗

n is

defined as follows: hHK(m; r)
def
= gm◦r (mod n) (where m◦ r denotes the

concatenation of m and r).

Lemma 3. The pair (I,H) is a trapdoor hash family, under the Factoring
Assumption.

A proof of this lemma appears in Appendix C.

We summarize the efficiency analysis of these three constructions of trapdoor
hash families in the following table . We assume that the messages in M and
the random seeds in R are of size ≈ k.

Construction Computing hHK Finding collisions Inversion prop. Assumption

1 k mult. ≈ 5 exp. YES Factoring
2 1 exp. ≈ 1 mult. NO Discrete Log
3 1 exp. ≈ 0.1 mult. NO Factoring

Remark 2. The complexity of collision finding in construction 3 is equivalent to
about one tenth of a regular modular multiplication, since for 1024 bit keys and
160 bit (hashed) messages, it requires only two additions/subtractions and one
reduction of a 1184 bit number modulo a 1024 bit number. See Appendix C for
further details.

Remark 3. The relaxed security conditions of trapdoor hash functions may lead
to new types of signature schemes whose hash functions are based on multi-
variate polynomials. Most of the multivariate signature schemes proposed so far
were broken by attacking their hidden inversion structure. In the new paradigm,
there is no need to invert h(m; r) = c, and thus they may be more resistant to
cryptanalytic attacks.

3 The Hash-Sign-Switch Paradigm

We now introduce our general method for combining any trapdoor hash family
(I,H) and any signature scheme (G,S, V) to get an on-line/off-line signature
scheme. For a security parameter k, we construct an on-line/off-line scheme
(G′, S′, V ′), as follows.

– The Key Generation Algorithm G′.

1. Generate a pair (SK, V K) of signing key and verification key, by apply-
ing G to the input 1k (where G is the key generation algorithm of the
original scheme).

2. Generate a pair (HK,TK) of hash key and trapdoor key, by applying I
to the input 1k (where I is the key generation algorithm of the trapdoor
hash family).

The signing key is (SK,HK, TK) and the verification key is (V K,HK).

– The Signing Algorithm S ′. Given a signing key (SK,HK, TK), the sign-
ing algorithm operates as follows.
1. Off-line phase:
• Choose at random (m′, r′) ∈R M× R, and compute hHK(m

′; r′)
(using HK).

• Run the signing algorithm S with the signing key SK to sign the
message hHK(m

′; r′). Denote the output SSK(hHK(m
′; r′)) by Σ.

• Store the pair (m′, r′), the hash value hHK(m
′; r′), and the signa-

ture Σ. (The hash value hHK(m
′; r′) is stored only to avoid its re-

computation in the on-line phase).
2. On-line phase: Given a message m, the on-line phase proceeds as follows.
• Retrieve from memory the pair (m′, r′), the hash value hHK(m

′; r′),
and the signature Σ.

• Find r ∈ R such that hHK(m; r) = hHK(m
′; r′).

• Send (r,Σ) 2 as a signature of m.

– The Verification Algorithm V ′. To verify that the pair (r,Σ) is indeed a
signature of the message m, with respect to the verification key (V K,HK),
compute hHK(m; r) and use the verification algorithm V (of the original
signature scheme) to check that Σ is indeed a signature of the hash value
hHK(m; r) with the verification key V K.

We now analyze the security and the efficiency of the resultant on-line/off-line
signature scheme.

3.1 Efficiency

The off-line phase of the signing algorithm consists of one evaluation of the
trapdoor hash function and one invocation of the original signing algorithm.
The verification algorithm of the on-line/off-line signature scheme consists of
one evaluation of the trapdoor hash function and one invocation of the origi-
nal verification algorithm. Hence, the additional overhead of the off-line signing
phase and the verification algorithm is a single evaluation of the trapdoor hash
function. The on-line phase consists of a single collision finding computation.
Using the third type of trapdoor hash function presented in Section 2, evalu-
ation requires one modular exponentiation, and collision finding requires about

2 Note that the signature (r,Σ) has the property that the distribution of r is com-
putationally indistinguishable from uniform in R, and that the distribution of Σ is
identical to the distribution of SSK(hHK(m; r)).

0.1 modular multiplications. The length of the keys and the length of the sig-
natures increase only by a factor of two, which is much better than in previous
proposals.

3.2 Security

The general conversion technique proposed in this paper preserves the security
of the original signature scheme, and even improves it in some respects since the
opponent cannot control the random strings it is asked to sign during the off-
line phase. We can thus prove that our on-line/off-line signature scheme is secure
against adaptive chosen message attacks, even if the original signature scheme is
secure only against generic chosen message attacks. Due to the practical emphasis
of this work, we focus on exact security, rather than on asymptotic security.

Lemma 4. Let (G,S, V) be a signature scheme and let (I,H) be a trapdoor
hash family. Let (G′, S′, V ′) be the resultant on-line/off-line signature scheme.
Suppose that (G′, S′, V ′) is existentially forgeable by a Q-adaptive chosen mes-
sage attack in time T with success probability ε. Then one of the following cases
holds:

1. There exists a probabilistic algorithm that given a hash key HK, finds col-
lisions of hHK in time T + TG + Q(TH + TS) with success probability ≥

ε
2

(where TG is the running time of G, TH is the running time required to
compute functions in H, and TS is the running time of S).

2. The original signature scheme (G,S, V) is existentially forgeable by a generic
Q-chosen message attack in time T +Q(TH+TCOL)+TI with success proba-
bility ≥ ε

2 (where TCOL is the time required to find collisions of the trapdoor
hash function given the hash key and the trapdoor key, and TI is the running
time of algorithm I).

Proof. Suppose that F ′ is a probabilistic algorithm that given a verification key
(HK,V K), forges a signature with respect to the signature scheme (G′, S′, V ′)

by a Q-chosen message attack in time T with success probability ε. Let {mi}
Q
i=1

denote the Q queries that the forger F ′ sends to the signing oracle, and let
{(ri, Σi)}

Q
i=1 denote the corresponding signatures produced by the oracle. Let

m, (r,Σ) denote the output of F ′. Since with probability ≥ ε, (r,Σ) is a valid
signature of the message m (with respect to the on-line/off-line signature scheme
(G′, S′, V ′)), it follows that

Pr[VV K(hHK(m; r), Σ) = 1] ≥ ε.

Hence, one of the following cases holds:

1. Pr[VV K(hHK(m; r), Σ) = 1 & ∃i s.t. hHK(mi; ri) = hHK(m; r)] ≥
ε
2 .

2. Pr[VV K(hHK(m; r), Σ) = 1 & ∀i, hHK(mi; ri) 6= hHK(m; r)] ≥
ε
2 .

If case 1 holds, then we define a probabilistic algorithm A that given a hash key
HK finds collisions of the hash function hHK , as follows.

1. Generate a pair (SK, V K) of signing key and verification key, by applying
G to the input 1k (where G is the key generation algorithm of the original
signature scheme).

2. Simulate the forger F ′ on the input (V K,HK), such that whenever F ′

queries the signing oracle S ′ with a query mi, algorithm A operates as fol-
lows:
– Choose at random ri ∈R R and compute hHK(mi; ri).
– Generate a valid signature of hHK(mi; ri) (with respect to the original
signature scheme (G,S, V)), by using the known signing key SK. Denote
the generated signature of hHK(mi; ri) by Σi.

– Proceed in the simulation of F ′ as if the signature obtained by the signing
oracle S′ was (ri, Σi).

Note that the distribution of the simulated oracle is identical to the distribution
of the real oracle, and hence with probability ≥ ε

2 , A succeeds in obtaining a
message m and a pair (r,Σ), such that for every i, m 6= mi, and there exists i
such that hHK(m; r) = hHK(mi; ri). Hence, A succeeds in finding collisions to
the hash function hHK with probability ≥

ε
2 in time T + TG +Q(TH + TS).

If case 2 holds, we define a probabilistic algorithm F that forges a signature
with respect to (G,S, V) by a generic Q-chosen message attack, as follows.

1. Generate a pair (HK,TK) of hash key and trapdoor key, by applying I to
the input 1k (where I is the key generation algorithm of the trapdoor hash
family).

2. Choose at random Q pairs (m′
i, r

′
i) ∈R M×R and compute hHK(m

′
i; r

′
i).

The set {hHK(m
′
i; r

′
i)}

Q
i=1 will be the set of queries to the signing oracle S.

Given a verification key V K and given a set of signatures {Σi}
Q
i=1 (where Σi

is a signature of hHK(mi; ri) with respect to the verification key V K), F simu-
lates the forger F ′ on input (V K,HK) as follows. When F ′ queries the oracle
with a message mi, F finds ri ∈ R such that hHK(mi; ri) = hHK(m

′
i; r

′
i) and

proceeds as if the signature obtained by the signing oracle S ′ was (ri, Σi). Recall
that ri can be chosen such that if r

′
i is uniformly distributed in R then ri is

computationally indistinguishable from uniform in R. Hence, the distribution
of the output of the simulated oracle is computationally indistinguishable from
the distribution of the output of the real oracle. Thus, with probability ≥ ε

2 , F
obtains a message m and a pair (r,Σ) such that:

– hHK(m; r) 6= hHK(m
′
i, r

′
i) for every i = 1, . . . , Q.

– Σ is a valid signature of hHK(m; r) (with respect to the original signature
scheme).

Hence F succeeds in forging a new signature with probability ≥ ε
2 in time T +

TI +Q(TH + TCOL). ut

Recalling the definitions of security, we get:

Theorem 1. The resulting on-line/off-line signature scheme is secure against
adaptive chosen message attacks, provided that the original scheme is secure
against generic chosen message attacks.

Our technique can be used to enhance the security of signature schemes even
further. In particular, our conversion method can be used to convert any signa-
ture scheme which is secure only against random message attacks into a signature
scheme which is secure against adaptive chosen message attacks. Recall that in
the proof of Lemma 4, the signing oracle S ′ with a given query mi was simulated
as follows: Retrieve from memory the signature Σi of hHK(m

′
i; r

′
i) (obtained by

the oracle), find an element ri such that hHK(mi; ri) = hHK(m
′
i; r

′
i), and output

(ri, Σi) as a signature of mi. If the original scheme is only secure against random
message attacks, then the forger F has access to an oracle that outputs pairs
(ci, Σi), where ci is a random message (generated by the oracle) and Σi is a valid
signature of ci. Hence, using the same technique, to simulate the signing oracle
S′ with a given query mi one needs to find ri such that hHK(mi; ri) = ci. Thus,
we need the trapdoor hash family to have the following inversion property: given
a pair (HK,TK), a message m ∈M, and an element c in the image of hHK , it
is easy to find r ∈ R such that:

– hHK(m; r) = c.

– The distribution of r is computationally indistinguishable from uniform in
R, provided that for every m the distribution of c is computationally in-
distinguishable from the distribution of hHK(m; r), where r is uniformly
distributed in R. 3

By applying our on-line/off-line conversion method with such a trapdoor hash
family, we can modify the proof of Lemma 4 to prove that the signature scheme
obtained is secure against adaptive chosen message attacks, provided that the
original scheme is secure against random message attacks.

References

1. Shimon Even, Oded Goldreich, and Silvio Micali, On-line/off-line Digital Signa-
tures. In Advances in Cryptology: Crypto ’89, pp 263-277. August 1990. Springer.

2. Shafi Goldwasser, Silvio Micali, and Ron Rivest, A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks, SIAM J. on Computing, 17, pp 281-
308, 1988.

3. Hugo Krawczyk and Tal Rabin, Chameleon Signatures. In Symposium on Network
and Distributed Systems Security (NDSS ’00), pp 143-154, February 2000, Internet
Society.

4. Gary Miller, Riemann’s Hypothesis and Tests for Primality, J. Comp. Sys. Sci.,
13:300-317, 1976.

5. Michael Rabin, Digitized Signatures as Intractable as Factorization, Technical Re-
port MIT/LCS TR-212, January 1979.

6. Ron Rivest, Adi Shamir, and Len Adleman, A Method of Obtaining Digital Signa-
tures and Public-Key Cryptosystems, CACM, 21(2), pp 120-126, February 1978.

3 Note that there is an implicit assumption here that for every two messagesm1,m2 the
distributions hHK(m1; r1) and hHK(m2; r2) are computationally indistinguishable,
where r1 and r2 are uniformly distributed in R.

A Proof of Lemma 1

Proof. 1. Efficiency: Clearly, given a hash key n and a pair (m; r) ∈M×QRn,

the function h(m; r) = 4mr2
|m|

(mod n) can be computed in polynomial
time.

2. Collision resistance: Assume to the contrary, that there exists a probabilis-
tic polynomial time algorithm that given a hash key n outputs two pairs
(m1, r1), (m2, r2) ∈ M × QRn such that m1 6= m2 and hHK(m1, r1) =
hHK(m2, r2), with a probability which is not negligible. Let i be the smallest
index of a bit where m1 and m2 differ (i.e., m1[i] 6= m2[i] and m1[j] = m2[j]
for all j < i). Such a bit exists due to the suffix-free property ofM. Since we
assume that the result of the hash function on (m1, r1) and (m2, r2) is the
same and that m1[j] = m2[j] for all j < i, and since f0, f1 are permutations,
it follows that

fm1[i] ◦ · · · ◦ fm1[|m1|](r1) = fm2[i] ◦ · · · ◦ fm2[|m2|](r2).

Thus, we found a pair of values r′1 and r
′
2 for which fm1[i](r

′
1) = fm2[i](r

′
2). As

proven in [2], the existence of such claws for (f0, f1) contradicts the Factoring
Assumption.

3. Trapdoor collisions: Given a pair (m1, r1) ∈ M× QRn and any additional
message m2 ∈ M, a value r2 ∈ QRn such that hHK(m1; r1) = hHK(m2; r2)
is given by

r2 = (f
−1
m2[1]

◦ f−1
m2[2]

◦ · · · ◦ f−1
m2[|m2|]

(hHK(m1; r1))).

Given the trapdoor key TK = (p, q), the functions f−1
0 , f−1

1 are computable
in polynomial time, and therefore the value of r2 is also computable in poly-
nomial time. It remains to note that since f0, f1 are permutations on QRn,
it follows that if r1 is uniformly distributed in QRn then r2 is also uniformly
distributed in QRn.

ut

B Proof of Lemma 2

Proof. 1. Efficiency: Clearly, given a hash key HK = (p, g, y) and a pair
(m, r) ∈ Zq ×Zq, the function hHK(m, r) = gmyr (mod p) is computable in
polynomial time.

2. Collision resistance: Assume to the contrary, that there exists a probabilistic
polynomial time algorithm that given a hash key HK = (p, g, y), outputs
two pairs (m1, r1), (m2, r2) ∈ Zq×Zq such thatm1 6= m2 and hHK(m1, r1) =
hHK(m2, r2), with a probability which is not negligible. The discrete log of
y with respect to the basis g can be calculated in polynomial time from the
output, as follows. Let α denote the discrete log of y. Then

m1 + αr1 = m2 + αr2 (mod q).

The fact thatm1 6= m2 (mod q) implies that r1 6= r2 (mod q), and thus r1−r2
is invertible modulo the prime q. Hence, α can be computed in polynomial
time as follows.

α = (r2 − r1)
−1(m1 −m2) (mod q).

This contradicts the Discrete Log Assumption.
3. Trapdoor collisions: Assume that we are given a hash key (p, g, y) and a
corresponding trapdoor key α. Given any pair (m1, r1) ∈ Zq × Zq and any
additional message m2 ∈ Zq, we want to find r2 ∈ Zq such that

gm1yr1 = gm2yr2 (mod p).

The value of r2 can be calculated in polynomial time as follows.

r2 = α−1(m1 −m2) + r1 (mod q).

It remains to note that if r1 is uniformly distributed in Zq then r2 is also
uniformly distributed in Zq.

ut

C Proof of Lemma 3

Proof. 1. Efficiency: Clearly, given a hash key HK = (n, g) and a pair (m, r) ∈
Zn × Zλ(n), the function hHK(m; r) = gm◦r (mod n) is computable in poly-
nomial time.

2. Collision resistance: Assume to the contrary, that there exists a probabilis-
tic polynomial time algorithm that on input HK = (n, g) outputs two pairs
(m1, r1), (m2, r2) ∈ Zn × Zλ(n) such that g

m1◦r1 = gm2◦r2 (mod n), with a

probability which is not negligible. Denote by x
def
= m1 ◦ r1 −m2 ◦ r2 (this

equality is over ZZ). x 6= 0 since m1 6= m2. The fact that g
x = 1 (mod n) im-

plies that λ(n) divides x. Thus, φ(n) divides 2x (Since φ(n) = (p−1)(q−1) =
4p′q′ = 2λ(n)). Hence, there exists a probabilistic polynomial time algo-
rithm, that on input (n, g) outputs a multiple of φ(n). It is known [4] that
from any multiple of φ(n) the factorization of n can be efficiently computed.
So we found a probabilistic polynomial time algorithm that solves the Fac-
toring Problem with a probability which is not negligible. This contradicts
the Factoring Assumption.

3. Trapdoor collisions: Given a hash key HK = (n, g), a pair (m1, r1) ∈ Zn ×
Zλ(n), and an additional message m2 ∈ Zn, we want to find r2 ∈ Zλ(n) such
that gm1◦r1 = gm2◦r2 (mod n). Namely, we want to find r2 ∈ Zλ(n) such

that 2km1+ r1 = 2
km2+ r2 mod λ(n). Given the trapdoor key TK = (p, q),

λ(n) can be computed in polynomial time, and hence r2 can be computed
in polynomial time as follows.

r2 = 2
k(m1 −m2) + r1 (mod λ(n)).

It remains to note that if r1 is uniformly distributed in Zλ(n) then r2 is also
uniformly distributed in Zλ(n)

ut

Remark 4. Each r is uniformly distributed in Zλ(n), and thus a polynomial num-
ber of signatures reveal a logarithmic number of the most significant bits in the
secret λ(n). However, this is not dangerous since the known n and the secret
φ(n) = 2λ(n) have the same bits in their top halves.

Remark 5. The equation used to find collisions in the second and third trap-
door hash families look similar, but are based on different security assumptions
(discrete log vs. factoring). This difference makes it possible to replace the multi-
plication operation α−1(m1−m2) by the simpler left shift operation 2

k(m1−m2),
which saves about half the total time. In addition, when the size of the modulus
is 1024 bits and the size of the (hashed) (m1 −m2) is 160 bits, the reduction of
the 1184 bit result modulo a 1024 bit modulus is about 6 times faster than a stan-
dard reduction of a 2048 bit product modulo a 1024 bit modulus. Consequently,
we estimate that software implementations of the collision finding procedure will
be about ten times faster than performing a single modular multiplication of two
1024 bit numbers.

