
Session-Key Generation using Human Passwords

Only

Oded Goldreich? and Yehuda Lindell

Department of Computer Science and Applied Math,
Weizmann Institute of Science, Rehovot, Israel.
{oded,lindell}@wisdom.weizmann.ac.il

Abstract. We present session-key generation protocols in a model where
the legitimate parties share only a human-memorizable password. The
security guarantee holds with respect to probabilistic polynomial-time
adversaries that control the communication channel (between the par-
ties), and may omit, insert and modify messages at their choice. Loosely
speaking, the effect of such an adversary that attacks an execution of our
protocol is comparable to an attack in which an adversary is only allowed
to make a constant number of queries of the form “is w the password of
Party A”. We stress that the result holds also in case the passwords are
selected at random from a small dictionary so that it is feasible (for the
adversary) to scan the entire directory. We note that prior to our result,
it was not clear whether or not such protocols were attainable without
the use of random oracles or additional setup assumptions.

1 Introduction

This work deals with the oldest and probably most important problem of cryp-
tography: enabling private and reliable communication among parties that use
a public communication channel. Loosely speaking, privacy means that nobody
besides the legitimate communicators may learn the data communicated, and
reliability means that nobody may modify the contents of the data communi-
cated (without the receiver detecting this fact). Needless to say, a vast amount of
research has been invested in this problem. Our contribution refers to a difficult
and yet natural setting of two parameters of the problem: the adversaries and
the initial set-up.
We consider only probabilistic polynomial-time adversaries. Still even within

this framework, an important distinction refers to the type of adversaries one
wishes to protect against: passive adversaries only eavesdrop the channel, whereas
active adversaries may also omit, insert and modify messages sent over the chan-
nel. Clearly, reliability is a problem only with respect to active adversaries (and
holds by definition w.r.t passive adversaries). We focus on active adversaries.
The second parameter mentioned above is the initial set-up assumptions.

Some assumption of this form must exist or else there is no difference between

? Supported by the MINERVA Foundation, Germany.

the legitimate communicators, called Alice and Bob, and the adversary (which
may otherwise initiate a conversation with Alice pretending to be Bob). We list
some popular initial set-up assumptions and briefly discuss what is known about
them.

Public-key infrastructure: Here one assumes that each party has generated
a secret-key and deposited a corresponding public-key with some trusted
server(s). The latter server(s) may be accessed at any time by any user.

It is easy to establish private and reliable communication in this model
(cf. [15, 33]). (However, even in this case, one may want to establish “ses-
sion keys” as discussed below.)

Shared (high-quality) secret keys: By high-quality keys we mean strings
coming from distributions of high min-entropy (e.g., uniformly chosen 56-
bit (or rather 192-bit) long strings, uniformly chosen 1024-bit primes, etc).
Furthermore, these keys are selected by a suitable program, and cannot be
memorized by humans.

In case a pair of parties shares such a key, they can conduct private and
reliable communication (cf., [9, 36, 19, 4]).

Shared (low-quality) secret passwords: In contrast to high-quality keys,
passwords are strings that may be easily selected, memorized and typed-in
by humans. An illustrating (and simplified) example is the case in which the
password is selected uniformly from a relatively small dictionary; that is, the
password is uniformly distributed in D ⊂ {0, 1}n, where |D| = poly(n).

Note that using such a password in the role of a cryptographic key (in schemes
as mentioned above) will yield a totally insecure scheme. A more significant
observation is that the adversary may try to guess the password, and initiate a
conversation with Alice pretending to be Bob and using the guessed password.
So nothing can prevent the adversary from successfully impersonating Bob
with probability 1/|D|. But can we limit the adversary’s success to about this
much?

The latter question is the focus of this paper.

Session-keys: The problem of establishing private and reliable communication
is commonly reduced to the problem of generating a secure session-key (a.k.a
“authenticated key exchange”). Loosely speaking, one seeks a protocol by which
Alice and Bob may agree on a key (to be used throughout the rest of the current
communication session) so that this key will remain unknown to the adversary.1

Of course, the adversary may prevent such agreement (by simply blocking all
communication), but this will be detected by either Alice or Bob.

1 We stress that many famous key-exchange protocols, such as the one of Diffie and
Hellman [15], refer to a passive adversary. In contrast, this paper refers to active
adversaries.

1.1 What security may be achieved based on passwords

Let us consider the related (although seemingly easier) task of mutual authenti-
cation. Here Alice and Bob merely want to establish that they are talking to one
another. Repeating an observation made above, we note that if the adversary
initiates m ≤ |D| instances of the mutual authentication protocol, guessing a dif-
ferent password in each of them, then with probability m/|D| it will succeed in
impersonating Alice to Bob (and furthermore find the password). The question
posed above is rephrased here as follows:

Can one construct a password-based scheme in which the success probabil-
ity of any probabilistic polynomial-time impersonation attack is bounded
by O(m/|D|) + µ(n), where m is the number of sessions initiated by the
adversary, and µ(n) is a negligible function in the security parameter n?

We resolve the above question in the affirmative. That is, assuming the existence
of trapdoor one-way permutations, we prove that schemes as above do exist
(for any D and specifically for |D| = poly(n)). Our proof is constructive. We
actually provide a protocol of comparable security for the more demanding goal
of authenticated session-key generation.

Password-based authenticated session-key generation: Our definition for the task
of authenticated session-key generation is based on the simulation paradigm.
That is, we require that a secure protocol emulates an ideal execution of a
session-key generation protocol (cf. [1, 29, 12]). In such an ideal execution, a
trusted third party hands identical, uniformly distributed session-keys to the
honest parties. The only power given to the adversary in this ideal model is
to prevent the trusted party from handing keys to one of both parties. (We
stress that, in this ideal model, the adversary learns nothing of the parties’ joint
password or output session-key).
Next, we consider a real execution of a protocol (where there is no trusted

party and the adversary has full control over the communication channel between
the honest parties). In general, a protocol is said to be secure if real-model ad-
versaries can be emulated in the ideal-model such that the output distributions
are computationally indistinguishable. Since in a password-only setting the ad-
versary can always succeed with probability 1/|D|, it is impossible to achieve
computational indistinguishability between the real model and above-described
ideal model (where the adversary has zero probability of success). Therefore, in
the context of a password-only setting, an authenticated session-key generation
protocol is said to be secure if the above-mentioned ideal-model emulation re-
sults in an output distribution that can be distinguished from a real execution
by (a gap of) at most O(1/|D|) + µ(n).

Main result (informally stated): Assuming the existence of trapdoor one-way
permutations, there exists a secure authenticated session-key generation protocol
in the password-only setting.

The above (informal) definition implies the intuitive properties of authenticated
session-key generation (e.g., security of the generated session-key and of the ini-
tial password). In particular, the output session-key can be distinguished from a
random key by (a gap of) at most O(1/|D|)+µ(n).2 Similarly, the distinguishing
gap between the parties’ joint password and a uniformly distributed element in
D is at most O(1/|D|) + µ(n). (As we have mentioned, the fact that the adver-
sary can distinguish with gap O(1/|D|) is an inherent limitation of password-
based security.) The parties are also guaranteed that, except with probability
O(1/|D|) + µ(n), they either end-up with the same session-key or detect that
their communication has been tampered with. Our definition also implies addi-
tional desirable properties of session-key protocols such as forward secrecy and
security in the case of session-key loss (or known-key attacks). Furthermore, our
protocol provides improved (i.e., negligible gap) security in case the adversary
only eavesdrops the communication (during the protocol execution).
We mention that a suitable level of indistinguishability (of the real and ideal

executions) holds when m sessions (referring to the same password) are con-
ducted sequentially: in this case the distinguishing gap is O(m/|D|)+µ(n) rather
than O(1/|D|) +µ(n) (which again is optimal). This holds also when any (poly-
nomial) number of other sessions w.r.t independently distributed passwords are
conducted concurrently to the above m sessions.

Caveat: Our protocol is proven secure only when assuming that the same pair
of parties (using the same password) does not conduct several concurrent ex-
ecutions of the protocol. We stress that concurrent sessions of other pairs of
parties (or of the same pair using a different password), are allowed. See further
discussion in Sections 1.4 and 2.5.

1.2 Comparison to prior work

The design of secure mutual authentication and key-exchange protocols is a ma-
jor effort of the applied cryptography community. In particular, much effort has
been directed towards the design of password-based schemes that should with-
stand active attacks.3 An important restricted case of the mutual authentication

2 This implies that when using the session-key as a key to a MAC, the probability that
the adversary can generate a valid MAC-tag to a message not sent by the legitimate
party is small (i.e., O(1/|D|)). Likewise, when using the session-key for private-
key encryption, the adversary learns very little about the encrypted messages: for
every partial-information function, the adversary can guess the value of the function
applied to the messages with only small (i.e., O(1/|D|)) advantage over the a-priori
probability.

3 A specific focus of this research has been on preventing off-line dictionary attacks. In
such an off-line attack, the adversary records its view from past protocol executions
and then scans the dictionary for a password consistent with this view. If checking
consistency in this way is possible and the dictionary is small, then the adversary
can derive the correct password. Clearly, a secure session-key generation protocol
(as imformally defined above) withstands any off-line dictionary attack.

problem is the asymmetric case in which a human user authenticates himself to
a server in order to access some service. The design of secure access control
mechanisms based only on passwords is widely recognized as a central problem
of computer practice and as such has received much attention.

The first protocol suggested for password-based session-key generation was by
Bellovin and Merritt [5]. This work was very influential and became the basis for
much future work in this area [6, 34, 24, 27, 31, 35]. However, these protocols have
not been proven secure and their conjectured security is based on mere heuristic
arguments. Despite the strong need for secure password-based protocols, the
problem was not treated rigorously until quite recently. For a survey of works
and techniques related to password authentication, see [28, 26] (a brief survey
can be found in [23]).

A first rigorous treatment of the access control problem was provided by
Halevi and Krawczyk [23]. They actually considered an asymmetric hybrid model
in which one party (the server) may hold a high-quality key and the other party
(the human) may only hold a password. The human is also assumed to have se-
cure access to a corresponding public-key of the server (either by reliable access
to a reliable server or by keeping a “digest” of that public-key, which they call
a public-password). The Halevi–Krawczyk model capitalizes on the asymmetry
of the access control setting, and is inapplicable to settings in which communi-
cation has to be established between two humans (rather than a human and a
server). Furthermore, requiring the human to keep the unmemorizable public-
password (although not secretly) is undesirable even in the access control setting.
Finally, we stress that the Halevi–Krawczyk model is a hybrid of the “shared-key
model” and the “shared-password model” (and so their results don’t apply to the
“shared-password model”). Thus, it is of both theoretical and practical interest
to answer the original question as posed above (i.e., without the public-password
relaxation): Is it possible to implement a secure access control mechanism (and
authenticated key-exchange) based only on passwords?

Positive answers to the original problem have been provided in the random
oracle model. In this model, all parties are assumed to have oracle access to a
totally random (universal) function [3]. Secure (password-based) access control
schemes in the random oracle model were presented in [2, 11]. The common
interpretation of such results is that security is LIKELY to hold even if the
random oracle is replaced by a (“reasonable”) concrete function known explicitly
to all parties. We warn that this interpretation is not supported by any sound
reasoning. Furthermore, as pointed out in [14], there exist protocols that are
secure in the random oracle model but become insecure if the random function
is replaced by any specific function (or even a function uniformly selected from
any family of functions).

To summarize, this paper is the first to present session-key generation (as
well as mutual authentication) protocols based only on passwords (i.e., in the
shared-password model), using only standard cryptographic assumptions (e.g.,
the existence of trapdoor one-way permutations, which in turn follows from the
intractability assumption regarding integer factorization). We stress that prior

to this work it was not clear whether such protocols exist at all (i.e., outside of
the random oracle model).

Necessary conditions for mutual authentication: Halevi and Krawczyk [23] proved
that mutual-authentication in the shared-password model implies (unauthenti-
cated) secret-key exchange, which in turn implies one-way functions. Conse-
quently, Boyarsky [10] pointed out that, in the shared-password model, mutual-
authentication implies Oblivious Transfer.

1.3 Techniques

One central idea underlying our protocol is due to Naor and Pinkas [30]. They
suggested the following protocol for the case of passive adversaries, using a secure
protocol for polynomial evaluation.4 In order to generate a session-key, party A
first chooses a random linear polynomial Q(·) over a large field (which contains
the dictionary of passwords). Next, A and B execute a secure polynomial evalu-
ation in which B obtains Q(w), where w is their joint password. The session-key
is then set to equal Q(w).
In [10] it was suggested to make the above protocol secure against active ad-

versaries, by using non-malleable commitments. This suggestion was re-iterated
to us by Moni Naor, and in fact our work grew out of his suggestion. In order to
obtain a protocol secure against active adversaries, we augment the abovemen-
tioned protocol of [30] by several additional mechanisms. Indeed, we use non-
malleable commitments [16], but in addition we also use a specific zero-knowledge
proof [32], ordinary commitment schemes [7], a specific pseudorandom generator
(of [9, 36, 8]), and message authentication schemes (MACs). The analysis of the
resulting protocol is very complicated, even when the adversary initiates a single
session. As explained below, we believe that these complications are unavoidable
given the current state-of-art regarding concurrent execution of protocols.
Although not explicit in the problem statement, the problem we deal with

actually concerns concurrent executions of a protocol. Even in case the adver-
sary attacks a single session among two legitimate parties, its ability to modify
messages means that it may actually conduct two concurrent executions of the
protocol (one with each party).5 Concurrent executions of some protocols were
analyzed in the past, but these were relatively simple protocols. Although the
high-level structure of our protocol can be simply stated in terms of a small
number of modules, the currently known implementations of some of these mod-
ules are quite complex. Furthermore, these implementations are not known to
be secure when two copies are executed concurrently. Thus, at the current state

4 In the polynomial evaluation functionality, party A has a polynomial Q(·) over some
finite field and Party B has an element x of the field. The evaluation is such that
A learns nothing, and B learns Q(x); i.e., the functionality is defined by (Q, x) 7→
(λ,Q(x)).

5 Specifically, the adversary may execute the protocol with Alice while claiming to be
Bob, concurrently to executing the protocol with Bob while claiming to be Alice,
where these two executions refer to the same joint Alice–Bob password.

of affairs, the analysis cannot proceed by applying some composition theorems
to (two-party) protocols satisfying some concurrent-security properties (because
suitable concurrently-secure protocols and composition theorems are currently
unknown). Instead, we have to analyze our protocol directly. We do so by reduc-
ing the analysis of (two concurrent executions of) our protocol to the analysis
of non-concurrent executions of related protocols. Specifically, we show how a
successful adversary in the concurrent setting contradicts the security require-
ments in the non-concurrent setting. Such “reductions” are performed several
times, each time establishing some property of the original protocol. Typically,
the property refers to one of the two concurrent executions, and it is shown
to hold even if the adversary is given some secrets of the legitimate party in
the second execution. This is done by giving these secrets to the adversary, en-
abling him to effectively emulate the second execution internally. Thus, only the
first execution remains and the relevant property is proven (in this standard
non-concurrent setting). See Section 4 for an illustration of some of these proof
techniques.

1.4 Discussion

We view our work as a theoretical study of the very possibility of achieving
private and reliable communication among parties that share only a secret (low-
quality) password and communicate over a channel that is controlled by an active
adversary. Our main result is a demonstration of the feasibility of this task. That
is, we demonstrate the feasibility of performing session-key generation based only
on (low-quality) passwords. Doing so, this work is merely the first (rigorous) step
in a research project directed towards providing a good solution to this practical
problem. We discuss two aspects of this project that require further study.

Concurrent executions: Our protocol is proven secure only when the same pair
of parties (using the same password) does not conduct several concurrent exe-
cutions of the protocol. (We do allow concurrent executions that use different
passwords.) Thus, actual use of our protocol requires a mechanism for ensuring
that the same password is never used in concurrent executions. A simple mech-
anism enforcing the above is to disallow a party to enter an execution with a
particular password if less than ∆ units of time have passed since a previous ex-
ecution with the same password. Furthermore, an execution must be completed
within ∆ units of time; that is, if ∆ time units have elapsed then the execution
is suspended. See Section 2.5 for further details. Indeed, it is desirable not to
employ such a timing mechanism, and to prove that security holds also when
many executions are conducted concurrently using the same password.

Efficiency: It is indeed desirable to have more efficient protocols than the one
presented here. Some of our techniques may be useful towards this goal.

1.5 Independent work

Independently of our work, Katz, Ostrovsky and Yung [25] presented a protocol
for session-key generation based on passwords. Their protocol is incomparable
to ours. On one hand, their protocol uses a stronger set-up assumption (i.e.,
public parameters selected by a trusted party), and a seemingly stronger in-
tractability assumption (i.e., the Decisional Diffie-Hellman). On the other hand,
their protocol seems practical and is secure in an unrestricted concurrent setting.
Recall that the thrust of our work is in demonstrating the feasibility of perform-
ing session-key generation based on passwords only (i.e., without any additional
set-up assumptions).

2 Formal Setting

In this section we present notation and definitions that are specific to our set-
ting, culminating in a definition of Authenticated Session-Key Generation. Given
these, we state our main result.

2.1 Basic Notations

Typically, C denotes the channel (probabilistic polynomial-time adversary) via
which parties A and B communicate. We adopt the notation of Bellare and
Rogaway [4] and model the communication by giving C oracle access to A and
B. We stress that, as in [4], these oracles have memory and model parties who
participate in a session-key generation protocol. Unlike in [4], when A and B
share a single password, C has oracle access to only a single copy of each party.
We denote by CA(x),B(y)(σ), an execution of C (with auxiliary input σ) when
it communicates with A and B, holding respective inputs x and y. Channel C’s
output from this execution is denoted by output

(

CA(x),B(y)(σ)
)

.
The password dictionary is denoted by D ⊆ {0, 1}n, and is fixed for the entire

discussion. We let ε = 1
|D| . We denote by Un the uniform distribution over strings

of length n. For a set S, we denote x ∈R S when x is chosen uniformly from
S. We use “ppt” as shorthand for probabilistic polynomial time. We denote
an unspecified negligible function by µ(n). That is, for every polynomial p(·)
and for all sufficiently large n’s, µ(n) < 1

p(n) . For functions f and g (defined

over the integers), we denote f ≈ g if |f(n) − g(n)| < µ(n). Finally, we denote

computational indistinguishability by
c
≡.

A security parameter n is often implicit in our notation and discussions. Thus,
for example, by the notation D for the dictionary, our intention is actually Dn

(where Dn ⊆ {0, 1}
n). Recall that we make no assumptions regarding the size

of Dn, and in particular it may by polynomial in n.

2.2 (1− ε)-indistinguishability and pseudorandomness

Extending the standard definition of computational indistinguishability [22, 36],
we define the concept of (1− ε)-indistinguishability. Two ensembles are (1− ε)-

indistinguishable if for every ppt machine, the probability of distinguishing be-
tween them (via a single sample) is at most negligibly greater than ε. (Note
that (1− ε)-indistinguishability is not preserved under multiple samples, but for
efficiently constructible ensembles (1 − ε)-indistinguishability implies (1 −mε)-
indistinguishability of sequences of m samples.) Thus, computational indistin-
guishability coincides with 1-indistinguishability. The formal definition is as fol-
lows.

Definition 1 ((1− ε)-indistinguishability): Let ε : N→ [0, 1] be a function, and
let {Xn}n∈N and {Yn}n∈N be probability ensembles, so that for any n the distri-
bution Xn (resp., Yn) ranges over strings of length polynomial in n. We say that

the ensembles are (1 − ε)-indistinguishable, denoted {Xn}n∈N

ε
≡ {Yn}n∈N, if for

every probabilistic polynomial time distinguisher D, and all auxiliary information
z ∈ {0, 1}poly(n)

|Pr[D(Xn, 1
n, z) = 1]− Pr[D(Yn, 1

n, z) = 1]| < ε+ µ(n)

We say that {Xn}n∈N is (1−ε)-pseudorandom if it is (1−ε)-indistinguishable from
{Un}n∈N. The definition of pseudorandom functions [19] is similarly extended to
(1− ε)-pseudorandom functions.

2.3 Authenticated Session-Key Generation: Definition and
Discussion

The problem of password-based authenticated session-key generation can be cast
as a three-party functionality involving honest parties A and B, and an adversary
C. Parties A and B should input their joint password and receive identical,
uniformly distributed session-keys. On the other hand, the adversary C should
have no output (and specifically should not obtain information on the password
or output session-key). Furthermore, C should have no power to maliciously
influence the outcome of the protocol (and thus, for example, cannot affect the
choice of the key or cause the parties to receive different keys). However, recall
that in a real execution, C controls the communication line between the (honest)
parties. Thus, it can block all communication between A and B, and cause
any protocol to fail. This (unavoidable) adversarial capability is modeled in the
functionality by letting C input a single bit b indicating whether or not the
execution is to be successful. Specifically, if b = 1 (i.e., success) then both A and
B receive the above-described session-key. On the other hand, if b = 0 then A
receives a session-key, whereas B receives a special abort symbol ⊥ instead.6 We
stress that C is given no ability to influence the outcome beyond determining
this single bit (i.e., b). In conclusion, the problem of password-based session-key

6 This lack of symmetry in the definition is inherent as it is not possible to guaran-
tee that A and B both terminate with the same “success/failure bit”. For sake of
simplicity, we (arbitrarily) choose to have A always receive a uniformly distributed
session-key and to have B always output ⊥ when b = 0.

generation is cast as the following three-party functionality:

(wA, wB , b) 7→

{

(Un, Un, λ) if b = 1 and wA = wB ,
(Un,⊥, λ) otherwise.

where wA and wB are A and B’s respective passwords.
Our definition for password-based authenticated session-key generation is

based on the “simulation paradigm” (cf. [1, 29, 12]). That is, we require a secure
protocol to emulate an ideal execution of the above session-key generation func-
tionality. In such an ideal execution, communication is via a trusted third party
who receives the parties inputs and (honestly) returns to each party its output,
as designated by the functionality.
An important observation in the context of password-based security is that,

in a real execution, an adversary can always attempt impersonation by simply
guessing the secret password and participating in the protocol, claiming to be
one of the parties. If the adversary’s guess is correct, then impersonation always
succeeds (and, for example, the adversary knows the generated session-key).
Furthermore, by executing the protocol with one of the parties, the adversary
can verify whether or not its guess is correct, and thus can learn information
about the password (e.g., it can rule out an incorrect guess from the list of
possible passwords). Since the dictionary may be small, this information learned
by the adversary in a protocol execution may not be negligible at all. Thus,
we cannot hope to obtain a protocol that emulates an ideal-model execution
(in which C learns nothing) up to computational indistinguishability. Rather,
the inherent limitation of password-based security is accounted for by (only)
requiring that a real execution can be simulated in the ideal model such that the
output distributions (in the ideal and real models) are (1−O(ε))-indistinguishable
(rather than 1-indistinguishable), where (as defined above) ε = 1/|D|.
We note that the above limitation applies only to active adversaries who

control the communication channel. Therefore, in the case of a passive (eaves-
dropping) adversary, we demand that the ideal and real model distributions be
computationally indistinguishable (and not just (1 − O(ε))-indistinguishable).
We now define the ideal and real models and present the formal definition of
security.

The ideal model: Let Â and B̂ be honest parties and let Ĉ be any ppt ideal-
model adversary (with arbitrary auxiliary input σ). An ideal-model execution
proceeds in the following phases:

Initialization: A password w ∈R D is uniformly chosen from the dictionary and
given to both Â and B̂.

Sending inputs to trusted party: Â and B̂ both send the trusted party the pass-
word they have received in the initialization stage. The adversary Ĉ sends
either 1 (denoting a successful protocol execution) or 0 (denoting a failed
protocol execution).

The trusted party answers all parties: In the case Ĉ sends 1, the trusted party
chooses a uniformly distributed string k ∈R {0, 1}

n and sends k to both Â

and B̂. In the case Ĉ sends 0, the trusted party sends k ∈R {0, 1}
n to Â and

⊥ to B̂. In both cases, Ĉ receives no output.7

The ideal distribution is defined as follows:

idealĈ(D, σ)
def
= (w, output(Â), output(B̂), output(Ĉ(σ)))

where w ∈R D is the input given to Â and B̂ in the initialization phase. Thus,

idealĈ(D, σ) =

{

(w,Un, Un, output(Ĉ(σ))) if send(Ĉ(σ)) = 1,

(w,Un,⊥, output(Ĉ(σ))) otherwise.

where send(Ĉ(σ)) denotes the value sent by Ĉ (to the trusted party), on auxiliary
input σ.

The real model: Let A and B be honest parties and let C be any ppt real-
model adversary with arbitrary auxiliary input σ. As in the ideal model, the
real model begins with an initialization stage in which both A and B receive
an identical, uniformly distributed password w ∈R D. Then, the protocol is ex-
ecuted with A and B communicating via C.8 The execution of this protocol is
denoted CA(w),B(w)(σ) and we augment C’s view with the accept/reject decision
bits of A and B (this decision bit denotes whether a party’s private output is
a session-key or ⊥). This formal requirement is necessary, since in practice this
information can be implicitly understood from whether or not the parties con-
tinue communication after the session-key generation protocol has terminated.
(We note that in our specific formulation, A always accepts and thus it is only
necessary to provide C with the decision-bit output by B.) The real distribution
is defined as follows:

realC(D, σ)
def
= (w, output(A), output(B), output(CA(w),B(w)(σ)))

where w ∈R D is the input given to A and B in the initialization phase.

The definition of security: Loosely speaking, the definition requires that a secure
protocol (in the real model) emulates the ideal model (in which a trusted party
participates). This is formulated by saying that adversaries in the ideal model are
able to simulate the execution of a real protocol, so that the input/output distri-
bution of the simulation is (1−O(ε))-indistinguishable from in a real execution.
We further require that passive adversaries can be simulated in the ideal-model

7 Since Â and B̂ are always honest, we need not deal with the case that they hand
the trusted third party different passwords.

8 We stress that there is a fundamental difference between the real model as defined
here and as defined in standard multi-party computation. Here, the parties A and
B do not have the capability of communicating directly with each other. Rather, A
can only communicate with C and likewise for B. This is in contrast to standard
multi-party computation where all parties have direct communication links or where
a broadcast channel is used.

so that the output distributions are computationally indistinguishable (and not
just (1−O(ε))-indistinguishable).9

Definition 2 (password-based authenticated session-key generation): A proto-
col for password-based authenticated session-key generation is secure if the follow-
ing two requirements hold:

1. Passive adversaries: For every ppt real-model passive adversary C there exists
a ppt ideal-model adversary Ĉ such that for every dictionary D ⊆ {0, 1}n and
every auxiliary input σ ∈ {0, 1}poly(n)

{

idealĈ(D, σ)
}

D,σ

c
≡ {realC(D, σ)}D,σ

2. Arbitrary (active) adversaries: For every ppt real-model adversary C there
exists a ppt ideal-model adversary Ĉ such that for every dictionary D ⊆
{0, 1}n and every auxiliary input σ ∈ {0, 1}poly(n)

{

idealĈ(D, σ)
}

D,σ

O(ε)
≡ {realC(D, σ)}D,σ

where ε
def
= 1

|D| . We stress that the constant in O(ε) is a universal one.

Properties of Definition 2: Definition 2 asserts that the joint input/output dis-
tribution from a real execution is at most “O(ε)-far” from an ideal execution in
which the adversary learns nothing (and has no influence on the output except
to cause B to reject). This immediately implies that the output session-key is
(1 − O(ε))-pseudorandom (which, as we have mentioned, is the best possible
for password-based key generation). Thus, if such a key is used for encryption
then for any (partial information) predicate P , the probability that an adver-
sary learns P (m) given the ciphertext E(m) is at most O(ε)+µ(n) greater than
the a-priori probability (when the adversary is not given E(m)). Likewise, if the
key is used for a message authentication code (MAC), then the probability that
an adversary can generate a correct MAC-tag on a message not sent by A or
B is at most negligibly greater than O(ε). We stress that the security of the
output session-key does not deteriorate with its usage; that is, it can be used for
polynomially-many encryptions or MACs and the security remainsO(ε). Another
important property of Definition 2 is that, except with probability O(ε), (either
one party detects failure or) both parties terminate with the same session-key.
Definition 2 also implies that the password used remains (1−O(ε))-indisting-

uishable from a randomly chosen (new) password w̃ ∈R D. (This can be seen from
the fact that in the ideal model, the adversary learns nothing of the password w,
which is part of the ideal distribution.) In particular, this implies that a secure

9 A passive adversary is one that does not modify, omit or insert any messages sent
between A or B. That is, it can only eavesdrop and thus is limited to analyzing the
transcript of a protocol execution between two honest parties. Passive adversaries
are also referred to as semi-honest in the literature (e.g., in [21]).

protocol is resistant to offline dictionary attacks (whereby an adversary scans
the dictionary in search of a password that is “consistent” with its view of a
protocol execution).

Other desirable properties of session-key protocols are also guaranteed by
Definition 2. Specifically, we mention forward secrecy and security in the face
of loss of session-keys (also known as known-key attacks). Forward secrecy states
that the session-key remains secure even if the password is revealed after the
protocol execution. Analogously, security in the face of loss of session-keys means
that the password and the current session-key maintain their security even if
prior session-keys are revealed. These properties are immediately implied by the
fact that, in the ideal-model, there is no dependence between the session-key and
the password and between session-keys from different sessions. Thus, learning the
password does not compromise the security of the session-key and visa versa.10

An additional property that is desirable is that of intrusion detection. That
is, if the adversary modifies any message sent in a session, then with probability
at least (1−O(ε)) this is detected and at least one party rejects. This property
is not guaranteed by Definition 2 itself; however, it does hold for our protocol.
Combining this with Item 1 of Definition 2 (i.e., the requirement regarding pas-
sive adversaries), we conclude that in order for C to take advantage of its ability
to learn “O(ε)-information” C must expose itself to the danger of being detected
with probability 1−O(ε).

Finally, we observe that the above definition also enables mutual-authentication.
This is because A’s output session-key is always (1−O(ε))-pseudorandom to the
adversary. As this key is secret, it can be used for explicit authentication via
a (mutual) challenge/response protocol.11 By adding such a step to any secure
session-key protocol, we obtain explicit mutual-authentication.

Augmenting the definition: Although Definition 2 seems to capture all that is
desired from authenticated session-key generation, there is a subtlety that it fails
to address (as pointed out by Rackoff to the authors of [4]). The issue is that
the two parties do not necesssarily terminate the session-key generation protocol
simultaneously, and so one party may terminate the protocol and start using the
session-key while the other party is still executing instructions of the session-key
generation protocol (i.e., determining its last message). In this extended abstract,
we note only that Definition 2 can be augmented to deal with this issue, and
that our protocol is secure also with respect to the augmented definition. A full
treatment of this issue is provided in the full version of the paper.

10 The independence of session-keys from different sessions relates to the multi-session
case, which is discussed in Section 2.5. For now, it is enough to note that the protocol
behaves as expected in that after t executions of the real protocol, the password along
with the outputs from all t sessions are (1 − O(tε))-indistinguishable from t ideal
executions.

11 It is easy to show that such a key can be used directly to obtain a (1 − O(ε))-
pseudorandom function, which can then be used in a standard challenge/response
protocol.

2.4 Our Main Result

Given Definition 2, we can now formally state our main result.

Theorem 3 Assuming the existence of trapdoor permutations, there exist secure
protocols for password-based authenticated session-key generation.

2.5 Multi-Session Security

The definition above relates to two parties executing a session-key generation
protocol once. Clearly, we are interested in the more general case where many
different parties run the protocol any number of times. It turns out that any
protocol that is secure for a single invocation between two parties (i.e., as in
Definition 2), is secure in the multi-party and sequential invocation case.

Many Invocations by Two Parties Let A and B be parties who invoke t se-
quential executions of a session-key generation protocol. Given that we wish that
an adversary gains no more than O(1) password guesses upon each invocation,
the security upon the t’th invocation should be O(tε). That is, we consider ideal
and real distributions consisting of the outputs from all t executions. Then, we
require that these distributions be (1−O(tε))-indistinguishable. It can be shown
that any secure protocol for password-based authenticated session-key genera-
tion maintains O(tε) security after t sequential invocations. Details are given in
the full version of this work.

Sequential vs Concurrent Executions for Two Parties: Our solution is proven
secure only if A and B do not invoke concurrent executions of the session-key
generation protocol (with the same password). We stress that a scenario whereby
the adversary invokes B twice or more (sequentially) during a single execution
with A is not allowed. Therefore, in order to actually use our protocol, some
mechanism must be used to ensure that such concurrent executions do not take
place. This can be achieved by having A and B wait ∆ units of time between
protocol executions (where ∆ is greater than the time taken to run a single exe-
cution). Note that parties do not usually need to initiate session-key generation
protocols immediately one after the other. Therefore, this delay mechanism need
only be employed when an attempted session-key generation execution fails. This
means that parties not “under attack” by an adversary are not inconvenienced
in any way.
We note that this limitation does not prevent the parties from opening a

number of different (independently-keyed) communication lines. They may do
this by running the session-key protocol sequentially, once for each desired com-
munication line. However, in this case, they incur a delay of ∆ units of time
between each execution. Alternatively, they may run the protocol once and ob-
tain a (1 − O(ε))-pseudorandom session-key. This key may then be used as a
shared, high-quality key for (concurrently) generating any polynomial number
of (1−O(ε))-pseudorandom session-keys; one for each communication line (sim-
ple and efficient protocols exist for this task, see [4]).

Many Parties In the case where many parties execute the session-key pro-
tocol simultaneously, we claim that for m invocations of the protocol (which
must be sequential for the same pair of parties and may be concurrent other-
wise), the security is O(mε). We assume that different pairs of parties (executing
concurrently) have independently distributed passwords. Then, the security is
derived from the single-session case by noting that sessions with independently
distributed passwords can be perfectly simulated by an adversary.

3 Our Session-Key Generation Protocol

All arithmetic below is over the finite field GF(2n) which is identified with
{0, 1}n. In our protocol, we use a secure protocol for evaluating non-constant,
linear polynomials (actually, we could use any 1–1 Universal2 family of hash func-
tions). This protocol involves two parties A and B; party A has a non-constant,
linear polynomial Q(·) ∈ {0, 1}2n and party B has a string x ∈ {0, 1}n. The
functionality is (Q, x) 7→ (λ,Q(x)); that is, A receives nothing and B receives
the value Q(x) (and nothing else). The fact that A is supposed to input a non-
constant, linear polynomial can be enforced by simply mapping all possible input
strings to the set of such polynomials (this convention is used for all references
to polynomials from here on). We actually augment this functionality by having
A also input a commitment to the polynomial Q (i.e., cA ∈ Commit(Q)) and
its corresponding decommitment r (i.e., cA = C(Q, r)). Furthermore, B also
inputs a commitment value cB . The augmentation is such that if cA 6= cB , then
B receives a special failure symbol. This is needed in order to tie the polyno-
mial evaluation to a value previously committed to in the main (higher level)
protocol. The functionality is defined as follows:

Definition 4 (augmented polynomial evaluation):

• Input: Party A inputs a commitment cA and its corresponding decommit-
ment r, and a linear, non-constant polynomial Q. Party B inputs a commit-
ment cB and a value x.

• Output:
1. Correct Input Case: If cA = cB and cA = C(Q, r), then B receives Q(x)
and A receives nothing.

2. Incorrect Input Case: If cA 6= cB or cA 6= C(Q, r), then B receives a
special failure symbol, denoted ⊥, and A receives nothing.

We note that by [37, 21], this functionality can be securely computed (observe
that the input conditions can be checked in polynomial time because A also
provides the decommitment r).

3.1 The Protocol

Let f be a one-way permutation and b a hard-core of f .

Protocol 5 (password-based authenticated session-key generation)

• Input: Parties A and B begin with a joint password w, which is supposed
to be uniformly distributed in D.

• Output: A and B each output an accept/reject bit as well as session-keys
kA and kB respectively (where kA “should” equal kB).

• The Protocol:

1. Stage 1: (Non-Malleable) Commit

(a) A chooses a random, linear, non-constant polynomial Q over GF(2n).

(b) A and B engage in a non-malleable (perfectly binding) commitment
protocol in which A commits to the string (Q,w) ∈ {0, 1}3n. Denote
the random coins used by B in the commitment protocol by rB and
denote B’s view of the execution of the commitment protocol by
NMC(Q,w).12

Following the commitment protocol, B sends his random coins rB to
A. (This has no effect on the security, since the commitment scheme
is perfectly binding and the commitment protocol has already termi-
nated.)

2. Stage 2: Pre-Key Exchange – In this stage the parties “exchange”
strings τA and τB , from which the output session-keys (as well as valida-
tion checks) are derived. Thus, τA and τB are called pre-keys.

(a) A sends B a commitment c = C(Q, r), for a randomly chosen r.

(b) A and B engage in an augmented polynomial evaluation protocol. A
inputs Q and (c, r); B inputs w and c.

(c) We denote B’s output by τB . (Note that τB is supposed to equal
Q(w).)

(d) A internally computes τA = Q(w).

3. Stage 3: Validation

(a) A sends the string y = f2n(τA) to B.

(b) A proves to B in zero-knowledge that she input the same polynomial
in both the non-malleable commitment (performed in Stage 1) and
the ordinary commitment (performed in Stage 2(a)), and that the
value y is “consistent” with the non-malleable commitment. Formally,
A proves the following statement:

There exists a string (X1, x2) ∈ {0, 1}
3n and random coins rA,1, rA,2

(where rA,1 and rA,2 are A’s random coins in the non-malleable and
ordinary commitments, respectively) such that
i. B’s view of the non-malleable commitment, NMC(Q,w), is iden-
tical to the receiver’s view of a non-malleable commitment to

12 Recall that B’s view consists of his random coins and all messages received during
the commitment protocol execution.

(X1, x2), where the sender and receiver’s respective random coins
are rA,1 and rB . (Recall that rB denotes B’s random coins in the
non-malleable commitment.)13

ii. c = C(X1, rA,2), and

iii. y = f2n(X1(x2)).

The zero-knowledge proof used here is the specific zero-knowledge
proof of Richardson and Kilian [32], with a specific setting of param-
eters.14

(c) Let tA be the entire session transcript as seen by A (i.e., the sequence
of all messages sent and received by A) and let MACk be a mes-

sage authentication code, keyed by k. Then, A computes k1(τA)
def
=

b(τA) · · · b(f
n−1(τA)), and sends m =MACk1(τA)(tA) to B.

4. Decision Stage

(a) A always accepts and outputs k2(τA)
def
= b(fn(τA)) · · · b(f

2n−1(τA)).

(b) B accepts if and only if all the following conditions are fulfilled:

• y = f2n(τB), where y is the string sent by A to B in Step 3(a)
above and τB is B’s output from the polynomial evaluation.

(Note that if τB = ⊥ then no y fulfills this equality, and B always
rejects.)

• B accepts the zero-knowledge proof in Step 3(b) above, and

• Verifyk1(τB)(tB ,m) = 1, where tB is the session-transcript as seen
by B, the string m is the alleged MAC-tag that B receives, and
verification is with respect to the MAC-key defined by k1(τB) =
b(τB) · · · b(f

n−1(τB)).

If B accepts, then he outputs k2(τB) = b(fn(τB)) · · · b(f
2n−1(τB)),

otherwise he outputs ⊥. (Recall that the accept/reject decision bit is
considered a public output.)

We stress that A and B always accept or reject based solely on these
criteria, and that they do not halt (before this stage) even if they detect
malicious behavior.

See Figure 1 below for a schematic diagram of Protocol 5.

13 The view of a protocol execution is a function of the parties’ respective inputs
and random strings. Therefore, (X1, x2), rA,1 and rB define a single possible view.
Furthermore, recall that B sent rB to A following the commitment protocol. Thus
A has NMC(Q,w) (which includes rB), the committed-to value (Q,w) and rA,1,
enabling her to efficiently prove the statement.

14 The setting of parameters referred to relates to the number of iterations m in the
first part of the Richardson-Kilian proof. We set m to equal the number of rounds
in all other parts of our protocol plus any non-constant function of the security
parameter.

-

-

-

-

HHHj ©©©¼

HHHj

? ?
Party B

NM-Commit(Q, w)

Secure Polynomial
Evaluation

f2n(Q(w))

ZK-proof of consistency

MAC of transcript

w

Q(w)

Q

Q ∈R {0, 1}2n

Party A

Decision

If accept, output key:Output key:

k2(Q(w))k2(Q(w))

ww

Fig. 1. Schematic Diagram of the Protocol.

In our description of the protocol, we have referred only to parties A and B.
That is, we have ignored the existence (and possible impact) of the channel C.
That is, when A sends a string z to B, we “pretend” that B actually received z
and not something else. In a real execution, this may not be the case at all. In
the actual analysis we will subscript every value by its owner, as we have done
for τA and τB in the protocol. For example, we shall say that in Step 3(a), A
sends a string yA and the string received by B is yB .

3.2 Motivation for the security of the protocol

The central module of Protocol 5 is the secure polynomial evaluation. This, in
itself, is enough for achieving security against passive channels only. Specifically,
consider the following protocol. Party A chooses a random, linear polynomial
Q and inputs it into a secure polynomial evaluation with party B who inputs
the joint password w. By the definition of the polynomial evaluation, B receives
Q(w) and A receives nothing. Next, A internally computes Q(w) (she can do this

as she knows both Q and w), and both parties use this value as the session-key.
The key is uniformly distributed (since Q is random and linear) and due to the
secrecy requirements of the polynomial evaluation, the protocol reveals nothing
of w or Q(w) to a passive eavesdropper C (since otherwise this would also be
revealed to party A who should learn nothing from the evaluation).

One key problem in extending the above argument to our setting (where C
may be active) is that the security definitions of two-party computation guar-
antee nothing about the simulatability of C’s view in this concurrent setting.
We now provide some intuition into how simulation of our protocol is neverthe-
less achieved. First, assume that the MAC-value sent by A at the conclusion of
the protocol is such that unless C behaved passively (and relayed all message
without modification), then B rejects (with some high probability). Now, if C
behaves passively, then B clearly accepts (as in the case of honest parties A and
B that execute the protocol without any interference). On the other hand, if
C does not behave passively, then (by our assumption regarding the security of
the MAC) B rejects. However, C itself knows whether or not it behaved pas-
sively and therefore can predict whether or not B will reject. In other words,
the accept/reject bit output by B is simulatable (by C itself). We proceed by
observing that this bit is the only meaningful message sent by B during the
protocol: apart from in the polynomial evaluation, the only messages sent by
B are as the receiver in a non-malleable commitment protocol and the verifier
in a zero-knowledge proof (clearly, no knowledge of the password w is used by
B in these protocols). Furthermore, the polynomial evaluation is such that only
B receives output. Therefore, intuitively, the input used by B is not revealed
by the execution; equivalently, the view of C is (computationally) independent
of B’s input w (this can be shown to hold even in our concurrent setting). We
conclude that all messages sent by B during the execution can be simulated
without knowledge of w. Therefore, by indeed simulating B, we can reduce the
concurrent scenario involving A, C and B to a (standard) two-party setting be-
tween A and C. In this setting, we can then apply standard tools and techniques
for simulating C’s view in its interaction with A, and conclude that the entire
real execution is simulatable in the ideal model.

Thus, the basis for simulating C’s view lies in the security of the MAC in our
scenario. Indeed, the MAC is secure when the parties using it (a priori) share a
random MAC-key; but in our case the parties establish the MAC-key during the
protocol, and it is not clear that this key is random nor the same in the view
of both parties. In order to justify the security of the MAC (in our setting), we
show that two properties hold. Firstly, we must show that with high probability
either A and B hold the same MAC key or B is going to reject anyhow (and C
knows this). Secondly, we need to show that this (identical) MAC-key held by A
and B has “sufficient pseudorandomness” to prevent C from successfully forging
a MAC. The proof of these properties (especially the first one) is very involved
and makes up a major part of the proof, which is presented in the full version
of this work.

3.3 Properties of Protocol 5

The main properties of Protocol 5 are captured by the following theorem.

Theorem 6 Protocol 5 constitutes a secure protocol for password-based authen-
ticated session-key generation (as defined in Definition 2).

All the cryptographic tools used in Protocol 5 can be securely implemented
assuming the existence of trapdoor permutations. Thus, at the very least, The-
orem 6 implies the feasibility result captured by Theorem 3.

Unfortunately, due to lack of space in this abstract, we do not provide a proof
of Theorem 6. However, a demonstration of some of the proof techniques used
to prove Theorem 6 is provided in Section 4.

4 An Illustration of Our Proof Techniques

In this section, we illustrate our proof techniques for a simplified scenario in
which A and B execute a secure polynomial evaluation only, while communicat-
ing via an adversarial channel C. Recall that the polynomial evaluation func-
tionality is defined (in the stand-alone setting) by (Q, x) 7→ (λ,Q(x)). That is,
A has a polynomial Q(·) over some finite field and B has an element x in that
field. The evaluation is such that A learns nothing while B obtains Q(x). In the
scenario that we are considering, A’s input is a random, linear polynomial and
B’s input is a random password w ∈R D (as is the case in Protocol 5).

Recall that in this setting C may omit, insert and modify any message
sent between A and B. Thus, in a sense C conducts two separate executions
of the polynomial evaluation: one with A in which C impersonates B (called
the (A,C)-execution), and one with B in which C impersonates A (called the
(C,B)-execution). These two executions are carried out concurrently (by C),
and there is no explicit execution between A and B.

We remind the reader that the definition of (stand-alone) secure two-party
computation does not apply to the concurrent setting that we consider here.
Furthermore, there are currently no tools for dealing with (general) concurrent
computation in the two-party case. Therefore, our analysis of these executions
uses specific properties of the protocol to remove the concurrency and obtain a
reduction to the stand-alone setting. That is, we show how an adversarial success
in the concurrent setting can be translated into a related adversarial success in
the stand-alone setting. This enables us to analyze the adversary’s capability in
the concurrent setting, based on the security of two-party stand-alone protocols.

In order to demonstrate our proof techniques, we show that C learns “little”
of w and Q(w) from the above concurrent execution. Our formal statement of
this has an ideal-model/real-model flavor. Specifically, we show that for every ppt
adversary C interacting with A and B, there exists a non-interactive ppt machine
Ĉ (who receives no input or output), such that {w,Q(w), output(CA(Q),B(w)}

is (1 − ε)-indistinguishable from {w,Un, output(Ĉ)}.15 (Recall that CA(Q),B(w)

denotes an execution of C with A and B holding respective inputs Q and w.) One
can think of C as being a real-model adversary and Ĉ an ideal-model adversary,
where in this ideal model Ĉ sends no input to the trusted third party and likewise
receives no output. We note that such a view is rather simplistic as we claim
nothing here regarding the outputs of A and B from the execution (as is usually
required in secure computation). In other words, here we prove a statement
regarding privacy, but make no claims to correctness; for example, there is no
guarantee that C does not maul or skew the parties’ outputs in some undesired
way. Formally, we prove the following:

Theorem 7 (illustration): For every ppt adversarial channel C interacting with
A and B, there exists a ppt machine Ĉ (interacting with nobody) such that for
every dictionary D ⊆ {0, 1}n,

{

w,Q(w), output(CA(Q),B(w))
}

ε
≡
{

w,Un, output(Ĉ)
}

where w ∈R D, Q is a random linear polynomial, and ε = 1
|D| .

Proof: We prove the theorem by first showing how the (C,B) execution can
be simulated so that C’s view in the simulation is negligibly close to in a real
interaction. Then, we remain with a stand-alone execution between A and C
only. In this scenario, we apply the standard definition of secure two-party com-
putation to conclude that C learns at most “ε-information” about w and Q(w).
The fact that the (C,B) execution can be simulated is formally stated as follows

(in the statement of the lemma below, C ′
A(Q)

denotes a stand-alone execution
of C with A upon input Q):

Lemma 8 (simulating the (C,B) execution): For every ppt adversary C inter-
acting with both A and B, there exists a ppt adversary C ′ interacting with A
only, such that for every dictionary D ⊆ {0, 1}n,

{

w,Q(w), output(CA(Q),B(w))
}

c
≡
{

w,Q(w), output(C ′
A(Q)

)
}

where w ∈R D and Q is a random linear polynomial.

Proof: Loosely speaking, we prove this lemma by showing that B’s role in
the (C,B) execution can be simulated without any knowledge of w. Thus, C ′ is
able to simulate B’s role for C and we obtain the lemma. We begin by showing
that C learns nothing of B’s input w from the (C,B) polynomial evaluation.
This is trivial in a stand-alone setting by the definition of the functionality; here
we claim that it also holds in our concurrent setting. Formally, we show that

15 As in Definition 2, this implies that following the execution, with respect to C’s view,
the password w is (1− ε)-indistinguishable from a (new) randomly chosen password
w̃. It also implies that the value Q(w) (used in Protocol 5 to derive the MAC and
session keys) is (1− ε)-pseudorandom with respect to C’s view.

if B were to use some fixed w′ ∈ D instead of the password w, then this is
indistinguishable to C (when also interacting concurrently with A). That is,

{

w,Q(w), output(CA(Q),B(w))
}

c
≡
{

w,Q(w), output(CA(Q),B(w′))
}

(1)

where w ∈R D is a random password and w′ ∈ D is fixed. Later, we will use
Eq. (1) in order to show how C ′ simulates the (C,B) execution for C. First, we
prove Eq. (1) by reducing C’s concurrent execution with A and B to a stand-
alone two-party setting between C and B only. This reduction is obtained by
giving the adversary C the polynomial Q. Now, C has A’s entire input and
can perfectly emulate the (A,C) execution by itself. Formally, there exists an
adversary C ′′, given auxiliary input Q, and interacting with B only, such that
the following two equations hold:

{

w,Q(w), output(CA(Q),B(w))
}

≡
{

w,Q(w), output(C ′′
B(w)

(Q))
}

(2)
{

w,Q(w), output(CA(Q),B(w′))
}

≡
{

w,Q(w), output(C ′′
B(w′)

(Q))
}

(3)

where C ′′
B(w)

(Q) denotes a stand-alone execution of C ′′ (given input Q) with B
(who has input w). Machine C ′′ works by playing A’s role in the (A,C)-execution
and forwarding all messages belonging to the (C,B)-execution between C and B
(notice that C ′′ can play A’s role because it knows Q). We therefore remain with
a stand-alone setting between C ′′ (given auxiliary input Q) and B, in which B
inputs either w or w′ into the polynomial evaluation. In this stand-alone setting,
the security of the polynomial evaluation guarantees that C ′′ can distinguish the
input cases with at most negligible probability. That is, for every ppt adversary
C ′′, it holds that

{

w,Q(w), output(C ′′
B(w)

(Q))
}

c
≡
{

w,Q(w), output(C ′′
B(w′)

(Q))
}

(4)

Eq. (1) then follows by combining Equations (2), (3) and (4). In summary, we
have shown that even in our concurrent setting where C interacts with both A
and B, the adversary C cannot distinguish the cases that B inputs w or w′.
We are now ready to show how C ′ works (recall that C ′ interacts with A

only and its aim is to simulate a concurrent execution with A and B for C).
Machine C ′ begins by selecting an arbitrary w′ ∈ D. Then, C ′ perfectly emulates
an execution of CA(Q),B(w′) by playing B’s role in the (C,B) execution and
forwarding all messages belonging to the (A,C) execution between A and C
(C ′ can play B’s role here because w′ is known to it). By Eq. (1) we conclude
that this emulation is computationally indistinguishable from a real execution
of CA(Q),B(w). This completes the proof of the lemma.

(We remark that the proof of Lemma 8 is typical of many of our proofs. Our goal
is to obtain a reduction from the concurrent setting to the stand-alone setting
between A and C, and we obtain this reduction by simulating B. However,
in order to show that this simulation is “good” we first reduce the concurrent
setting to a stand-alone setting between C and B by simulating A.)

It remains to show that C ′’s view of its (stand-alone) interaction with A can be
simulated and that in this interaction, C ′ learn at most “ε-information” about
w and Q(w). Formally,

Lemma 9 (simulating the (A,C ′) stand-alone execution): For every ppt ad-
versary C ′ interacting with A, there exists a ppt machine Ĉ (interacting with
nobody) such that for every dictionary D ⊆ {0, 1}n,

{

w,Q(w), output(C ′
A(Q)

)
}

ε
≡
{

w,Un, output(Ĉ)
}

where w ∈R D, Q is a random linear polynomial and ε = 1
|D| .

Proof: The setting of this lemma is already that of standard two-party com-
putation. Therefore, the security definition of two-party computation can be
applied directly in order to prove the lemma. We sketch this more standard
proof for the sake of completeness. We begin by showing that

{

w,Q(w), output(C ′
A(Q)

)
}

ε
≡
{

w,Un, output(C ′
A(Q)

)
}

(5)

In order to prove Eq. (5), recall that the security of the polynomial evaluation
implies that the receiver (here played by C ′) can learn nothing beyond the value
of Q(·) at a single point selected by C ′. We denote this point by wC . Then, in the
case that wC 6= w, the values Q(w) and Un are identically distributed (by the
pairwise independence of random linear polynomials). That is, unless wC = w,
machine C ′ learns nothing of the value Q(w). However, since w is uniformly
distributed in D, the probability that wC = w is at most ε. This means that,
given C ′’s view, Q(w) can be distinguished from Un with probability at most ε.
We are now ready to define the (non-interactive) machine Ĉ. Machine Ĉ

works by first choosing a random linear polynomial Q̂. Next, Ĉ perfectly emulates

C ′
A(Q̂)

by playing A’s role in the execution with C (Ĉ uses the polynomial Q̂ as
A’s input). Finally Ĉ outputs whatever C ′ does. Since w and Un are independent
of the polynomials Q and Q̂, it follows that

{

w,Un, output(C ′
A(Q)

)
}

≡
{

w,Un, output(Ĉ)
}

(6)

The lemma follows by combining Equations (5) and (6).

Combining Lemmas 8 and 9, we obtain Theorem 7.

We reiterate that Theorem 7 relates only to the secrecy of the password w and
value Q(w). Unlike Definition 2, it does not say anything about the outputs of
the parties A and B. Furthermore, the model is significantly simplified by the
fact that there is no public accept/reject bit output by the parties (as discussed
in Section 3.2, simulating this bit is the most involved part of our proof). Thus,
unfortunately, the above proof is merely an illustration of some of our techniques
used in proving Theorem 6.

Acknowledgements

We would like to thank Moni Naor for suggesting this problem to us and for his
valuable input in the initial stages of our research. We are also grateful to Alon
Rosen for much discussion and feedback throughout the development of this
work. We also thank Jonathan Katz for helpful discussion. Finally, we would
like to thank Ran Canetti, Shai Halevi and Tal Rabin for discussion that led to
a significant simplification of the protocol.

References

1. D. Beaver. Secure Multi-party Protocols and Zero-Knowledge Proof Systems
Tolerating a Fault Minority. Journal of Cryptology, Vol. 4, pages 75–122, 1991.

2. M. Bellare, D. Pointcheval and P. Rogaway. Authenticated Key Exchange Se-
cure Against Dictionary Attacks. In EuroCrypt 2000, Springer-Verlag (LNCS
1807), pages 139–155, 2000.

3. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for
Designing Efficient Protocols. In 1st Conf. on Computer and Communications
Security, ACM, pages 62–73, 1993.

4. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In
CRYPTO’93, Springer-Verlag (LNCS 773), pages 232–249, 1994.

5. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based
protocols secure against dictionary attacks. In Proceedings of the ACM/IEEE
Symposium on Research in Security and Privacy, pages 72–84, 1992.

6. S. M. Bellovin and M. Merritt. Augmented encrypted key exchange: A
password-based protocol secure against dictionary attacks and password file
compromise. In Proceedings of the 1st ACM Conference on Computer and
Communication Security, pages 244–250, 1993.

7. M. Blum. Coin Flipping by Phone. IEEE Spring COMPCOM, pages 133–137,
February 1982.

8. M. Blum and S. Goldwasser. An Efficient Probabilistic Public-Key Encryption
Scheme which hides all partial information. In CRYPTO’84, Springer-Verlag
(LNCS 196), pages 289–302.

9. M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences
of Pseudo-Random Bits. SICOMP, Vol. 13, pages 850–864, 1984. Preliminary
version in 23rd FOCS, 1982.

10. M. Boyarsky. Public-key Cryptography and Password Protocols: The Multi-
User Case. In Proceedings of the 6th ACM Conference on Computer and
Communication Security, 1999.

11. V. Boyko, P. MacKenzie and S. Patel. Provably Secure Password-
Authenticated Key Exchange Using Diffie-Hellman. In EuroCrypt 2000,
Springer-Verlag (LNCS 1807), pages 156–171, 2000.

12. R. Canetti. Security and Composition of Multi-party Cryptographic Protocols.
Journal of Cryptology, Vol. 13, No. 1, pages 143–202, 2000.

13. R. Canetti. A unified framework for analyzing security of protocols.
Cryptology ePrint Archive, Report No. 2000/067, 2000. Available from
http://eprint.iacr.org.

14. R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology,
Revisited. In Proc. of the 30th STOC, pages 209–218, 1998.

15. W. Diffie, and M.E. Hellman. New Directions in Cryptography. IEEE Trans.
on Info. Theory, IT-22 (Nov. 1976), pages 644–654.

16. D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM
Journal on Computing, January 2000.

17. U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding
Protocols. In 22nd STOC, pages 416–426, 1990.

18. O. Goldreich. Secure Multi-Party Computation.
Manuscript. Preliminary version, 1998. Available from
http://www.wisdom.weizmann.ac.il/∼oded/pp.html.

19. O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Func-
tions. JACM, Vol. 33, No. 4, pages 792–807, 1986.

20. O. Goldreich and A. Kahan. How To Construct Constant-Round Zero-
Knowledge Proof Systems for NP. Journal of Cryptology, Vol. 9, pages 167–
189, 1996.

21. O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game –
A Completeness Theorem for Protocols with Honest Majority. In 19th STOC,
pages 218–229, 1987. For details see [18].

22. S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS, Vol. 28, No. 2,
pages 270–299, 1984.

23. S. Halevi and H. Krawczyk. Public-Key Cryptography and Password Proto-
cols. In ACM Conference on Computer and Communications Security, 1998.

24. D. P. Jablon. Strong password-only authenticated key exchange. SIGCOMM
Comput. Commun. Rev., Vol 26, No. 5, pages 5–26, 1996.

25. J. Katz, R. Ostrovsky and M. Yung. Practical Password-Authenticated Key
Exchange Provably Secure under Standard Assumptions. In Eurocrypt 2001.

26. C. Kaufman, R. Perlman and M. Speciner. Network Security. Prentice Hall,
1997.

27. S. Lucks. Open key exchange: How to defeat dictionary attacks without en-
crypting public keys. In Proceedings of the Workshop on Security Protocols,
Ecole Normale Superieure, 1997.

28. A. Menezes, P. Van Oorschot and S. Vanstone. Handbook of Applied Cryptog-
raphy. CRC Press, 1997.

29. S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript,
1992. Preliminary version in Crypto’91, Springer-Verlag (LNCS 576), 1991.

30. M. Naor and B. Pinkas. Oblivious Transfer and Polynomial Evaluation. In
31st STOC, pages 245-254, 1999.

31. S. Patel. Number theoretic attacks on secure password schemes. In Proceedings
of the 1997 IEEE Symposium on Security and Privacy, pages 236–247, 1997.

32. R. Richardson and J. Kilian. On the Concurrent Composition of Zero-
Knowledge Proofs. In EuroCrypt99, pages 415–431.

33. R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Sig-
natures and Public Key Cryptosystems. CACM, Vol. 21, Feb. 1978, pages
120–126.

34. M. Steiner, G. Tsudi and M. Waidner. Refinement and extension of encrypted
key exchange. ACM SIGOPS Oper. Syst. Rev., Vol. 29, 3, pages 22–30, 1995.

35. T. Wu. The secure remote password protocol. In 1998 Internet Society Sym-
posium on Network and Distributed System Security, pages 97–111, 1998.

36. A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd FOCS,
pages 80–91, 1982.

37. A.C. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages
162–167, 1986.

