
New Public Key Cryptosystem using Finite Non

Abelian Groups

Seong-Hun Paeng, Kil-Chan Ha
Jae Heon Kim, Seongtaek Chee, Choonsik Park

National Security Research Institute
161 Kajong-dong, Yusong-gu, Taejon, 305-350, KOREA

{shpaeng,kcha,jaeheon,chee,csp}@etri.re.kr

Abstract. Most public key cryptosystems have been constructed based
on abelian groups up to now. We propose a new public key cryptosystem
built on finite non abelian groups in this paper. It is convertible to a
scheme in which the encryption and decryption are much faster than
other well-known public key cryptosystems, even without no message
expansion.
Furthermore a signature scheme can be easily derived from it, while it is
difficult to find a signature scheme using a non abelian group.

1 Introduction

Most frequently used problems in the public key cryptosystems are the factor-
ization problem [19] and the discrete logarithm problem (DLP). Cryptosystems
based on these problems have been built on abelian groups [5, 3, 8, 12, 13]. In
Crypto 2000, Ko et al. proposed a new public cryptosystem based on Braid
groups, which are non abelian groups. To authors’ best knowledge, it was the
first practical public key cryptosystem based on non abelian groups.

When we use a non abelian group G for a public key cryptosystem, we need
to consider the following problems related to the word problem:

– How do we express a message as an element of G?
– Can every element of G be represented in a unique way for a given expres-

sion?

If an element of G is not represented in a unique way, then a plaintext and a
deciphertext may not be the same. Therefore the second problem is very impor-
tant when we use a non abelian group for a public key system. Matrix groups
and semi-direct product of abelian groups are examples of non abelian groups
which have such expressions.

In this paper, we suggest a new cryptosystem based on such a finite non
abelian group G. Our PKC is based on DLP in the inner automorphism group

Inn(G) = {Inn(g) | g ∈ G},

where Inn(g)(x) = gxg−1. The advantages of our PKC are as follows:

– We can apply our encryption scheme to G even if DLP and the (special)
conjugacy problem in G are not hard problems.

– Parameter selections are much easier than those in ECC [12, 13] and XTR
[8].

– We can increase the speed of the encryption and decryption. More precisely,
when m is a message and ga is the public key in ElGamal-type encryption
[5, 12, 13], (gabm, gb) should be sent to a receiver and it is crucial that dif-
ferent random integers b should be used to encrypt different messages. In
our scheme, we can fix b without loss of security so that we can increase the
speed of the encryption and decryption. Moreover no message expansion is
required.

– It is easy to make a signature scheme with our PKC: In general, it is not
easy to find a signature scheme using an infinite non abelian group such as
a braid group [11].

If we fix b, our PKC is about 30 times faster than RSA for a 32-bit public
exponent in RSA encryption scheme and is about 200 times faster in decryption.

2 Preliminaries

2.1 Semi-direct product

From some given groups, we can easily make new non abelian groups using semi
direct products. Recall the definition of the semi-direct product:

Definition 1. (Semi-direct product) Let G and H be given groups and θ : H →
Aut(G) be a homomorphism, where Aut(G) is the automorphism group of G.
Then semi-direct product G×θ H is the set

G×H = {(g, h)| g ∈ G, h ∈ H}

together with the multiplication map

(g1, h1) · (g2, h2) = (g1θ(h1)(g2), h1h2).

Since
(g, h)−1 = (θ(h−1)(g−1), h−1),

we have
(eG, h1)(g2, eH)(eG, h1)

−1 = (θ(h1)(g2), eH), (2.1)

where eG, eH are the identity elements of G and H, respectively. So G can be
considered as a normal subgroup of G×θH. If θ(H) 6= Id, then G×θH is a non
abelian group even if G and H are abelian.

Example 1. (1) Most familiar example of the semi-direct product is the isome-
try group on Euclidean space Rn. This group is the semi-direct product of the
translational isometry group Rn and the orthogonal group O(n,R).

(2) It is a well known fact that Aut(Zn) = Z∗
n, where Z∗

n is the multiplicative
group of Zn. Since Z∗

4 ' Z2, there exists a non constant homomorphism, in fact,
an isomorphism of Z2 into Z∗

4 . Thus Z4 ×θ Z2 is a non abelian group.
(3) If G is a non abelian group, then there exists a natural homomorphism from
G to Aut(G). Precisely,

Inn : G→ Aut(G)

g 7→ Inn(g), Inn(g)(h) = ghg−1.
(2.2)

We call Inn(g) an inner automorphism. It is easy to check that ker(Inn) is
the center of G. Recall that the center of G is the set {z| [z, g] = zgz−1g−1 =
eG for all g ∈ G}. If G is an abelian group, Inn is a constant map and so
G ×Inn G = G × G. But if G is a non abelian group, then G ×Inn G is an
interesting extension of G.

If we apply a semi-direct product to p-groups inductively, we can make a
nilpotent group [7]. It is a well known fact that nilpotent groups can be expressed
in a unique way as a direct product of abelian groups. The above Z4 ×θ Z2 in
Example 1. (1) is a nilpotent group with order 8.

2.2 Conjugacy problem

One of the most important characteristics of non abelian groups distinguished
from abelian groups is that Inn is not constant, i.e. there exist two distinct
elements which are congruent to each other.

Definition 2. (1) For arbitrary x, y ∈ G, the conjugacy problem is to find w ∈ G
such that wxw−1 = y.
(2) For a given Inn(g), the special conjugacy problem is to find g′ satisfying
Inn(g′) = Inn(g).

There are many groups where the word problem is known to be solvable in
polynomial time while there is no known polynomial time algorithm to solve the
conjugacy problem (the braid group is an example) [1]. If G is a non abelian
group and its conjugacy problem is hard in G, we can consider the following
cryptosystem. Let {δi} be a set of generators of G. Let g be an element of G.
The public key is {εi = gδig

−1} and the secret key is g. Mathematically, the
public key can be expressed as Inn(g). Then the ciphertext is E = Inn(g)(m)
and the deciphertext is g−1Eg ([1] or [20]). In order to use such an encryption
scheme, every element of G should be easily expressible as a product of δi’s.
If an element of G is also easily expressible as a product of εi’s, then we also
obtain Inn(g−1) immediately. Since g−1Eg = Inn(g−1)(E), we can decrypt
without knowing g. Thus it is essential that elements of G should not be easily
expressible as products of εi’s.

This system depends on the difficulty of finding g′ satisfying Inn(g′) =
Inn(g) for a given Inn(g), i.e. the above system is based on the special con-
jugacy problem. Unfortunately, we know few finite non abelian groups to which

we can apply the above system. For example, the general linear group GL(2,Zp)
and the special linear group SL(2,Zp) are non abelian groups on which the (spe-
cial) conjugacy problem is not difficult (see Appendix A).

Remark 1. If we use DLP in SL(2,Zp), we choose g ∈ SL(2,Zp) whose order
is divided by p. The order of SL(2,Zp) is |SL(2,Zp)| = p(p − 1)(p + 1). Such
elements which we are aware of are the conjugates of I + cδ12 and I + cδ21,
where c ∈ Zp and δij is a matrix whose entries are all zero except the (i, j)-entry
which is 1. Let g = A(I + δ12)A

−1 for

A =

(

a b
c d

)

∈ SL(2,Zp).

Then we have

gm = A(I +mδ12)A
−1

=

(

ad− bc−mac ma2

−mc2 ad− bc+mac

)

=

(

1−mac ma2

−mc2 1 +mac

)

.
(2.3)

Consider DLP in the cyclic group 〈gm〉. Since (1, 2)-component of gm and gml

are ma2 and mla2, respectively, we can obtain l mod p. Hence DLP in 〈gm〉
is not a hard problem. The (special) conjugacy problem and DLP are not hard
problems in SL(2,Zp).

3 New cryptosystem

In this section, we suggest a new encryption scheme which are based on DLP in
the inner automorphism group.

Let G be a non abelian group with non trivial center Z(G). We assume that
Z(G) is not small. Let g be an element of G.

Proposed encryption scheme Let {γi} be a set of generators of G. Since
Inn(g) is a homomorphism, Inn(g) is obtained if we know Inn(g)(γi), i.e. if we
express m as γj1 · · · γjn

, then Inn(g)(m) = Inn(g)(γj1) · · · Inn(g)(γjn
). There-

fore we can represent Inn(g) by {Inn(g)(γi)}. The basic scheme is the following:

– public key : Inn(g), Inn(ga)
– secret key : a

Encryption

1. Alice expresses a plaintext m ∈ G as a product of γi’s.
2. Alice chooses an arbitrary b and computes (Inn(ga))b, i.e. {(Inn(ga))b(γi)}.
3. Alice computes E = Inn(gab)(m) = (Inn(ga))b(m).
4. Alice computes φ = Inn(g)b, i.e. {Inn(gb)(γi)}.
5. Alice sends (E, φ).

Decryption

1. Bob expresses E as a product of γi’s.
2. Bob computes φ−a, i.e. {φ−a(γi)}.
3. Bob computes φ−a(E).

To implement our scheme, we should express Inn(ga) with small bits. Since
G is a finitely generated group, Inn(ga) is expressed by {Inn(ga)(γi)} for a
generator set {γi}. If we do not have a fast algorithm to express γ ∈ G by a
product of generators, we cannot express Inn(ga) actually. In the next section,
we will introduce a non abelian group to which our scheme can be applied.
(Precisely, see 4.3.)

Although our scheme looks like an ElGamal-type, we may not change b
for each encryption. In ElGamal-type encryption based on abelian groups (e.g.
ECC), we must change b for each encryption. (If a fixed b is used, we can ob-
tain m−1

1 m2 = (m1g
ab)−1m2g

ab).) But in our scheme, it is impossible to obtain
m−1

1 m2 from Inn(gb)(m1) and Inn(g
b)(m2). Thus we may fix b. As we see in sec-

tion 4.3, this fact will be very useful for fast encryption and decryption scheme.
Due to the non commutativity of braid groups, the cryptosystem using braid

groups has a difficulty in making a signature scheme. However, our scheme en-
ables us to make a signature scheme easily (e.g. Nyberg-Rueppel type signature)
even if G is non abelian.

Now we consider the method to find a from the given Inn(g) and Inn(ga).
First, we solve DLP in 〈Inn(g)〉 directly. The index calculus is the most efficient
known method to solve DLP [4]. But its application is too restrictive to be
applied to general cyclic groups. It seems that the index calculus cannot be
applied to the group 〈Inn(g)〉. In general cases, expected run times for solving
DLP are O(

√
p), where p is the order of a cyclic subgroup.

Secondly, we solve DLP in 〈g〉. If we assume that the special conjugacy prob-
lem is not a hard problem, we can find g0 satisfying Inn(g0) = Inn(ga). We can
easily verify that g0 = gaz for some z ∈ Z(G). If |Z(G)| is large enough, then it
is almost impossible to determine whether gaz is an element of 〈g〉. Then even
if DLP in G may be easy, we cannot apply any algorithm to solve DLP in G.

We should be careful in the choice of a plaintext and g. If [m, g] = eG, then
E = gabmg−ab = m. In particular, if m is a central element, then E = m so m
should not be chosen in the center. Also if g is a central element, then Inn(g) is
the identity map and so E = m. We should select a non central element g.

We should note that there may be other attacks depending on G as we see
in section 5.

Remark 2. In the above scheme, E = Inn(gab)(m), E and m are contained in
the same conjugacy class. Assume that E is a ciphertext of either m0 or m1,
which are not contained in the same conjugacy class. Then an adversary can find
the right plaintext by examining the conjugacy class of E. To avoid this attack,
we can use a padding method in the encryption (see Remark 4 and [16]). It also
makes fast encryption and decryption scheme (which fixes b) non deterministic.

4 Construction of a non abelian group

4.1 An example of non abelian group SL(2, Zp)×θ Zp

If we use the semi-direct product, we can construct many non abelian groups
with non trivial center as in section 5. But it is not easy to construct a non
abelian group on which our system is secure. We modify SL(2,Zp) by a semi-
direct product as follows. There exists a cyclic subgroup 〈α〉 with order p of
SL(2,Zp), e.g. I + δ12. Let

G = SL(2,Zp)×θ Zp,

where
θ = Inn ◦ θ1 : Zp → Aut(SL(2,Zp))

and θ1 is an isomorphism from Zp to 〈α〉. Then θ(y)(x) = θ1(y)xθ1(y)
−1. Now

we solve the conjugacy equations in G. Let g = (x, y). Computing the conjugate
of (a, b), we obtain that

(x, y)(a, b)(x, y)−1 = (xθ(y)(a)θ(b)(x−1), b). (4.4)

If b = 0, we have

(x, y)(a, 0)(x, y)−1 = (xθ(y)(a)x−1, 0) = ((xθ1(y))a(xθ1(y))
−1, 0). (4.5)

If we solve the special conjugacy problem in SL(2,Zp) as we see in Appendix A,
we can obtain xθ1(y). Let (x1, y1) ∈ G such that x1θ1(y1) = xθ1(y). For b 6= 0, if
we use the fact that Zp is an abelian group and θ1 is a homomorphism, we can
easily verify that

x1θ(y1)(a)θ(b)(x
−1
1) = x1θ1(y1)aθ1(y1)

−1θ1(b)x
−1
1 θ1(b)

−1

= (x1θ1(y1))aθ1(y1)
−1θ1(b)θ1(y1)θ1(y)

−1x−1θ1(b)
−1

= (xθ1(y))aθ1(−y1 + b+ y1)θ1(y)
−1x−1θ1(b)

−1

= xθ1(y)aθ1(b)θ1(y)
−1x−1θ1(b)

−1

= xθ1(y)aθ1(y)
−1θ1(b)x

−1θ1(b)
−1

= xθ(y)(a)θ(b)(x−1).
(4.6)

It can be easily verified that if x1θ1(y1) = −xθ1(y), then the above equation also
holds. Also note that the center of Z(SL(2,Zp)) = ±I. Hence the set of solutions
for the special conjugacy problem is

S = Inn−1(Inn(g)) = {(x1, y1)| y1 ∈ Zp, x1 = ±xθ1(y − y1)}. (4.7)

The cardinality of S, |S| is 2p. Note that if Inn(g) = Inn(g1), then Inn(g
−1g1) =

Id. It means that g−1g1 is an element of the center of G. Also for any central
element z, Inn(gz) = Inn(g). So we know that S = Inn−1(Inn(g)) = gZ(G)
and

Z(G) = {(x1, y1)| y1 ∈ Zp, x1 = ±θ1(−y1)}. (4.8)

The cardinality of the center of G is 2p. Note that the probability to choose m
and g in the center is smaller than 2p/p3 = 2/p2 ≈ 0 and 2p/p4 = 2/p3 ≈ 0,
respectively.

For a given Inn(g),m satisfying [g,m] = eG is a fixed point, i.e. Inn(g)ab(m) =
m. The cardinality of Z[g] = {m | [g,m] = eG} is 2p2 if we choose g of order p [16]
and thus the probability to choose m in Z[g] is smaller than 2p2/p3 = 2/p ≈ 0.

Remark 3. From Theorem 2 in section 4.3, DLP in G is reduced to a linear
equation ny = Y for given y 6= 0, Y , and so it is an easy problem.

4.2 Parameter selections

We will apply the above scheme to G = SL(2,Zp)×θZp. Since the last component
is invariant under the conjugation, we must take the message in SL(2,Zp) (see
(4.4)).

In [20], we see

{T =

(

1 1
0 1

)

, S =

(

0 −1
1 0

)

}

is a generator set of SL(2,Z) and hence it is also a generator set of SL(2,Zp).
Moreover there exists an algorithm which finds a decomposition of each g ∈
SL(2,Zp) as a product of T, S [2],[20], i.e.

g = Si0T j1ST j2 · · ·ST jnSin+1 ,

where i0, in+1 is either 0 or 1 and jk = ±1,±2 · · · .
Theorem 1. If g ∈ SL(2,Zp) with non zero (2, 1)-entry,

g = T j1ST j2ST j3 .

Proof. By computing T j1ST j2ST j3 , we obtain
(

1 j1
0 1

)(

0 −1
1 0

)(

1 j2
0 1

)(

0 −1
1 0

)(

1 j3
0 1

)

=

(

j1j2 − 1 j1j2j3 − j3 − j1
j2 j2j3 − 1

)

.

From this equation and the fact that Zp is a field, we can find j1, j2, j3 such
that g = T j1ST j2ST j3 for any g ∈ SL(2,Zp). (Since every element of SL(2,Zp)
is determined when three entries are determined, we only need to consider 3
entries.)

Note that since Z is not a field, the above theorem does not hold in SL(2,Z).
Since {(T, 0), (S, 0), (I, 1)} is a set of generators of G, we can obtain Inn(g)

if we know gTg−1, gSg−1 and g(I, 1)g−1. Since m ∈ SL(2,Zp) and SL(2,Zp) is
a normal subgroup of G, the restriction of Inn(g) to SL(2,Zp), Inn(g)|SL(2,Zp)

can be considered as an automorphism of SL(2,Zp). Hence the public key is
Inn(g)|SL(2,Zp) and Inn(g

a)|SL(2,Zp), precisely. In order to express Inn(g)|SL(2,Zp),
we only need to know {gTg−1, gSg−1}.

We choose θ1(1) among elements of SL(2,Zp) whose order is p, e.g. I + δ12.
We compute the order of g = (x, y) ∈ G. If y 6= 0, then the order of g is a

multiple of p.

Theorem 2. For (x, y) ∈ G,

(x, y)n = ((xθ1(y))
nθ1(y)

−n, ny).

Proof. We prove this using induction. For n = 1, it is clear. We assume that
Theorem 2 holds for n = k. Then we obtain that

(x, y)k+1 = (x, y)k(x, y) = ((xθ1(y))
kθ1(b)

−k, ky)(x, y)

= ((xθ1(y))
kθ1(y)

−kθ(y)k(x), (k + 1)y)

= ((xθ1(y))
kθ1(y)

−kθ1(y)
kxθ1(y)

−k, (k + 1)y)

= ((xθ1(y))
k(xθ1(y))θ1(y)

−(k+1), (k + 1)y)

= ((xθ1(y))
k+1θ1(y)

−(k+1), (k + 1)y),

(4.9)

which completes the proof.

We may choose g = (x, y) satisfying xθ1(y) ∈ A(I + cδ12)A
−1 for some

fixed c ∈ Zp and A ∈ SL(2,Zp). Then we obtain that the order of Inn(g) is p
by Theorem 2. If we choose g arbitrarily and the order of g is not fixed, then
the security may be increased since we should know the order of a given cyclic
group to apply a known algorithm for DLP, i.e. we should solve DLP under the
assumption that the order of g is pd for each d|(p+ 1)(p− 1).

4.3 Security and efficiency

Security of the system We check the security of our system against solving
DLP in 〈Inn(g)〉 directly. From the public data, Inn(g) and Inn(ga), we solve
DLP to obtain the secret key a. In this case, it seems that the fastest algorithm
(index calculus) to solve DLP cannot be applied since 〈Inn(g)〉 is contained in
Aut(G) ⊂ End(G) ⊂ GG, where End(G) is the endomorphism group of G and
GG is the set of all function from G to G. We cannot apply the index calculus
to any of them since they are not even expressed as matrix groups.

So an expected run time for solving DLP is O(
√
p)-group operations if the

order of g is p. (In order to increase the security of the system, we can choose g
with an order which is a multiple of p. If p(p + 1) = pe11 · · · pen

n , then the total
number of divisors of p+1 is (e1 +1) · · · (en+1). To find the order of g, we need
(e1+1) · · · (en+1)-trials, and it takes (e1+1) · · · (en+1)O(

√
p)-group operations

[17].)
Now we check the security of our system against the second method in section

3. As we see in Appendix A, the special conjugacy problem in G is not a hard
problem. Let S = {g1| Inn(g1) = Inn(ga)}. We can immediately obtain a from
g = (x, y) and ga = (X,Y) since if

(x, y)a = ((xθ1(y))
nθ1(y)

−n, ay) = (X,Y), (4.10)

we only need to solve ay = Y for solving DLP for g and ga. But since |S| = 2p,
we need O(p)-trials to find ga in S. So it is less efficient than finding a from
Inn(g) and Inn(ga) directly.

For DLP to be a hard problem in 〈Inn(g)〉, we choose 160 bit prime p. Then
the security of our system is comparable to 1024-bit RSA. (An expected run
time for solving DLP in 〈Inn(g)〉 and for factorization in 1024-bit RSA is about
287 and 280, respectively.)

If we compare our system with RSA and XTR, our system has the following
advantage. In RSA and XTR, an expected run time to find the private key
from the public key is subexponential, L[n, 1/3, 1.923]. In our system, it takes
an exponential run time O(

√
p) as ECC.

Number of multiplications in Zp Now we consider the number of multi-
plications in Zp required for computing Inn(gb) from Inn(g). We can express

Inn(g)(S) and Inn(g)(T) as T j1ST j2ST j3 and T l′1ST l′2ST l′3 , respectively. Each
of them takes 2-multiplications by Theorem 1. Then

Inn(g2)(S) = Inn(g)(T j1ST j2ST j3)

= (Inn(g)(T))j1(Inn(g)(S))(Inn(g)(T))j2(Inn(g)(S))(Inn(g)(T))j3

and

Inn(g2)(T) = Inn(g)(T l1ST l2ST l3)

= (Inn(g)(T))l1(Inn(g)(S))(Inn(g)(T))l2(Inn(g)(S))(Inn(g)(T))l3 .

From (2.3) in Remark 1, we can obtain (Inn(g)(T))j from Inn(g)(T) with
4-multiplications. More precisely, if

Inn(g)(T) =

(

x y
z w

)

,

then

(Inn(g)(T))j =

(

1− j(1− x) jy
jz 1 + j(w − 1)

)

.

It takes 92 multiplications for computing Inn(g2)(S) and Inn(g2)(T). So it
takes about 92 log2 p multiplications for computing Inn(gb) from Inn(g). Also
92 log2 p multiplications are needed to compute Inn(gab) from Inn(ga). So num-
ber of multiplications for encryption is 184 log2 p. Since one multiplication needs
O((log2 p)

2)-bit operations [9], the encryption needs about 184(log2 p)
3C ≈ 8×

108C-bit operations for some constant C. In 1024-bit RSA, it takes (log2 n)
3C ≈

(1024)3C ≈ 109C-bit operations. If the public exponent in RSA encryption
scheme is 32-bit number, then it takes 3.2× 107C-bit operations.

Fast encryption and decryption We can reduce the number of bit operations
as follows. Assume that Bob wants to send an encrypted message to Alice. Then
Bob computes Inn(ga)b and Inn(gb) for a fixed b and send Inn(gb) to Alice.

As we see in section 3, we may fix b, i.e. contrary to ElGamal encryption, we
cannot obtain m−1

1 m2 from Inn(gb)(m1) and Inn(g
b)(m2) in our scheme . Alice

computes Inn(gb)−a. Bob will encrypt a message m as E = Inn(ga)b(m) and
send E to Alice. Alice will decrypt E by computing Inn(gb)−a(E).

In order to compute Inn(ga)b(m) from given Inn(ga)b and m, it takes 46
multiplications, and so it takes about 1.2 × 106C-bit operations in encryption.
Even if 32-bit public exponent is used in RSA, 3.2 × 107C-bit operations are
needed in encryption. Encryption of our system is about 30 times faster than
1024-bit RSA.

In decryption of our system, we need the same number of multiplications as
the encryption. In decryption of RSA, it takes about 2.5× 108C-bit operations
even if we use the Chinese Remainder Theorem. Thus decryption of our system
is 200 times faster than that of RSA.

If we compare our system with ECC, our system has an advantage in the
decryption too. In ECC, since b is not fixed, precomputations of gb is impossible.
Then the number of multiplications for decryption in 170-bit ECC are 1900,
respectively. Then it is about 40 times faster than ECC.

In ECC, it needs O(log2 p) multiplications in decryption, and thus the num-
ber of multiplications will increase linearly with respect to the number of bits
log2 p. The decryption of our system always needs 46 multiplications which are
independent of the size of p. In Table 1, we roughly compare the number of mul-
tiplications for decryption in our system with ECC. Note that the cryptosystems
in the same row have the same securities roughly.

This fast scheme can be useful in many applications.

Table 1. Comparison of run times for decryption with ECC(multiplications)

our PKC(r-bit) r-bit ECC

r = 170 46 1900
r = 240 46 2700
r = 310 46 3500

Remark 4. We can encrypt a message with a padding as follows (see also [16]).
Let M 6= 0 be a message and r1, r2 be random numbers in Zp. We encrypt

m =

(

M r1
r2

1+r1r2
M

)

∈ SL(2,Zp). Thenm can be an element of any conjugacy class

by varying r1, r2. It prevents an adversary from determining the right plaintext
among two given plaintexts by examining the conjugacy class of E. Furthermore,
since b is fixed, the encryption and the decryption is also fast but the encryption
scheme is not deterministic.

Expression and key size Since Inn(ga)(T) and Inn(ga)(S) can be considered
as elements of SL(2,Zp), we can express them by three entries. Since Inn(ga)(T)
can be expressed by 3 log2 p-bit, 6 log2 p-bit are needed to express Inn(ga). If p
is a 160-bit prime number, then it takes 960-bit to express Inn(ga). So we can
express the public key with smaller size than RSA.

The secret key size is log2 p ≈ 160-bit, and so it is much smaller than 1024-bit
RSA.

5 Other examples

5.1 The general linear group GL(k, Zp)

One of the most familiar non abelian group is the general linear group GL(k,Zp).
Since cI is a central element for any c 6= 0, the center of GL(k,Zp) is sufficiently
large, i.e. |Z(GL(k,Zp)| ≥ p/2. We know that Inn(g) can be represented by
a linear map on the k × k-matrix ring [15]. So we can represent Inn(g) by a
k2 × k2-matrix, R(g). So the DLP on 〈Inn(g)〉 is convertible to the DLP on the
k2 × k2-matrix ring.

We must be careful in the choice of g. Considering an attack using the de-
terminant [15], we choose g whose order is much larger than p (e.g. p(p− 1)). It
would be better to choose g satisfying that det(R(g)) = 1. Also the characteristic
polynomial of R(g) should be irreducible.

5.2 Other constructions

We introduce some methods to obtain non abelian groups. For a given non
abelian group G, we can obtain a new non abelian group Inn(G) as we see in
previous sections. Also Inn(Inn(G)) can be obtained from Inn(G). Inductively
we can make many non abelian groups from a given non abelian group. Since
Inn(G) = G/Z(G), this method reduces the size of a given group.

Extensions of non abelian groups is obtained as follows. First, Let θ1 be a
homomorphism on G. (It may be the identity map.) We define θ as follows:

θ = Inn ◦ θ1 : G→ Aut(G)

g 7→ Inn(θ1(g))

Then we construct an extension of G, Ḡ = G×θG. We can easily obtain Z(Ḡ) =
{(X,Y) ∈ G×θG | x, y ∈ Z(G)}. If we use the groupG in section 4, |Z(Ḡ)| = 4p2.

Secondly, Let G be a non abelian group and H be a subgroup of automor-
phism group Aut(G). We construct a non abelian group naturally. Let θ = Id.
Then we can easily obtain G×θH. For example, we can always obtain Inn(G) =
G/Z(G) and G×θ Inn(G). If we know other subgroups of Aut(G), we can con-
struct many useful non abelian groups.

Nilpotent group G = (Zp × Zp) ×θ Zp Since Aut(Zp × Zp) = GL(2,Zp),
we can make the following non abelian group. There exists an injective homo-
morphism

θ : Zp → SL(2,Zp).

Then we can construct G = (Zp×Zp)×θZp. Since G is a p-group, it is a nilpotent
group. Hence G has a non trivial center and its cardinality is at least p.

In this case, a generator set of G is {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)}
and we can easily express any elements of G as a product of ei’s. Then

Inn((X, y))(e1) = (θ(y)((1, 0)), 0)

and

Inn((X, y))(e2) = (θ(y)((0, 1)), 0).

So θ(y) ∈ SL(2,Zp) can be easily obtained. If ga = (X ′, ya) and g = (X, y), then
we can obtain θ(y)a and θ(y). We can solve DLP in SL(2,Zp) as in the Remark
1. Hence the cryptosystem in section 3 is not secure in G = (Zp × Zp)×θ Zp.

Since the variables X, y are separated, this phenomenon occurs. We note here
that X, y are separated since the subgroup Zp × Zp is abelian. To prevent the
separation of variables, we suggest the following non abelian group.

Semi-direct product G = (Zp×θ1
Zq)×θ2

Zq We replace the abelian group
Zp×Zp by Zp×θ1 Zq, where q is a prime satisfying q|(p−1). Then we can prevent
the separation of variables. Since Aut(Zp) ∼= Z∗

p
∼= Zp−1, we can make Zp×θ1 Zq,

where θ1 is an injective homomorphism from Zq to Z∗
p. We denote Zp ×θ1 Zq by

H. Then H is not abelian.

We will apply the same method as in section 4.2. We can consider Zq as a
subgroup of H. Its conjugate is also a cyclic subgroup of order q. Let K be one
of the conjugates of Zq in H. Then there exists an isomorphism θ′ from Zq to
K, and θ2 = Inn ◦ θ′.

Equations (4.5),(4.6), (4.7) also hold in G = (Zp×θ1 Zq)×θ2 Zq. Then we can
find the center of G of order q as in 4.2.

In this case, we denote a generator set of Zp ×θ1 Zq by e1 = (1, 0, 0) and
e2 = (0, 1, 0). Since Zp is a normal subgroup of G, we assume that Inn(g)(e1) =
(a1, 0, 0) and Inn(g)(e2) = (b1, b2, 0). We can prove that

(z, w)k = (
θ1(w)

k − 1

θ1(w)− 1
z, kw) = (

θ1(1)
wk − 1

θ1(1)w − 1
z, kw)

for (z, w) ∈ Zp ×θ1 Zq by induction. Then we have for g = (x1, x2, y),

Inn(g2)(e1, 0) = Inn(g)(a1, 0, 0) = (Inn(g)(e1))
a1 = (a1, 0, 0)

a1 = (a2
1, 0, 0)

and

Inn(g2)(e2, 0) = Inn(g)(b1, b2, 0) = (Inn(g)(e1))
b1(Inn(g)(e2))

b2

= (a1, 0, 0)
b1(b1, b2, 0)

b2 = (a1b1, 0, 0)(
θ1(1)

b22 − 1

θ1(1)b2 − 1
b1, b

2
2, 0)

= (a1b1 +
θ1(1)

b22 − 1

θ1(1)b2 − 1
b1, b

2
2, 0).

From this, we obtain that Inn(gk)(e1) = ak1 ∈ Zp. Since H = Zp ×θ1 Zq

is not an abelian group, the order of θ1(1) is q. Thus DLP in 〈Inn(g)〉 can be
reduced to DLP in Zp, and so the cryptosystem in section 4 is not secure in
G = (Zp ×θ1 Zq)×θ2 Zq.

The reason of this phenomenon is Zp is an abelian normal subgroup. If α is
a generator of an abelian normal subgroup, then Inn(g)(α) = αs for some s and

Inn(gk)(α) = αsk

. So we can reduce DLP in 〈Inn(g)〉 to DLP in 〈α〉 ⊂ Zp. If
we use Inn(Inn(G)) instead of Inn(G), we can avoid such an attack.

6 Concluding remarks

We have presented a novel public key cryptosystem (based on a finite non abelian
groups) and suggested some examples of finite non abelian groups. There may
be other non abelian groups to be used in our system. However we must be
careful in applying a non abelian group to our cryptosystem in order that the
cryptosystem is secure. As we see in section 5, we should check the following:

– The existence of abelian normal subgroup reduces the security of the cryp-
tosystems. So any abelian normal subgroup must be of small order.

– The algorithm to express an element of G as a product of generators must
be efficient.

– Since Inn(g) is expressed as {Inn(g)(γi) ∈ G | γi is a generator}, both the
number of generators and bits needed to express an element of G must be
of small order.

We may use other homomorphisms from G to Aut(G) instead of the inner
automorphism (if exists). Also we can consider the DLP in the endomorphism
group End(G).

If we know any representation of G, G can be considered as a subset of a
large matrix group up to the kernel (we call a homomorphism from G to a matrix
group a representation of G). Hence the representation of G is very useful for
cryptosystem as in section 3. If we use DLP in a subgroup 〈g〉 of a non abelian
group and a representation R of G, it would be better to choose det(R(g)) = 1
[15].

Acknowledgment We would like to thank to our colleagues in NSRI and Dr. Bae
Eun Jung for their useful comments. Also we would like to express our gratitude
to professor Hong-Jong Kim and Professor Ki-Suk Lee for their kind advice.

References

1. I. Anshel, M. Anshel, D. Goldfeld An algebraic method for public-key cryptogra-
phy, Mathematical Research Letters 6 (1999), 1–5

2. S. Blackburn, S. Galbraith Cryptanalysis of two cryptsystems based on group
actions, Proc. ASIACRYPT’ 99 (2000), 52–61

3. A. E. Brower, R. Pellikaan, E. R. Verheul Doing more with fewer bits, Proc.
ASIACRYPT’ 99 (2000), 321–332

4. D. Coopersmith, A. M. Odlzyko, R. Schroeppel Discrete logarithms in GF(p) ,
Algorithmica, 1 (1986), 1–15

5. T. ElGamal A public key cryptosystem and a signature scheme based on discrete
logarithms , IEEE Transactions andInformation Theory, 31 (1985), 469–472

6. S. Flannery Cryptography:An investigation of a new algorithm vs. the RSA,
http://cryptome.org/flannery-cp.pdf, 1999

7. T. W. Hungerford Algebra, Springer-Verlag
8. A. K. Lenstra, E. R. Verheul. The XTR public key system, Proc. Crypto 2000
(2000), 1–20

9. A. J. Menezes, P. C. Van Oorshot, S. A. Vanstone Handbook of applied cryptog-
raphy, CRC press, 1997

10. R. Lidl, H. Niederreiter Introduction to finite fields and their application, Cam-
bridge University press, 1986

11. K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J. -S. Kang, C. Park New public-key
cryptosystem using braid groups, Proc. Crypto 2000 (2000), 166–184

12. N. Koblitz Elliptic curve cryptosystems, Mathematics of Computation, 48 (1987),
203–209

13. V. Miller Use of elliptic curves in cryptography, Proc. Crypto 85 (1986), 417–426
14. K. Nyberg, R. Rueppel A new signature scheme based on DSA giving message re-

covery, 1st ACM Conference on Computer and Communications Security, (1993),
58–61

15. S.-H. Paeng, J.-W. Han, B. E. Jung “The security of XTR in view of the deter-
minant”, preprint, 2001

16. S.-H. Paeng “ A provably secure public key cryptosystem using finite non abelian
groups”, preprint, 2001

17. S. C. Pohlig, M. E. Hellman An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance, IEEE Transactions on Information
Theory, 23 (1978), 106–110

18. J. M. Pollard Monte Carlo methods for index computation (mod p), Mathematics
of computation, 32 (1978), 918–924

19. R. L. Rivest, A. Shamir, L. M. Adleman A method for digital signature and
public-key cryptosystems, Communications of the ACM, 21 (1978), 120–126

20. A. Yamamura Public key cryptsystems using the modular group, PKC’98, 203–216

Appendix A : Special conjugacy problem in matrix groups

Let G be a matrix group, for example GL(2, R) or SL(2, R), where R = Z or Zp

for a prime number p. We will solve the special conjugacy problem in G. Let

A =

(

a b
c d

)

, X =

(

x y
z w

)

.

We will find X from XAX−1 for A ∈ G. Let

A =

(

a b
0 d

)

and XAX−1 =

(

α β
γ δ

)

.

From the above equation, we obtain the following linear equations,

ax = αx+ βz

az = γx+ δz

bx+ dy = αy + βw

bz + dw = γy + δw.

From the first equation, we can easily obtain the ratio of x to z, i.e. (a−α)x = βz.
(Note that we cannot obtain other ratios as we see in Example 2.)

Similarly, if we solve the conjugacy equation for XA′X−1 and

A′ =

(

a′ b′

c′ d′

)

, c′ 6= 0

we can also get another linear system. If we replace βz by (a−α)x, we can obtain
remaining ratios between x, y, z and w. So we can solve the special conjugacy
problem in G easily. By Example 2, we can easily understand the procedure.

Note that the conjugacy problems in SL(2, R) or GL(2, R) are not difficult
since we can obtain at most two linear equations by the conjugacy equation.

Example 2. In [20], the author suggested a public key system using SL(2,Z). It
was shown that this system is not secure in [2]. For the point based scheme in
[2], we can find the secret key if we solve the conjugacy equations directly as
above. Let

A =

(

1 −1
1 0

)

and B =

(

0 −1
1 0

)

.

Then {A,B} is a generator set of SL(2,Z). Furthermore, A3 = B2 = −I, and so
every element in SL(2,Z) can be expressed as the normal form±Ai1B · · ·Ain−1BAin ,
where ij = 0, 1 or 2. In the public key system suggested in [2], they use a semi-
group generated by {V1 = (BA)i, V2 = (BA2)j} for given i, j ≥ 2. The public
key is {MV1M

−1,MV2M
−1} and the secret key is M . In order to find the secret

key from the public key, we must solve the conjugacy equations. For example,
let

V1 = (BA)2 =

(

1 0
−2 1

)

, V2 = (BA2)2 =

(

1 −2
0 1

)

and M =

(

3 1
5 2

)

Then the public key is

MV1M
−1 =

(

−3 2
−8 5

)

,MV1M
−1 =

(

31 −18
50 −29

)

.

Put

M =

(

x y
z w

)

and find M by solving the conjugacy equation for V1 and MV1M
−1. We obtain

the following linear equations:

4x− 2y − 2z = 0

4y − 2w = 0

8x− 4z − 2w = 0

8y − 4w = 0.

Then we have 2y = w. (Check that we cannot obtain other ratios from these
equations.)

If we solve the conjugacy equation for V2 and MV2M
−1, we obtain that

5x = 3z and x+ 15y − 9w = 0. Replacing w by 2y, we have x = 3y so 2x = 3w.
Hence we obtain the secret key

M = C

(

3 1
5 2

)

for some C. Since det(M) = 1, we obtain that C = 1.

We should note that the dimension of solutions in GL(2, R) is always larger
than 1. From one conjugacy equation, we can obtain at most two linearly inde-
pendent equations. Combining two conjugacy equations, we obtain three linearly
independent equations and one dimensional solutions. In SL(2,Zp), we obtain
only one solution. We can apply the same method to any other V1, V2 which are
suggested in [2].

