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Abstract. We introduce the notion of a dynamic accumulator. An ac-
cumulator scheme allows one to hash a large set of inputs into one short
value, such that there is a short proof that a given input was incorporated
into this value. A dynamic accumulator allows one to dynamically add
and delete a value, such that the cost of an add or delete is independent
of the number of accumulated values. We provide a construction of a dy-
namic accumulator and an efficient zero-knowledge proof of knowledge of
an accumulated value. We prove their security under the strong RSA as-
sumption. We then show that our construction of dynamic accumulators
enables efficient revocation of anonymous credentials, and membership
revocation for recent group signature and identity escrow schemes.
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1 Introduction

Suppose a set of users is granted access to a resource. This set changes over
time: some users are added, and for some, the access to the resource is revoked.
When a user is trying to access the resource, some verifier must check that
the user is in this set. The immediate solution is to have the verifier look up
the user in some database to make sure that the user is still allowed access to
the resource in question. This solution is expensive in terms of communication.
Another approach is of certificate revocation chains, where every day eligible
users get a fresh certificate of eligibility. This is somewhat better because the
communication burden is now shifted from the verifier to the user, but still suffers
the drawback of high communication costs, as well as the computation costs
needed to reissue certificates. Moreover, it disallows revocation at arbitrary time
as need arises. A satisfactory solution to this problem has been an interesting
question for some time, especially in a situation where the users in the system
are anonymous.

Accumulators were introduced by Benaloh and de Mare [4] as a way to com-
bine a set of values into one short accumulator, such that there is a short witness
that a given value was incorporated into the accumulator. At the same time, it is
infeasible to find a witness for a value that was not accumulated. Extending the
ideas due to Benaloh and de Mare [4], Barić and Pfitzmann [3] give an efficient
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construction of so-called collision-resistant accumulators, based on the strong
RSA assumption.

We propose a variant of the cited construction with the additional advantage
that, using additional trapdoor information, the work of deleting a value from
an accumulator can be made independent of the number of accumulated values,
at unit cost. Better still, once the accumulator is updated, updating the witness
that a given value is in the accumulator (provided that this value has not been
revoked, of course!) can be done without the trapdoor information at unit cost.
Accumulators with these properties are called dynamic. Dynamic accumulators
are attractive for the application of granting and revoking privileges.

In the anonymous access setting, where a user can prove eligibility without
revealing his identity, revocation appeared impossible to achieve, because if a
verifier can tell whether a user is eligible or ineligible, he seems to gain some in-
formation about the user’s identity. However, it turns out that this intuition was
wrong! Indeed, using accumulators in combination with zero-knowledge proofs
allows one to prove that a committed value is in the accumulator. We show that
this can be done efficiently (i.e., not by reducing to an NP -complete problem
and then using the fact that NP ⊆ ZK [20] and not by using cut-and-choose
for the Barić and Pfitzmann’s [3] construction).

From the above, we obtain an efficient mechanism for revoking group mem-
bership for the Ateniese et al. identity escrow/group signature scheme [1] (the
most efficient secure identity escrow/group signature scheme known to date) and
a credential revocation mechanism for Camenisch and Lysyanskaya’s [9] creden-
tial system. The construction can be applied to other such schemes as well. The
idea is to incorporate the public key for an accumulator scheme into the group
manager’s (resp., organization’s) public key, and the secret trapdoor of the ac-
cumulator scheme into the corresponding secret key. Each time a user joins the
group (resp., obtains a credential), the group manager (resp., organization) gives
her a membership certificate (resp., credential certificate). An integral part of
this certificate is a prime number e. This will be the value added to the accu-
mulator when the user is added, and deleted from the accumulator if the user’s
privileges have to be revoked. This provably secure mechanism does not add any
significant communication or computation overhead to the underlying schemes
(at most a factor of 2). We note that both our dynamic accumulator scheme
and the ACJT identity escrow/group signature scheme rely on the strong RSA
assumption. While one could add membership revocation using our dynamic
accumulator also to other group signature and identity escrow schemes, such a
combination would not make much sense as one would get a less efficient scheme
and might even require additional cryptographic assumption. We therefore do
not discuss the detail involved here.

Related Work. For the class of group signature schemes [15, 7] where the group’s
public key contains a list of the public keys of all the group members, exclud-
ing a member is straightforward: the group manager only needs to remove the
affected member’s key from the list. These schemes, however, have the draw-
back that the complexity of proving and verifying membership is linear in the
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number of current members and therefore becomes inefficient for large groups.
This drawback is overcome by schemes where the size of the group’s public key
as well as the complexity of proving and verifying membership is independent
of the number of members [13, 21, 12, 1]. The idea underlying these schemes is
that the group public key contains the group manager’s public key of a suitable
signature scheme. To become a group member, a user chooses a membership
public key which the group manager signs. Thus, to prove membership, a user
has to prove possession of membership public key, of the corresponding secret
key and of a group manager’s signature on a membership public key.

The problem of excluding group members within such a framework without
incurring big costs has been considered, but until now no solution was satis-
factory. One approach is to change the group’s public key and reissue all the
membership certificates (cf. [2]). Clearly, this puts quite a burden on the group
manager, especially for large groups. Another approach is to incorporate a list of
revoked certificates and their corresponding membership keys into the group’s
public key [6]. In this solution, when proving membership, a user has to prove
that his or her membership public key does not appear on the list. Hence, the
size of the public key as well as the complexity of proving and verifying signa-
tures are linear in the number of excluded members. In particular, this means
that the size of a group signature grows with the number of excluded members.

Song [27] presents an alternative approach in conjunction with a construction
that yields forward secure group signature schemes based on the ACJT group
signature scheme [1]. While here the size of a group signature is independent of
the number of excluded members, the verification task remains computationally
intensive, and is linear in the number of excluded group members. Moreover, her
approach does not work for ordinary group signature schemes as it relies heavily
on the different time periods peculiar to forward secure signatures. Ateniese and
Tsudik [2] adapt this approach to the ACJT group signature/identity escrow
scheme. Their solution retains the property that the verification task is linear
in the number of excluded group members. Moreover, it uses so-called double
discrete logarithms which results in the complexity of proving/signing and veri-
fying to be rather high compared to underlying scheme (about a factor of 90 for
reasonable security parameters).

Finally, we point out that the proposal by Kim et al. [22] is broken, i.e.,
excluded group members can still prove membership (after the group manager
changed the group’s key, excluded members can update their membership infor-
mation in the very same way as non-excluded members).

Thus, until now, all schemes have a linear dependency either on the number
of current members, or on the total number of deleted members. As we have
noted above, this linear dependency comes in three flavors: (1) the burden being
on the group manager to re-issue certificates in every time period; (2) the burden
being on the group member to prove that his certificate is different from any of
those that have been revoked and on the verifier to check this; or (3) the burden
being on the verifier to perform a computational test on the message received
from the user for each item in the list of revoked certificates.
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In contrast, in our solution no operation is linearly dependent on the number
of current or total deleted members. Its only overhead over a scheme without
revocation is the following: We require some public archive that stores informa-
tion on added and deleted users. Then, the public key (whose size depends only
on the security parameter) needs to be updated each time a user is added or
deleted. The work to do so dependents only on the number of users added and
deleted. Each user must read the public key from time to time (e.g., prior to
proving his membership), and if the public key has changed since the last time
he looked, he must read the news in the public archive and then perform a local
computation. The amount of data to read and the local computation are linear
in the number of changes that have taken place in the meantime, but not in the
total number of changes. Furthermore, the data to read is the same for all users.
The additional burden on the verifier is simply that he should look at the public
key frequently (which seems unavoidable); the verifier need not read the archive.

We note that Sander, Ta-Shma, and Yung [25] also provide a zero-knowledge
proof of member knowledge for the Barić-Pfitzmann accumulator. Their proof
uses commitments for each of the bits of value contained in the accumulator. In
contrast, the proof we provide is a factor of O(n) more efficient, where n is the
number of bits of the used RSA modulus.

2 Preliminaries

Let A(·) be an algorithm. By y ← A(x) we denote that y was obtained by
running A on input x. In case A is deterministic, then this y is unique; if A is
probabilistic, then y is a random variable.

Let A and B be interactive Turing machines. By (a← A(·)↔ B(·)→ b), we
denote that a and b are random variables that correspond to the outputs of A
and B as a result of their joint computation.

Let b be a boolean function. By (y ← A(x) : b(y)) we denote the event that
b(y) is true after y was generated by running A on input x. The statement

Pr[x1 ← A1(y1); x2 ← A2(y2); . . . ;xn ← An(yn) : b(xn)] = α

means that the probability that b(xn) is TRUE after the value xn was obtained
by running algorithms A1, . . . , An on inputs y1, . . . , yn, is α.

We say that ν(k) is a negligible function, if for all polynomials p(k), for all
sufficiently large k, ν(k) < 1/p(k).

Let a be a real number. We denote by bac the largest integer b ≤ a, by dae
the smallest integer b ≥ a, and by dac the largest integer b ≤ a+ 1/2. Let q be
a positive integer. Sometime we need to do modular arithmetic centered around
0; in these cases we use ‘rem’ as the operator for modular reduction rather than
‘mod’, i.e., (c rem q) = c− dc/qcq.

The flexible RSA problem is the following. Given an RSA modulus n and
a random element v ∈ Z∗

n find e > 1 and u such that z = ue. The strong
RSA assumption states that this problem is hard to solve. The strong RSA
assumption [3, 18] is a common number-theoretic assumption that, in particular,
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is the basis for several cryptographic schemes (e.g., [1, 11, 16, 19]). By QRn we
denote the group of quadratic residues modulo n.

We use notation introduced by Camenisch and Stadler [13] for the various
zero-knowledge proofs of knowledge of discrete logarithms and proofs of the
validity of statements about discrete logarithms. For instance,

PK{(α, β, γ) : y = gαhβ ∧ y = gαhγ ∧ (u ≤ α ≤ v)}

denotes a “zero-knowledge Proof of Knowledge of integers α, β, and γ such that
y = gαhβ and y = gαhγ holds, where v < α < u,” where y, g, h, y, g, and h are
elements of some groups G = 〈g〉 = 〈h〉 and G = 〈g〉 = 〈h〉. The convention is
Greek letters denote quantities the knowledge of which is being proved, while all
other parameters are known to the verifier. Using this notation, a proof-protocol
can be described by just pointing out its aim while hiding all details.

3 Dynamic Accumulators

3.1 Definition

Definition 1. A secure accumulator for a family of inputs {Xk} is a family of
families of functions G = {Fk} with the following properties:

Efficient generation: There is an efficient probabilistic algorithm G that on input
1k produces a random element f of Fk. Moreover, along with f , G also
outputs some auxiliary information about f , denoted tf .

Efficient evaluation: f ∈ Fk is a polynomial-size circuit that, on input (u, x) ∈
Uf × Xk, outputs a value v ∈ Uf , where Uf is an efficiently-samplable in-
put domain for the function f ; and Xk is the intended input domain whose
elements are to be accumulated.

Quasi-commutative: For all k, for all f ∈ Fk, for all u ∈ Uf , for all x1, x2 ∈ Xk,
f(f(u, x1), x2) = f(f(u, x2), x1). If X = {x1, . . . , xm} ⊂ Xk, then by f(u,X)
we denote f(f(. . . (u, x1), . . .), xm).

Witnesses: Let v ∈ Uf and x ∈ Xk. A value w ∈ Uf is called a witness for x in
v under f if v = f(w, x).

Security: Let U ′f ×X
′
k denote the domains for which the computational procedure

for function f ∈ Fk is defined (thus Uf ⊆ U
′
f , Xk ⊆ X

′
k). For all probabilistic

polynomial-time adversaries Ak,

Pr[f ← G(1k);u← Uf ; (x,w,X)← Ak(f, Uf , u) :

X ⊂ Xk;w ∈ U
′
f ;x ∈ X

′
k;x /∈ X; f(w, x) = f(u,X)] = neg(k)

Note that only the legitimate accumulated values, (x1, . . . , xm), must belong
to Xk; the forged value x can belong to a possibly larger set X

′
k.

(This definition is essentially the one of Barić and Pfitzmann, with the dif-
ference that they do not require that the accumulator be quasi-commutative; as
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a consequence they need to introduce two further algorithms, one for generation
and one for verification of a witness value.)

The above definition is seemingly tailored for a static use of the accumulator.
In this paper, however, we are interested in a dynamic use where there is a
manager controlling the accumulator, and several users. First, let us show that
dynamic addition of a value is done at unit cost in this setting.

Lemma 1. Let f ∈ Fk. Let v = f(u,X) be the accumulator so far. Let v′ =
f(v, x′) = f(u,X ′) be the value of the accumulator when x′ is added to the
accumulated set, X ′ = X ∪{x′}. Let x ∈ X and w be the witness for x in v. The
computation of w′ which is the witness for x in v′, is independent on the size of
X.

Proof. w′ is computed as follows: w′ = f(w, x′). Let us show correctness using
the quasi-commutative property: f(w′, x) = f(f(w, x′), x) = f(f(w, x), x′) =
f(v, x′) = v′.

We must also be able to handle dynamic deletions of a value from the ac-
cumulator. It is clear how to do that using computations that are linear in the
size of the accumulated set X. Here, we restrict the definition so as to make the
complexity of this operation independent of the size of X:

Definition 2. A secure accumulator is dynamic if it has the following property:

Efficient deletion: there exist efficient algorithms D and W such that, if
v = f(u,X), x, x′ ∈ X, and f(w, x) = v, then

1. D(tf , v, x
′) = v′ such that v′ = f(u,X \ {x′}); and

2. W (f, v, v′, x, x′, w) = w′ such that f(w′, x) = v′.

Note that D is given the trap-door information tf while W is not.
Now, we show that a dynamic accumulator is secure against an adaptive ad-

versary, in the following scenario: An accumulator manager sets up the function
f and the value u and hides the trapdoor information tf . The adversary adap-
tively modifies the set X. When a value is added to it, the manager updates
the accumulator value accordingly. When a value x ∈ X is deleted, the manager
algorithm D and publishes the result. In the end, the adversary attempts to
produce a witness that x′ /∈ X is in the current accumulator v.

Theorem 1. Let G be a dynamic accumulator algorithm. Let M be an interac-
tive Turing machine set up as follows: It receives input (f, tf , u), where f ∈ Fk
and u ∈ Uf . It maintains a list of values X which is initially empty, and the
current accumulator value, v, which is initially u. It responds to two types of
messages: in response to the (“add”, x) message, it checks that x ∈ Xk, and if
so, adds x to the list X and modifies v by evaluating f , it then sends back this
updated value; similarly, in response to the (“delete”, x) message, it checks that
x ∈ X, and if so, deletes it from the list and updates v by running D and sends
back the updated value. In the end of the computation, M outputs the current
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values for X and v. Let U ′f×X
′
k denote the domains for which the computational

procedure for function f ∈ Fk is defined. For all probabilistic polynomial-time
adversaries Ak,

Pr[((f, tf )← G(1k);u← Uf ; (x,w)← Ak(f, Uf , u)↔M(f, tf , u)→ (X, v) :

w ∈ U ′f ;x ∈ X
′
k;x /∈ X; f(w, x) = f(u,X)] = neg(k)

Proof. Let us exhibit a reduction from the adversary that violates the theorem
to the adversary that breaks the collision-resistance property of a secure accumu-
lator. The reduction will proceed in the following (straightforward) manner: On
input (f, Uf , u), feed these values to the adversary. To respond to an (“add”, x)
query, simply update X and compute v = f(u,X). To respond to a (“delete”,x)
query, compute v = f(u,X \ {x}), and then update X. The success of the ad-
versary directly corresponds to the success of our reduction.

Finally, in the application we have in mind we require that the accumulator
allows for an efficient proof that a secret value given by some commitment is
contained in a given accumulator value. That is, we require that the accumulator
be efficiently provable with respect to some commitment scheme (Commit).

Zero-knowledge proof of member knowledge: There exists an efficient zero-
knowledge proof of knowledge system where the common inputs are c (where
c = Commit(x, r) with a r being a randomly chosen string), the accumulat-
ing function f and v ∈ Uf , and the prover’s inputs are (r, x ∈ Xk, u ∈ Uf )
for proving knowledge of x, w, r such that c = Commit(x, r) and v = f(w, x).

If by “efficient” we mean “polynomial-time,” then any accumulator satisfies this
property. However we consider a proof system efficient if it compares well with,
for example, a proof of knowledge of a discrete logarithm.

3.2 Construction

The construction due to Barić and Pfitzmann [3] is the basis for our construction
below. The differences from the cited construction are that (1) the domain of
the accumulated values consists of prime numbers only; (2) we give a method for
deleting values from the accumulator, i.e., we construct a dynamic accumulator;
(3) we give efficient algorithms for deleting a user and updating a witness; and
(4) we provide an efficient zero-knowledge proof of membership knowledge.

– Fk is the family of functions that correspond to exponentiating modulo
safe-prime products drawn from the integers of length k. Choosing f ∈ Fk
amounts to choosing a random modulus n = pq of length k, where p = 2p′+1,
q = 2q′ + 1, and p,p′,q,q′ are all prime. We will denote f corresponding to
modulus n and domain XA,B by fn,A,B . We denote fn,A,B by fn and by f
when it does not cause confusion.
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– XA,B is the {e ∈ primes : e 6= p′, q′ ∧ A ≤ e ≤ B}, where A and B can be
chosen with arbitrary polynomial dependence on the security parameter k,
as long as 2 < A and B < A2. X ′

A,B is (any subset of) of the set of integer

from [2, A2 − 1] such that XA,B ⊆ X
′
A,B .

– For f = fn, the auxiliary information tf is the factorization of n.
– For f = fn, Uf = {u ∈ QRn : u 6= 1} and U ′f = Z∗

n .
– For f = fn, f(u, x) = ux mod n. Note that f(f(u, x1), x2) = f(u, {x1, x2}) =
ux1x2 mod n

– Update of the accumulator value. As mentioned earlier, adding a value
x̃ to the accumulator value v can be done as v′ = f(v, x̃) = vx̃ mod n.
Deleting a value x̃ from the accumulator is as follows. D((p, q), v, x̃) =

vx̃
−1 mod (p−1)(q−1) mod n.

– Update of witness: As mentioned, updating the witness u after x̃ has been
added can be done by u′ = f(u, x̃) = ux̃. In case, x̃ 6= x ∈ Xk has be
deleted from the accumulator, the witness u can be updated as follows. By
the extended GCD algorithm, one can compute the integers a,b such that
ax + bx̃ = 1 and then u′ = W (u, x, x̃, v, v′) = ubv′

a
. Let us verify that

f(u′, x) = u′
x
mod n = v′:

(ubv′
a
)x

(1)
= ((ubv′

a
)xx̃)1/x̃ = ((ux)bx̃(v′

x̃
)ax)1/x̃ = (vbx̃vax)1/x̃ = v1/x̃ = v′

Equation (1) is correct because x̃ is relatively prime to ϕ(n).

We note that adding or deleting several values at once can be done simply
by letting x′ be the product of the added or deleted values. This also holds with
respect to updating the witness. More precisely, let πa be the product the x’s
to add to and πd be the ones to delete from the accumulator value v. Then, the

new accumulator value v′ := vπaπ
−1

d
mod (p−1)(q−1) mod n. If u was the witness

that x was contained in v and x was not removed from the accumulator, i.e.,
x - πd, then u′uaπav′

b
mod n is a witness that x is contained in v′, where a and

b satisfy ax+ bπd = 1 and are computed using the extended GCD algorithm.

Theorem 2. Under the strong RSA assumption, the above construction is a
secure dynamic accumulator.

Proof. Everything besides security is immediate. By Theorem 1, it is sufficient
to show that the construction satisfies security as defined in Definition 1. Our
proof is similar to the one given by Barić-Pfitzmann for their construction (the
difference being that we do not require x′ to be prime). The proof by Barić-
Pfitzmann is actually the same as one given by Shamir [26].

Suppose we are given an adversaryA that, on input n and u ∈R QRn, outputs
m primes x1, . . . , xm ∈ XA,B and u′ ∈ Z∗

n, x
′ ∈ X ′

A,B such that (u′)x
′

= u
∏
xi .

Let us use A to break the strong RSA assumption.
Suppose n = pq that is a product of two safe primes, p = 2p′ + 1 and

q = 2q′ + 1, is given. Suppose the value u ∈ QRn is given as well. To break the
strong RSA assumption, we must output a value e > 1, y such that ye = u.
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We shall proceed as follows: Give (n, u) to the adversary. Suppose the ad-
versary comes up with a forgery (u′, x′, (x1, . . . , xm)). Let x =

∏m
i=1 xi. Thus we

have u′
x′

= ux.

Claim. Let d = gcd(x, x′). Then either d = 1 or d = xj for some 1 ≤ j ≤ m.

Proof of claim: Suppose d|x and d 6= 1. Then, as x1, . . . , xm are primes, it
follows that d is the product of a subset of primes. Suppose for some xi and xj
we have xixj |d. Then xixj |x

′. But this is a contradiction as xixj > x′ must hold
due to the definitions of XA,B and X ′

A,B : Because x
′ ∈ X ′

A,B we have x′ < A2.

For any xi, xj ∈ XA,B , xixj ≥ A
2 > x′, as x1, x2 ≥ A.

Back to the proof of the theorem: Suppose that d 6= 1 is not relatively prime
to φ(n). Then, by the claim, for some j, d = xj . Because d = xj ∈ XA,B , d > 2
and d is prime. φ(n) = 4p′q′, therefore d = p′ or d = q′. Then 2d + 1 is a
non-trivial divisor of n, so in this case we can factor n.

Suppose d is relatively prime to φ(n). Then, because (ux/d)d = ((u′)x
′/d)d, it

follows that ux/d = (u′)x
′/d. Let x̃ = x/d, and x̃′ = x′/d. Because gcd(x, x′) = d,

the equation gcd(x̃, x̃′) = 1 holds and thus one can compute a, b such that
ax̃ + bx̃′ = 1 by extended GCD algorithm. Output (y := ũaub, x̃′). Note that
yx̃
′

= (yx̃x̃
′

)1/x̃((ũx̃
′

)ax̃(ux̃)bx̃
′

)1/x̃ = ((ux̃)ax̃+bx̃
′

)1/x̃u and thus y and x̃′ are a
solution to the instance (n, u) of the flexible RSA problem.

3.3 Efficient Proof That a Committed Value Was Accumulated

Here we show that the accumulator exhibited above is efficiently provable with
respect to the Pedersen commitment scheme. Suppose that the parameters of the
commitment scheme are a group Gq, and two generators g and h such that logh g

is unknown. Recall that to commit to a value x ∈ Zq, one picks a random r ∈R
Zq and outputs Commit(x, r) := gxhr. This information-theoretically hiding
commitment scheme is binding under the discrete-logarithm assumption.

For the definitions of XA,B and the choice of q, we require that B2k
′+k′′+2 <

A2 − 1 < q/2 holds, where k′ and k′′ are security parameters, i.e., k′ is the bit
length of challenges in the PK protocol below and k′′ determines the statistical
zero-knowledge property of the same protocol. We set X ′

A,B the largest possible

set, i.e., to [2, A2 − 1].
Finally, we require that two elements g and h of QRn are available such that

logg h is not known to the prover, where n is the public key of the accumulator.
To prove that a given commitment Ce and a given accumulator v contain the

same (secret) value e, the following protocol is carried out. The common inputs
to the protocol are the values Ce, g, h, n, g, h, and v. The prover’s additional
inputs are the values e, u, and r such that ue = v mod n and Ce = gehr.

The prover will form a commitment Cu to u and prove that this commitment
corresponds to the e-th root of the value v. This is carried out as follows:

1. The prover chooses r1, r2, r3 ∈R Zbn/4c, computes Ce := gehr1 , Cu := uhr2 ,
Cr := gr2hr3 , and sends Ce, Ce, Cu, and Cr to the verifier.
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2. The prover and verifier carry out the following proof of knowledge:

PK
{
(α, β, γ, δ, ε, ζ, ϕ, ψ, η, ς, ξ) :

Ce = gαhϕ ∧ g = (
Ce

g
)γhψ ∧ g = (gCe)

ςhξ ∧

Cr = hεgζ ∧ Ce = hαgη ∧ v = Cαu (
1

h
)β ∧ 1 = Cαr (

1

h
)δ(

1

g
)β ∧

α ∈ [−B2k
′+k′′+2, B2k

′+k′′+2]
}
.

The details of this protocol can be found in full version of this paper [8].

Theorem 3. Under the strong RSA assumption the PK protocol in step 2 is a
proof of knowledge of two integers e ∈ X ′

A,B = [2, A2−1] and u such that v ≡ ue

(mod n) and Ce is a commitment to e.

Proof. Showing that the protocol is statistical zero-knowledge is standard. Also,
it is easy to see that Ce, Ce, Cu, and Cr are statistically independent from u and
e.

It remains to show that if the verifier accepts, then value e committed to in Ce
and a witness w that e is in v can be extracted from the prover. Using standard
rewinding techniques, the knowledge extractor can get answers (sα, sβ , sγ , sδ, sε,
sζ , sη, sϕ, sψ) and (s′α, s

′
β , s

′
γ , s

′
δ, s

′
ε, s

′
η, s

′
ζ , s

′
ϕ, s

′
ψ) for the two different challenges

c and c′. Let ∆α = sα − s′α, ∆β = sβ − s′β , ∆γ = sγ − s′γ , ∆δ = sδ − s′δ,
∆ε = sε− s

′
ε, ∆ζ = sζ − s

′
ζ , ∆η = sη − s

′
η, ∆ϕ = sϕ− s

′
ϕ mod q, ∆ψ = sψ − s

′
ψ,

∆ς = sς − s
′
ς , ∆ξ = sξ − s

′
ξ, and ∆c = c′ − c. Then we have

C∆ce = g∆αh∆ϕ , g∆c = (
Ce

g
)∆γh∆ψ , g∆c = (gCe)

∆ςh∆ξ (1)

C∆cr = h∆εg∆ζ , C∆ce = h∆αg∆η , (2)

v∆c = C∆αu (
1

h
)∆β , 1 = C∆αr (

1

h
)∆δ(

1

g
)∆β . (3)

We first show that Ce commits to an integer different from 1 and consider the
first two equations (1). Let α̃ := ∆α∆c−1 mod q, γ̃ := ∆γ∆c−1 mod q, ϕ̃ :=

∆ϕ∆c−1 mod q, and ψ̃ := ∆ψ∆c−1 mod q. Then we have

Ce = gα̃hϕ̃ and g = (
Ce

g
)γ̃hψ̃ = g(α̃−1)γ̃hϕ̃γ̃hψ̃ .

Under the hardness of computing discrete logarithms, 1 ≡ (α̃−1)γ̃ (mod q) must
hold and therefore α̃ 6= 1 (mod q) as otherwise γ̃ would not exists. Similarly,
from the first and third equation of (1) one can conclude that α̃ 6= −1 (mod q).

We next show that α̃ is accumulated in v. From the next two equations (2)
one can derive that ∆c divides ∆α, ∆η, ∆ε, and ∆ζ provided the strong RSA
assumption. (While we do not investigate this claim here, one can show that
if ∆c does not divide ∆α, ∆η, ∆ε, and ∆ζ, then from the Equations (2) one
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can compute a non-trivial root of g with probability at least 1/2. This, however,
is not feasible under the strong RSA assumption. We refer to, e.g., [17] for
the details of such a reduction.) Let α̂ = ∆α/∆c, η̂ = ∆η/∆c, ε̂ = ∆ε/∆c

and ζ̂ = ∆ζ/∆c. Because |c|, |c′| < p′, q′, we get Cr = ahε̂gζ̂ for some a such
that a2 = 1. Moreover, the value a must be either 1 or −1 as otherwise 1 <
gcd (a− 1, n) < n and we could factor n. Plugging Cr into the second equation

of (3) we get 1 = a∆αh∆αε̂g∆αζ̂( 1
h )
∆δ( 1

g )
∆β , where a∆α must be 1 as 1, g, and

h are in QRn and a2 = 1 otherwise. Under the hardness of computing discrete

logarithms we can conclude that ∆αζ̂ ≡ β̂ (mod ord(g)) and hence we get
v∆c = (Cu

hζ̂
)∆α and v = b(Cu

hζ̂
)α̂ with some b such that b2 = 1. Again b = ±1

as otherwise 1 < gcd (b± 1, n) < n and we could factor n. Let s = −1 if α̂ < 0
and s = 1. Thus we have v = u|α̂|,

u =




(bCu

hζ̂
)s if α̂ is odd

(Cu

hζ̂
)s if α̂ is even.

The latter holds because v ∈ QRn and −1 6∈ QRn and therefore b =
−1 is not possible. Also note that α̂ 6= 0 as v 6= 1. Because sα, s

′
α ∈

[−B2k
′+k′′+1,−B2k

′+k′′+1] we have ∆α, α̂ ∈ [−B2k
′+k′′+2,−B2k

′+k′′+2]. Be-
cause B2k

′+k′′+2 < q/2 it follows that α̂ = (∆αĉ rem q)(α̃ rem q), and hence
that the absolute value committed to by Ce is indeed accumulated in v. As
B2k

′+k′′+2 < A2−1, α̂ 6= ±1 mod q and α̂ 6= 0 we can conclude that |α̂| ∈ X ′
A,B .

Therefore, due to Theorem 2, we can conclude that |α̂| must be contained in the
accumulator value v.

4 Application to Revocation of Anonymous Credentials

In this section we describe how dynamic accumulators can be used to add a
revocation capability to anonymous credentials. We then show how this can be
done efficiently for the ACJT identity escrow [1] and describe how to adapt this
solution to related group signature schemes and credential systems [1, 9].

4.1 Revocation of Anonymous Credentials

We first note that dynamic accumulators can be used for revocation of ordinary
credentials (and certificates): First, one adds a unique value to each credential.
Then, the accumulator values of the unique values of all valid credentials is
published authentically. Now, a user can convince a verifier that the credential
is still valid by providing the witness for the unique value contained in her
credential. Thus, to check a credential, the verifier has to check the issuer’s
signature, to get the current accumulator value and to verify whether the unique
value contained in the credential is contained in the accumulator value using the
witness provided by the user.
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In case of anonymous credentials the same approach can be used. Now, how-
ever, the witness and the value contained in the accumulator can no longer be
revealed to the verifier as this would compromise anonymity completely. Instead,
the user can apply zero-knowledge proofs to convince the verifier of that the value
contained in her credential is also contained in the accumulator. In the previous
section we exhibited an efficient zero-knowledge protocol to prove that a value
contained in a commitment is contained in an accumulator. One can thus get
efficient revocation for any anonymous credential scheme if one finds an efficient
protocol to prove that a value contained in a commitment is also contained in
the credential.

In the remainder of this section we provide such a protocol for the ACJT
identity escrow scheme and the Camenisch-Lysyanskaya credential system [1,
9]. However, it is not hard to see how to add revocation for other schemes and
systems that use some form of anonymous credentials (e.g., [5, 11, 12, 10, 13, 21,
23]).

4.2 The ACJT Identity Escrow Scheme and Its Friends

An identity escrow scheme involves a membership manager, who is responsible
for adding and deleting members, an anonymity revocation manager, who can
identify the user who provided an anonymous membership-proof to a verifier,
and finally users that can become members. There are the following procedures:
a setup algorithm, that allows the manager to choose their secret and public keys;
join protocol that a user runs the membership manager if she want to become a
member; and a prove membership protocol with which a user can anonymously
convince a verifier that she is a member. We refer to [1, 8] for details of these
procedures and for the security properties.

Recall the ACJT [1] identity escrow scheme. (Recall that the ACJT group
signature scheme is obtained from the ACJT identity escrow by applying the
Fiat-Shamir heuristic to the protocol for proving membership.) The group man-
ager has a public key PK , consisting of a number n, which is a product of two
safe primes, the values a, b, g, h, and y which are quadratic residues modulo n,
and two intervals Γ and ∆. The value z = logg y is a secret key of the group
manager used for revocation. A user Ui’s membership certificate consists of a
user’s secret xi selected jointly by the user and the group manager (it is selected
in a secure manner that ensures that the group manager obtains no information
about this value) from an appropriate integer range, i.e., ∆, and the values vi
and ei, where ei is a prime number selected from another appropriate range,
i.e., Γ , and veii = axib mod n. The value axi is user Ui’s public key. When Ui
proves membership in a group, he effectively proves knowledge of a member-
ship certificate (x, v, e). This proof is as follows. The group member chooses
r′1, r

′
2 ∈R∈R Zbn/4c and computes T1 := vyr

′
1 , T2 := gr

′
1 , and T3 := gehr

′
2 . The

group member sends T1, T2, and T3 to the verifier and carries out with the
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verifier the protocol denoted

PK
{
(α, β, γ, δ, ε) : b = Tα1

(1
a

)β(1
y

)γ
∧ 1 = Tα2

(1
g

)γ
∧ T2 = gδ ∧ T3 = gαhε ∧

α ∈ Γ ∧ β ∈ ∆
}
.

As with all group signature and identity escrow schemes, only the group manager
can assert a signature/protocol transcript to a group member, i.e., knowing z,
the group manager can compute the value v̂ = T1/T2

z that identifies the user.
The Camenisch and Lysyanskaya [9] credential system has a similar construc-

tion. An organization’s public key consists of a number n, which is a product of
two safe primes, and the values a, b, c, g and h which are all quadratic residues
modulo n. A user Ui’s secret key xi, selected from an appropriate integer range,
is incorporated into all of Ui’s credentials. A credential tuple for user Ui con-
sists of his secret key xi, a secret value si selected jointly by the Ui and the
organization (via a secure computation which ensures secrecy for the user) from
an appropriate integer range, and the values vi and ei such that ei is a prime
number selected by the organization from an appropriate integer interval, and vi
is such that veii = axbsc mod N . Proving possession of a credential is effectively
a proof of knowledge of a credential tuple.

Variations of these schemes incorporate such features as anonymity revoca-
tion, non-transferability, one-show credentials, expiration dates, and appointed
verifiers. For all these variations, an integral part of a group membership certifi-
cate and of a credential, is the prime number ei. Using one-way accumulators,
we can accumulate ei’s into a single public value u. Proof of group membership
will now have to include proof of knowledge of a witness to the fact that ei was
accumulated into u.

In the sequel, we will talk about augmenting the ACJT identity escrow
scheme with the membership revocation property; however, all our results and
discussion apply immediately to the credential scheme and group signature dis-
cussed above.

4.3 Incorporating Revocation into the ACJT Identity Escrow

Scheme

To make certificate revocation possible, the additions outlined below have to be
made to the usual operations the ACJT identity escrow scheme.

Modifications to the group manager’s operations are as follows:

Setup: In addition to setting up the identity escrow scheme, the group manager
creates the public modulus n for the accumulator, chooses a random u, g, h ∈
QRn and publishes (n, u, g, h). She sets up (empty for now) public archives
Eadd for storing values that correspond to added users and Edelete for storing
values that correspond to deleted users. Set X ′

A,B = Γ and XA,B to the
interval from which the group manager chooses e in the ACJT scheme (
XA,B ⊆ X

′
A,B ⊆ [2, A2 − 1] will be satisfied).
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Join: Issue the user’s membership certificate, as in the identity escrow scheme.
Add the current u to the user’s membership certificate. (Denote it by ui.)
Let ei be the prime number used in this certificate. Update u in the public
key: u := fn(u, ei). Update Eadd: store ei there.

Revoke membership: Retrieve ei which is the prime number corresponding to
the user’s membership certificate. Update u in the public key: u :=
D(ϕ(n), u, ei). Update Edelete: store ei there.

We stress that the archives are Eadd and Edelete are not part of the group’s
public key, i.e., the verifier is not required to read them for any verification
purposes. Also, note that is it not necessary to restrict read access to these
archives only to group members.

A user Ui must augment the ACJT protocol as follows:

Join: Store the value ui along with the rest of the membership certificate. Verify
that fn(ui, ei) = ueii = u.

Update membership: An entry in the archive is called “new” if it was entered
after the last time Ui performed an update.

1. Let y denote the old value of u.

2. For all new ej ∈ Eadd, ui := f(ui,
∏
ej) = u

∏
ej

i and y := y
∏
ej .

3. For all new ej ∈ Edelete, ui :=W (ui, ei,
∏
ej , y, u).

(Note that as a result u = f(ui, ei).)

Prove membership: Proving membership is augmented with the step of proving
that a committed value is part of the accumulated value u (contained in the
current public key). That is, in addition to T1, T2, and T3 the group member
computes the values Ce := gehr1 , Cui := uih

r2 , and Cr := gr2hr3 and sends
them to verifier, with random choices r1, r2, r3 ∈R Zbn/4c. Then the verifier
and the group member engage in the protocol denoted

PK
{
(α, β, γ, δ, ε, ξ, ζ, ϕ, ψ, η) :

w ≡ Tα1
(1
a

)β(1
y

)γ
∧ 1 ≡ Tα2

(1
g

)γ
∧ T2 ≡ gδ ∧ T3 ≡ gαhε ∧

Cr = hξgζ ∧ Ce = hαgη ∧ u = Cαui(
1

h
)ϕ ∧ 1 = Cαr (

1

h
)ψ(

1

g
)ϕ ∧

α ∈ Γ ∧ β ∈ ∆
}
.

This protocol is already an optimized union of the PK protocol given in the
previous section and the ACJT PK protocol for proving group membership.
That is, different from the previous section, we do not require the group Gq

for the commitment scheme because here the value T3 acts as commitment
to the value whose membership in the accumulator is claimed. Furthermore,
as −1, 0, 1 6∈ Γ , we need not show that α 6= −1, 0, 1.
The complexity of this augmented proof is about twice that of the original
one. The definition of Γ is compatible with the accumulator and the proof
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that a committed value is contained in the accumulator as presented in the
previous section. Also, Γ excludes 1 and hence it is not required to explicitly
prove that the committed value is not 1.

Remark 1. Updates after a user joined the group can be avoided: the group
manager knows the factorization of n and therefore can always compute a witness
ui := u1/ei for the ei of the added user, where u is the old and new accumulator
value. It’s easy to see that this modifided construction retains security.

Lemma 2. Under the strong RSA assumption the above is a secure identity
escrow scheme with membership revocation.

Proof (sketch). It is not hard to show the security of this lemma in a formal
model given the security proofs of the ACJT scheme and the proof of Theorem 3.
Let us provide an informal argument here.

First of all, note that all the properties of the original ACJT scheme are re-
tained as the amount of information revealed by Ce, Cu, and Cr about the group
member’s certificate is negligible (i.e., Ce, Cu, and Cr are statistically hiding
commitments and the PK -protocol is statistical zero-knowledge). It remains to
argue that excluded group members can no longer prove group membership even
if they collude in an adaptive attack against the group manager. Similarly as in
the proof of Theorem 3, one can show that the above of a protocol is a proof
of knowledge of a quadruple (x̂, v̂, ê, û) such that ax̂b = v̂ê and ûê = u hold,
i.e., such that (x̂, v̂, ê) is valid group membership certificate and ê is contained
in the accumulator value u. In [1], Ateniese et al. show that under the strong
RSA assumption an adaptive adversary controlling all users cannot find a triple
(x̃, ṽ, ẽ) that is different from the ones legitimately obtained through the join
protocol. On other words, the values axi and ei are tightly linked. Therefore,
the user with public key axi is no longer able to prove membership of the group
once an ei is removed from the accumulator value as the accumulator is secure
against an adaptive adversary (Theorem 1). We note that all these arguments
hold in spite of the fact that all members’ (current and past one) ei’s are public.
It follows that anonymity and unlinkability is retained for actions past members
made prior to their exclusion from the group.
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