
Threshold Password-Authenticated Key

Exchange

(Extended Abstract)

Philip MacKenzie1, Thomas Shrimpton2, and Markus Jakobsson3

1 Bell Laboratories
Lucent Technologies

Murray Hill, NJ 07974 USA
philmac@lucent.com

2 Dept. of Electrical and Computer Engineering
UC Davis

Davis, CA 95616 USA
teshrim@ucdavis.edu
3 RSA Laboratories
RSA Security, Inc.

Bedford, MA 01730 USA
mjakobsson@rsasecurity.com

Abstract. In most password-authenticated key exchange systems there
is a single server storing password verification data. To provide some
resilience against server compromise, this data typically takes the form
of a one-way function of the password (and possibly a salt, or other
public values), rather than the password itself. However, if the server is
compromised, this password verification data can be used to perform an
offline dictionary attack on the user’s password. In this paper we propose
an efficient password-authenticated key exchange system involving a set
of servers, in which a certain threshold of servers must participate in the
authentication of a user, and in which the compromise of any fewer than
that threshold of servers does not allow an attacker to perform an offline
dictionary attack. We prove our system is secure in the random oracle
model under the Decision Diffie-Hellman assumption against an attacker
that may eavesdrop on, insert, delete, or modify messages between the
user and servers, and that compromises fewer than that threshold of
servers.

1 Introduction

Many real-world systems today rely on password authentication to verify the
identity of a user before allowing that user to perform certain functions, such as
setting up a virtual private network or downloading secret information. There are
many security concerns associated with password authentication, due mainly to
the fact that most users’ passwords are drawn from a relatively small and easily
generated dictionary. Thus if information sufficient to verify a password guess is

388 P. MacKenzie, T. Shrimpton, and M. Jakobsson

leaked, the password may be found by performing an offline dictionary attack:
one can run through a dictionary of possible passwords, testing each one against
the leaked information in order to determine the correct password.

When password authentication is performed over a network, one must be
especially careful not to allow any leakage of information to one listening in,
or even actively attacking, the network. If one assumes the server’s public key
is known (or at least can be verified) by the user, then performing password
authentication after setting up an anonymous secure channel to the server is
generally sufficient to prevent leakage of information, as is done in SSH [28] or
on the web using SSL [13]. The problem becomes more difficult if the server’s
public key cannot be verified by the user. Solutions to this problem have been
coined strong password authentication protocols, and have the property that (in-
formally) the probability of an active attacker (i.e., one that may eavesdrop on,
insert, delete, or modify messages on a network) impersonating a user is only
negligibly better than a simple on-line guessing attack, consisting of the attacker
iteratively guessing passwords and running the authentication protocol. Strong
password authentication protocols were proposed by Jablon [23] and Wu [29],
among others. Recently, some protocols were proven secure in the random oracle
model1 (Bellare et al. [1], Boyko et al. [8] and MacKenzie et al. [26]), in the pub-
lic random string model (Katz et al. [25]), and in the standard model (Goldreich
and Lindell [21]). However, all of these protocols, even the ones in which the
server’s public key is known to the user, are vulnerable to server compromise in
the sense that compromising the server would allow an attacker to obtain the
password verification data on that server (typically some type of one-way func-
tion of the password and some public values). This could then be used to perform
an offline dictionary attack on the password. To address this issue (without re-
sorting to assumptions like tamper resistance), Ford and Kaliski [17] proposed
to distribute the functionality of the server, forcing an attacker to compromise
several servers in order to be able to obtain password verification data. Note
that the main problem is not just to distribute the password verification data,
but to distribute the functionality, i.e., to distribute the password verification
data such that it can be used for authentication without ever reconstructing the
data on any set of servers smaller than a chosen threshold.

While distributed cryptosystems have been studied extensively (and many
proven secure) for other cryptographic operations, such as signatures (e.g., [7,
11, 20, 18]), to our knowledge Ford and Kaliski were the first ones to propose a
distributed password-authenticated key exchange system. However, they give no
proof of security for their system. Jablon [24] extends the system of Ford and

1 In the random oracle model [2], a hash function is modeled as a black box containing
an ideal random function. This is not a standard cryptographic assumption. In fact,
it is possible for a scheme secure in the random oracle model to be insecure for any
real instantiation of the hash function [9]. However, a proof of security in the random
oracle model is generally thought to be strong evidence of the practical security of a
scheme.

Threshold Password-Authenticated Key Exchange 389

Kaliski, most notably to not require the server’s public key to be known to the
user, but again does not give a proof of security.

Our contributions. In this paper we propose a completely different distributed
password authenticated key exchange system and prove it secure in the random
oracle model, assuming the hardness of the Decision Diffie-Hellman (DDH) prob-
lem [14] (see [6]). While the system of Ford and Kaliski and the system of Jablon
require all servers to perform authentication, our system is a k-out-of-n thresh-
old system (for any 1 ≤ k ≤ n), where k servers are required for authentication
and the compromise of k − 1 servers does not affect the security of the system.
This is the first distributed password-authenticated key exchange system proven
secure under any standard cryptographic assumption in any model, including the
random oracle model. To be specific, we assume the client may store public data,
and our security is against an active attacker that may (statically) compromise
any number of servers less than the specified threshold.
Technically, we achieve our result by storing a semantically-secure encryption

of a function of the password at the servers (instead of simply storing a one-way
function of the password), and then leveraging off some known solutions for dis-
tributing secret decryption keys, such as Feldman verifiable secret sharing [16]. In
other words, we transform the problem of distributing password authentication
information to the problem of distributing cryptographic keys. However, once
we make this transformation, verifying passwords without leaking information
becomes much more difficult, requiring intricate manipulations of ElGamal en-
cryptions [15] and careful use of efficient non-interactive zero-knowledge proofs
[5].
We note that a threshold password authentication system does not follow

from techniques for general secure multi-party computation (e.g., [22]) since we
are working in an asynchronous model, allow concurrent executions of protocols,
and assume no authenticated channels. (Note in particular that the goal of the
protocol is for the client to be authenticated.) The only work on general secure
multi-party computation in an asynchronous model, and allowing concurrency,
assumes authenticated channels [10].

2 Model

We extend the model of [1] (which builds on [3] and [4], and is also used by [25]).
The model of [1] was designed for the problem of authenticated key exchange
(ake) between two parties, a client and a server. The goal was for them to engage
in a protocol such that after the protocol was completed, they would each hold a
session key that is known to nobody but the two of them. Our model is designed
for the problem of distributed authenticated key exchange (dake) between a client
and k servers. The goal is for them to engage in a protocol such that after the
protocol is completed, the client would hold k session keys, one being shared
with each server, such that the session key shared between the client and a given
server is known to nobody but the two of them, even if up to k− 1 other servers
were to conspire together.

390 P. MacKenzie, T. Shrimpton, and M. Jakobsson

Note that a secure dake protocol allows for secure downloadable credentials,
by, e.g., having the servers store an encrypted credentials file with a decryption
key stored using a threshold scheme among them, and then having each send
a partial decryption of the credentials file to the client, encrypted with the
session key it shares with the client. Note that the credentials are secure in
a threshold sense: fewer than the given threshold of servers are unable to obtain
the credentials. Details are beyond the scope of this paper.
In the following, we will assume some familiarity with the model of [1].

Protocol participants. We have two types of protocol participants: clients and

servers. Let ID
def
= Clients∪Servers be a non-empty set of protocol participants,

or principals.
We assume Servers consists of n servers, denoted {S1, . . . , Sn}, and that

these servers are meant to cooperate in authenticating a client.2 Each client
C ∈ Clients has a secret password πC , and each server S ∈ Servers has a vec-
tor πS = [πS [C]]C∈Clients . Entry πS [C] is the password record. Let PasswordC
be a (possibly small) set from which passwords for client C are selected. We

will assume that πC
R
← PasswordC (but our results easily extend to other pass-

word distributions). Clients and servers are modeled as probabilistic poly-time
algorithms with an input tape and an output tape.

Execution of the protocol. A protocol P is an algorithm that determines
how principals behave in response to inputs from their environment. In the real
world, each principal is able to execute P multiple times with different partners,
and we model this by allowing unlimited number of instances of each principal.
Instance i of principal U ∈ ID is denoted ΠU

i .
To describe the security of the protocol, we assume there is an adversary

A that has complete control over the environment (mainly, the network), and
thus provides the inputs to instances of principals. We will further assume the
network (i.e., A) performs aggregation and broadcast functions.3 In practice, on
a point-to-point network, the protocol implementor would most likely have to
implement these functionalities in some way, perhaps using a single intermediate
(untrusted) node to aggregate and broadcast messages4. Formally, the adversary
is a probabilistic algorithm with a distinguished query tape. Queries written to
this tape are responded to by principals according to P ; the allowed queries
are formally defined in [1] and summarized here (with slight modifications for
multiple servers):

Send (U, i, M): causes message M to be sent to instance ΠU
i . The instance

computes what the protocol says to, state is updated, and the output of the

2 Our model could be extended to have multiple sets of servers, but for clarity of
presentation we omit this extension.

3 This is more for notational convenience than anything else. In particular, we make
no assumptions about synchronicity or any type of distributed consensus.

4 Note that since A controls the network and can deny service at any time, we do
not concern ourselves with any denial-of-service attacks that this single intermediate
node may facilitate.

Threshold Password-Authenticated Key Exchange 391

computation is given to A. If this query causes ΠU
i to accept or terminate,

this will also be shown to A. To initiate a session between client C and a
set of servers, the adversary should send a message containing a set I of k
indices of servers in Servers to an unused instance of C.

Execute (C, i, ((Sj1 , `j1), . . . , (Sjk
, `jk

))): causes P to be executed to completion

between ΠC
i (where C ∈ Clients) and Π

Sj1

`j1
, . . . , Π

Sjk

`jk
, and outputs the

transcript of the execution. This query captures the intuition of a passive
adversary who simply eavesdrops on the execution of P .

Reveal (C, i, Sj): causes the output of the session key held by ΠC
i correspond-

ing to server Sj , i.e., sk
i
C,Sj

.

Reveal (Sj , i): causes the output of the session key held by Π
Sj

i , i.e., sk
i
Sj
.

Test (C, i, Sj): causes ΠC
i to flip a bit b. If b = 1 the session key sk

i
C,Sj

is
output and if b = 0 a string drawn uniformly from the space of session keys
is output. A Test query (of either type) may be asked at any time during
the execution of P , but may only be asked once.

Test (Sj , i): causes Π
Sj

i to flip a bit b. If b = 1 the session key sk
i
Sj
is output;

otherwise, a string is drawn uniformly from the space of session keys and
output. As above, a Test query (of either type) may be asked at any time
during the execution of P , but may only be asked once.

The Reveal queries are used to model an adversary who obtains information
on session keys in some sessions, and the Test queries are a technical addition to
the model that will allow us to determine if an adversary can distinguish a true
session key from a random key.

We assume A may compromise up to k − 1 servers, and that the choice of
these servers is static. In particular, without loss of generality, we may assume
the choice is made before initialization, and we may simply assume the adversary
has access to the private keys of the compromised servers.

Partnering. A server instance that accepts holds a partner-id pid , session-
id sid , and a session key sk. A client instance that accepts holds a partner-id
pid , a session-id sid , and a set of k session keys (skj1 , . . . , skjk

). Let sid be
the concatenation of all messages (or pre-specified compacted representations
of the messages) sent and received by the client instance in its communication
with the set of servers. (Note that this excludes messages that are sent only
between servers, but not to the client.) Then instances ΠC

i (with C ∈ Clients)

holding (pid , sid , (skj1 , . . . , skjk
)) for some set I = {j1, . . . , jk} and Π

Sj

`j
(with

Sj ∈ Servers) holding (pid
′, sid ′, sk) are said to be partnered if j ∈ I, pid = Sj ,

pid ′ = C, sid = sid ′, and skj = sk. This is the so-called “matching conversation”
approach to defining partnering, as used in [3, 1].

Freshness. A client instance/server pair (ΠC
i , Sj) is fresh if (1) Sj is not

compromised, (2) there has been no Reveal (C, i, Sj) query, and (3) if Π
Sj

` is a

partner to ΠC
i , there has been no Reveal (Sj , `) query. A server instance Π

Sj

i is
fresh if (1) Sj is not compromised, (2) there has been no Reveal (Sj , i) query,

392 P. MacKenzie, T. Shrimpton, and M. Jakobsson

and (3) if ΠC
` is the partner to Π

Sj

i , there has been no Reveal (C, `, Sj) query.
Intuitively, the adversary should not be able to distinguish random keys from
session keys held by fresh instances.

Advantage of the adversary. We now formally define the distributed au-
thenticated key exchange (dake) advantage of the adversary against protocol P .
Let Succdake

P (A) be the event that A makes a single Test query directed to some
instance ΠU

i that has terminated and is fresh, and eventually outputs a bit b
′,

where b′ = b for the bit b that was selected in the Test query. The dake advantage
of A attacking P is defined to be

Advdake
P (A)

def
= 2Pr

[

Succdake
P (A)

]

− 1.

The following fact is easily verified.

Fact 1.

Pr(Succdake
P (A)) = Pr(Succdake

P ′ (A))+ε ⇐⇒ Advdake
P (A) = Advdake

P ′ (A)+2ε.

3 Definitions

Let κ be the cryptographic security parameter. Let Gq ∈ G denote a finite
(cyclic) group of order q, where |q| = κ. Let g be a generator of Gq, and assume
it is included in the description of Gq.

Notation. We use (a, b)×(c, d) to mean elementwise multiplication, i.e., (ac, bd).
We use (a, b)r to mean elementwise exponentiation, i.e., (ar, br). For a tuple V ,
the notation V [j] means the jth element of V .
We denote by Ω the set of all functions H from {0, 1}∗ to {0, 1}∞. This

set is provided with a probability measure by saying that a random H from Ω
assigns to each x ∈ {0, 1}∗ a sequence of bits each of which is selected uniformly
at random. As shown in [2], this sequence of bits may be used to define the
output of H in a specific set, and thus we will assume that we can specify that
the output of a random oracle H be interpreted as a (random) element of Gq.

5

Access to any public random oracle H ∈ Ω is given to all algorithms; specifically,
it is given to the protocol P and the adversary A. Assume that secret session
keys are drawn from {0, 1}κ.
A function f : Z → [0, 1] is negligible if for all α > 0 there exists an κα > 0

such that for all κ > κα, f(κ) < |κ|
−α. We say a multi-input function is negligible

if it is negligible with respect to each of its inputs.

4 Protocol

In this section we describe our protocol for threshold password-authenticated
key exchange. In the next section we prove this protocol is secure under the
DDH assumption [6, 14] in the random-oracle model [2].

5 For instance, this can be easily defined when Gq is a q-order subgroup of Z?
p, where

q and p are prime.

Threshold Password-Authenticated Key Exchange 393

4.1 Server Setup

Let there be n servers {Si}i∈{1,2,...,n}. Let (x, y) be the servers’ global key pair
such that y = gx. The servers share the global secret key x using a (k, n)-
threshold Feldman secret sharing protocol [16]. Specifically, a polynomial f(z) =
∑k−1

j=0 ajz
j mod q is chosen with a0← x and random coefficients aj

R
← Zq for

j > 0. Then each server Si gets a secret share xi = f(i) and a corresponding
public share yi = gxi , 1 ≤ i ≤ n. (In this paper we assume that a trusted dealer
generates these shares, but it should be possible to have the servers generate them
using a distributed protocol, as in Gennaro et al. [19].) In addition, each server
Si independently generates its own local key pair (x

′
i, y

′
i) such that y′i = gx

′
i ,

1 ≤ i ≤ n. Each server Si publishes its local public key y′i along with its share of

the global public key yi. Let H0, H1, H2, H3, H4, H5, H6
R
←Ω be random oracles

with domain and range defined by the context of their use. Let h←H0(y) and
h′←H1(y) be generators for Gq.

Remark 1. We note that in the following protocol the servers are assumed to
have stored the 2n+1 public values y, {y′i}

n
i=1, and {yi}

n
i=1. Likewise, the client

is assumed to have stored the n+ 1 public values y and {y′i}
n
i=1. (Alternatively,

a trusted certification authority (CA) could certify these values, but we choose
to keep our model as simple as possible.)

4.2 Client Setup

A client C ∈ Clients has a secret password πC drawn from a set PasswordC .
We assume PasswordC can be mapped into Zq, and for the remainder of the
paper, we use passwords as if they were elements of Zq. C creates an ElGamal

ciphertext EC of the value g(πC)−1

, using the servers’ global public key y. More

precisely, he selects α
R
← Zq and computes EC ← (y

αg(πC)−1

, gα). He sends EC

to each of the servers Si, 1 ≤ i ≤ n, who record (C,EC) in their database.
(Alternatively, a trusted CA could be used, but again we choose to keep our
model as simple as possible.)

Remark 2. We assume the the adversary does not observe or participate in either
the system or client setup phases. We assume the client saves a copy of EC locally.
It should be clear that since EC is public information, this is not the same as
storing a shared secret key with the client, which would then obviate the need to
use a password for authentication. In particular, it should be noted that instead
of storing EC locally, a client alternatively could obtain a certified copy of EC

through interaction with the servers. Details are beyond the scope of the paper.

4.3 Client Login Protocol

A high level description of the protocol is given in Figure 1, and the formal
description may be found in the full paper. Our protocol for a client C ∈ Clients
relies on a simulation-sound non-interactive zero-knowledge proof (SS-NIZKP)
scheme (see De Santis et al. [12] for a definition of an SS-NIZKP scheme) Q =

394 P. MacKenzie, T. Shrimpton, and M. Jakobsson

(ProveΦQ ,VerifyΦQ ,SimΦQ) over a language defined by a predicate ΦQ that takes

elements of {0, 1}∗ × (Gq ×Gq)
3 and is defined as

ΦQ(τ, EC , B, V)
def
=

∃β, π, γ :
(

B =
(

yβ , gβ
)

× (EC)
π × (g−1, 1)

)

and (V = (hγgπ, gγ)) .

The algorithms ProveΦQ , VerifyΦQ , and SimΦQ use a random oracle H3. ProveΦQ
may be implemented in a standard way as a three-move honest-verifier proof
made non-interactive by using the hash function to generate the verifier’s random
challenge, and having τ be an extra input to the hash function. Other proofs
defined below may be implemented similarly.
Here we discuss Figure 1. The client C ∈ Clients receives a set I of k servers

in Servers and initiates the protocol with that set, by broadcasting I along
with its own identity C. (As stated above, we assume aggregation and broadcast
functionalities in the network for the communication between the client and the
servers, and among the servers themselves.) In return C receives nonces from
the servers in I. The client then “removes” the password from the ciphertext
EC by raising it to πC and dividing g out of the first element of the tuple, and
reblinds the result to form B. The quantity V is then formed to satisfy the
predicate ΦQ, and an SS-NIZKP σ is created to bind B, V , the session public
key ỹ, and the nonces from the servers. This SS-NIZKP also forces the client to
behave properly, and in particular to allow a simulator in the proof of security to
operate correctly. (The idea is similar to the use of a second encryption to achieve
(lunchtime) chosen-ciphertext security in [27].) After verifying the SS-NIZKP,
if the client has used the password π = πC , it will be that B[1] = yβ+απ and
B[2] = gβ+απ. The servers then run DistVerify(τ,B, V) to verify that logg y =
logB[2] B[1]. Effectively, they are verifying (without decryption) that B is a valid
encryption of the plaintext message 1. Each server Si then computes a session
key Ki, which has also been computed by the client.

Efficiency For the following calculations we use the proof constructions of Fig-
ures 3 through 7. Recall that there are k servers involved in the execution of
the protocol. The protocol requires six rounds, where each round is an exchange
of messages among some of the participants. All messages are of length propor-
tional to the size of a group element. The client is involved in only the first three
rounds, while the servers are involved in all rounds. The client performs 15 + k
exponentiations, and each server performs 22 + 34k exponentiations.

Remark 3. These costs are obviously much higher than the Ford-Kaliski scheme,
but remember that our protocol is the first to achieve provable security (in the
random oracle model). Also, the costs may be reasonable for practical imple-
mentations with k in the range of 2 to 5.

Remark 4. Our protocol does not provide forward security. To achieve forward
security, each server Si would need to generate its Diffie-Hellman values dynam-
ically, instead of simply using y′i. Then these values would need to be certified

Threshold Password-Authenticated Key Exchange 395

somehow by Si to protect the client against a man-in-the-middle attack. Details
are beyond the scope of this paper.

Client C Server Si (i ∈ I)

C,I=〈i1,...,ik〉-

ci
R
← Zq

Broadcast: ci
{ci}i∈I¾

x̃, β, γ
R
← Zq

ỹ← gx̃

B← (yβ , gβ)× (EC)
π × (g−1, 1)

V ← (hγgπ, gγ)

τ ← 〈ỹ, ci1 , . . . , cik 〉

σ← ProveΦQ((τ, EC , B, V), (β, π, γ))

∀i ∈ I, ỹi← (y
′
i)
x̃

∀i ∈ I, Ki←H2(I, τ, ỹi)
B,V,ỹ,σ -

τ ← 〈ỹ, ci1 , . . . , cik 〉

If ¬VerifyΦQ((τ, EC , B, V), σ)

Then Abort

DistVerify(τ, B, V)

ỹi← ỹx
′
i

Ki←H2(I, τ, ỹi)

Fig. 1. Protocol P .

4.4 The DistVerify Protocol

The DistVerify protocol takes three parameters, τ , B, and V , and is run by the
servers {Si}i∈I to verify that logg y = logB[2] B[1], i.e., B is an encryption of
1. The parameter V is used in order to allow a proof of security. The protocol
is shown in Figure 2, and uses the standard notation for Lagrange coefficients:
λj,I =

∏

`∈I\{j}
−`
j−` mod q. The basic idea of the protocol is as follows. First

the servers distributively compute Br, thus using the (standard) technique of
randomizing the quotient B[1]/(B[2])x if it is not equal to 1. Then they take the
second component (i.e., (B[2])r) and distributively compute ((B[2])r)x using
their shared secrets. Finally they verify that ((B[2])r)x = (B[1])r, implying
B[1] = (B[2])x, and hence B is an encryption of 1. DistVerify uses an SS-NIZKP
scheme R = (ProveΦR ,VerifyΦR ,SimΦR) over a language defined by a predicate

396 P. MacKenzie, T. Shrimpton, and M. Jakobsson

ΦR that takes elements of Z× (Gq ×Gq)
6 and is defined as

ΦR(i, B, V,Bi, Vi, V
′
i , V

′′
i)

def
= ∃ri, r

′
i, γi, γ

′
i, γ

′′
i : Bi = Bri × (y, g)r

′
i and

Vi = (h
γigri , gγi)andV ′

i = (h
γ′i(V [1])ri , gγ

′
i)and

V ′′
i = (h

γ′′i (V [2])ri , gγ
′′
i).

The algorithms ProveΦR , VerifyΦR , and SimΦR use a random oracle H4.
DistVerify also uses an SS-NIZKP scheme S = (ProveΦS ,VerifyΦS ,SimΦS)

over a language defined by a predicate ΦS that takes elements of Z× {0, 1}∗ ×
Gq × (Gq ×Gq) and is defined as

ΦS(i, τ
′, Ci, Ri)

def
= ∃a, γ : Ci = ga andRi = (h

γ(h′)a, gγ).

The algorithms ProveΦS , VerifyΦS , and SimΦS use a random oracle H5.
Finally, DistVerify uses an SS-NIZKP scheme T = (ProveΦT ,VerifyΦT ,SimΦT)

over a language defined by a predicate ΦT that takes elements of Z× {0, 1}∗ ×
Gq ×Gq ×Gq × (Gq ×Gq) and is defined as

ΦT (i, τ
′, g, Ci, Ci, Ri)

def
= ∃a, γ : Ci = ga andCi = ga andRi = (h

γ(h′)a, gγ).

The algorithms ProveΦT , VerifyΦT , and SimΦT use a random oracle H6.

5 Security of the Protocol

Here we state the DDH assumption. Following that we prove that the protocol
P is secure, based on the DDH assumption.

Decision Diffie-Hellman. Here we formally state the DDH assumption. For
full details, see [6]. Let Gq be as in Section 3, with generator g. For two values
X = gx and Y = gy, let DH(X,Y) = gxy. Let A be an algorithm that on input
(X,Y, Z) outputs “1” if it believes that Z = DH(X,Y), and “0” otherwise. For
any A running in time t

AdvDDH
Gq

(A)
def
= Pr

[

(x, y)
R
← Zq; X ← gx; Y ← gy; Z← gxy : A(X,Y, Z) = 1

]

−Pr
[

(x, y, z)
R
← Zq; X ← gx; Y ← gy; Z← gz : A(X,Y, Z) = 1

]

Let AdvDDH
Gq

(t) = maxA

{

AdvDDH
Gq

(A)
}

, where the maximum is taken over all

adversaries of time complexity at most t. The DDH assumption states that for
t polynomial in κ, AdvDDH

Gq
(t) is negligible.

5.1 Protocol P

Here we prove that protocol P is secure, in the sense that an adversary attack-
ing the system that compromises fewer than k out of n servers cannot determine
session keys with significantly greater advantage than that of an online dictio-
nary attack. Recall that we consider only static compromising of servers, i.e.,
the adversary chooses which servers to compromise before the execution of the
system. Let texp be the time required to perform an exponentiation in Gq.

Threshold Password-Authenticated Key Exchange 397

Step 1: ri, r
′
i, γi, γ

′
i, γ

′′
i

R
← Zq

Bi←Bri × (y, g)r
′
i Vi← (h

γigri , gγi)

V ′i ← (h
γ′i(V [1])ri , gγ

′
i) V ′′i ← (h

γ′′i (V [2])ri , gγ
′′
i)

σi← ProveΦR((i, B, V,Bi, Vi, V
′
i , V

′′
i), (ri, r

′
i, γi, γ

′
i, γ

′′
i))

Broadcast (Bi, Vi, V
′
i , V

′′
i , σi)

Step 2: ∀j ∈ I \ {i} : Receive (Bj , Vj , V
′
j , V

′′
j , σj)

∀j ∈ I \ {i} : If ¬VerifyΦR((j, B, V,Bj , Vj , V
′
j , V

′′
j), σj) Then Abort

(y, g)←
∏

j∈I Bj

τ ′← 〈τ,B, V,Bi1 , . . . , Bik 〉

ai← λi,Ixi Ci← gai Ri← (h
ζ(h′)ai , gζ)

∀j ∈ I : Cj ← (yj)
λj,I

Γi← ProveΦS ((i, τ
′, Ci, Ri), ai)

Broadcast (Ri, Γi)

Step 3: ∀j ∈ I \ {i} : Receive (Rj , Γj)

∀j ∈ I \ {i} : If ¬VerifyΦS ((j, τ
′, Cj , Rj), Γj) Then Abort

Γ ′i ← ProveΦT ((i, τ
′, g, Ci, Ci, Ri), ai)

Broadcast (Ci, Γ
′
i)

Step 4: ∀j ∈ I \ {i} : Receive (Cj , Γ
′
j)

∀j ∈ I \ {i} : If ¬VerifyΦT ((j, τ
′, g, Cj , Cj , Rj), Γ

′
j) Then Abort

If Πj∈ICj 6= y Then Abort

Fig. 2. Protocol DistVerify(τ, B, V) for Server Si (i ∈ I).

Theorem 1. Let P be the protocol described in Figure 1 and Figure 2, using
group Gq, and with a password dictionary of size N (that may be mapped into
Zq). Fix an adversary A that runs in time t, and makes nse, nex, nre queries of
type Send,Execute,Reveal, respectively, and nro queries directly to the random
oracles. Then for t′ = O(t+ (nro + knse + k2nex)texp):

Advdake
P (A) =

nse

N
+O

(

AdvDDH
Gq

(t′) +
n2 + knronse + nron+ (nse + knex)

2

q
+

(nse + knex)(nro + nse + knex)

q2

)

.

Proof: Our proof will proceed by introducing a series of protocols P0, P1, . . . , P7

related to P , with P0 = P . In P7, A will be reduced to simply “guessing” the
correct password πC . We describe these protocols informally in Figure 8. For
each i from 1 to 7, we will prove that the difference between the advantage of A
attacking protocols Pi−1 and Pi is negligible.

398 P. MacKenzie, T. Shrimpton, and M. Jakobsson

µ1, µ2, ν
R
← Zq (e, z1, z2, z3)← Γi

B′← (yµ1 , gµ1)× (EC)
µ2

V ′← (hνgµ2 , gν) B′← (yz1 , gz1)× (EC)
z2 × (B × (g, 1))−e

e←H(τ, EC , B, V,B′, V ′) V ′← (hz3gz2 , gz3)× V −e

z1← βe+ µ1 mod q

z2← πe+ µ2 mod q Return true if e = H(τ, EC , B, V,B′, V ′)

z3← γe+ ν mod q

σ← (e, z1, z2, z3)

Return σ

Fig. 3. ProveΦQ((τ, EC , B, V), (β, π, γ)) and VerifyΦQ((τ, EC , B, V), (e, z1, z2, z3))

µ1, µ2, ν1, ν2, ν3
R
← Zq

B̃i←Bµ1 × (yµ2 , gµ2)

Ṽi← (hν1gµ1 , gν1)

Ṽ ′i ← (hν2(V [1])µ1 , gν2)

Ṽ ′′i ← (hν3(V [2])µ1 , gν3)

e←H(i, B, V,Bi, Vi, V
′
i , V

′′
i , B̃i, Ṽi, Ṽ

′
i , Ṽ

′′
i)

z1← rie+ µ1 mod q

z2← r′ie+ µ2 mod q

z3← γie+ ν1 mod q

z4← γ′ie+ ν2 mod q

z5← γ′′i e+ ν3 mod q

σ← (e, z1, z2, z3, z4, z5)

Return σ

Fig. 4. ProveΦR((i, B, V,Bi, Vi, V
′
i , V

′′
i), (ri, r

′
i, γi, γ

′
i, γ

′′
i))

(e, z1, z2, z3, z4, z5)← Γi

B̃i←Bz1 × (yz2 , gz2)× (Bi)
−e

Ṽi← (hz3gz1 , gz3)× (Vi)
−e

Ṽ ′i ← (hz4(V [1])z1 , gz4)× (V ′i)
−e

Ṽ ′′i ← (hz5(V [2])z1 , gz5)× (V ′′i)
−e

Return true if e = H(i, B, V,Bi, Vi, V
′
i , V

′′
i , B̃i, Ṽi, Ṽ

′
i , Ṽ

′′
i)

Fig. 5. VerifyΦR((i, B, V,Bi, Vi, V
′
i , V

′′
i), (e, z1, z2, z3, z4, z5))

Threshold Password-Authenticated Key Exchange 399

µ, ν
R
← Zq (e, z1, z2)← Γi

W ← gµ

R′← (hν(h′)µ, gν) R′← (hz2(h′)z1(Ri[1])
−e, gz2(Ri[2])

−e)

e←H(i, τ ′, Ci, Ri,W,R′) W ← gz1(Ci)
−e

z1← ae+ µ mod q

z2← γe+ ν mod q Return true if e = H(i, τ ′, Ci, Ri,W,R′)

Γi← (e, z1, z2)

Return Γi

Fig. 6. ProveΦS ((i, τ
′, Ci, Ri), (a, γ)) and VerifyΦS ((i, τ

′, Ci, Ri), Γi)

µ, ν
R
← Zq (e, z1, z2)← Γ ′i

W ← gµ

W ← gµ R′← (hz2(h′)z1(Ri[1])
−e, gz2(Ri[2])

−e)

R′← (hν(h′)µ, gν) W ← gz1(Ci)
−e

e←H(i, τ ′, g, Ci, Ci, Ri,W ,W,R′) W ← gz1(Ci)
−e

z1← ae+ µ mod q

z2← γe+ ν mod q Return true

if e = H(i, τ ′, g, Ci, Ci, Ri,W ,W,R′)

Γ ′i ← (e, z1, z2)

Return Γ ′i

Fig. 7. ProveΦT ((i, τ
′, g, Ci, Ci, Ri), (a, γ)) and VerifyΦT ((i, τ

′, g, Ci, Ci, Ri), Γ
′
i)

We will sketch these proofs here, and leave the details to the full paper.

P0 → P1 The probability of a collision of nonces is easily seen to be negligible.

P1 → P2 This can be shown using a standard reduction from DDH. On input
(X,Y, Z), we plug in random powers of Y for the servers’ local public keys,
and random powers of X for the clients’ ỹ values, and then check H2 queries
for appropriate powers of Z.

P2 → P3 This can be shown using a reduction from DDH. On input (X,Y, Z),
we plug Y in for h = H0(y), and we use X and Z to create (randomized)
encryptions for all V , Vi, V

′
i , V

′′
i , and Ri values. Also, we must factor in the

negligible probability of a simulation error in one of the SS-NIZKP proofs,

P3 → P4 This can be shown using a reduction from DDH. On input (X,Y, Z),
we plug Y in for y, simulate the public shares of the uncompromised servers,
and use X and Z to create (randomized) encryptions for all B values. To
make sure authentication succeeds for a client that uses this B value, we
generate Ci values from uncompromised servers in such as way that the
product is the y value, and we simulate the SS-NIZKP proofs.

400 P. MacKenzie, T. Shrimpton, and M. Jakobsson

P0 The original protocol P .
P1 The nonces are assumed to be distinct (and thus Reveal queries do not reveal

anything that could help in a Test query).
P2 The Diffie-Hellman key exchange between a client and an uncompromised

server is replaced with a perfect key exchange (and thus an adversary that
does not succeed in impersonating a client to an uncompromised server does
not obtain any information that could help in a Test query).

P3 Value V from a client, and values Vi, V
′
i , V

′′
i , Ri from uncompromised servers,

are replaced by random values. The Q-SS-NIZKP σ, and each R-SS-NIZKP
σi, S-SS-NIZKP Γi, and T -SS-NIZKP Γ ′i , are constructed using the associ-
ated simulators.

P4 Value B from a client is replaced with a random value, but the C i values from
uncompromised servers are changed to force the associated authentication to
succeed.

P5 The adversary succeeds if it ever sends a V value associated with the correct
password.

P6 Abort if the adversary creates a new and valid S-SS-NIZKP proof or T -SS-
NIZKP proof associated with an uncompromised server.

P7 Value EC for each client is changed to a random value, and on any adversary
login attempt for C, the Ci values from uncompromised servers are replaced
with values generated to form a random y (so as to force a failure).

Fig. 8. Informal description of protocols P0 through P7

The difficulty is now in performing authentication on B values chosen by
the adversary, since we do not know the secret shares (the xi values) for
the uncompromised servers. Therefore to perform authentication, we plug a
value with a known discrete log in for h = H0(y) so we can decrypt all V ,
Vi, V

′
i , and V ′′

i values, and then use these decryptions to aid in computing
the correct value of gx (even though we don’t know x). Finally, we generate
Ci values from uncompromised servers in such as way that the product is
gx, and we simulate the SS-NIZKP proofs.

P4 → P5 This is straightforward, since this could only increase the probability
of the adversary succeeding.

P5 → P6 This can be shown using a reduction from DDH. On input (X,Y, Z),
we plug Y in for y, simulate the public shares of the uncompromised servers,
and let h′ = X. Given a correct SS-NIZKP for an uncompromised server, we
can compute (h′)x, where y = gx (where x is not known). Then we simply
check if Z = (h′)x.

P6 → P7 This can be shown using a reduction from DDH. On input (X,Y, Z),
we plug Y in for y, simulate the public shares of the uncompromised servers,
and use X and Z to create (randomized) encryptions for all EC values. This
does not affect authentication usingB values generated by clients (since these
values are random at this point, anyway). The difficulty is in obtaining the
right distribution of Ci values while authenticating B values chosen by the

Threshold Password-Authenticated Key Exchange 401

adversary. To do this we use X and Z in our creation of the Bi values for
uncompromised servers, which leaves C i values correct if (X,Y, Z) is a true
DH triple, but has the affect of randomizing the C i values if (X,Y, Z) is a
random triple. Again, the decryptions of V , Vi, V

′
i , and V ′′

i are used to aid in
computing the true gx value (even though we don’t know x) when (X,Y, Z)
is a true DH triple, or the appropriate random value, when (X,Y, Z) is a
random triple.

One can see that in P2, an adversary that does not succeed in impersonating a
client to an uncompromised server gains negligible advantage in determining a
real session key from a random session key. The remainder of the protocols are
used to show that an adversary gains negligible advantage in impersonating a
client over a simple online guessing attack. In particular, in P7 the password is
only used to check V values submitted by the adversary attempting to imper-
sonate a client. The theorem follows.

References

1. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In EUROCRYPT 2000 (LNCS 1807), pp. 139–155, 2000.

2. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In 1st ACM Conference on Computer and Communications

Security, pages 62–73, November 1993.
3. M. Bellare and P. Rogaway. Entity authentication and key distribution. In

CRYPTO ’93 (LNCS 773), pp. 232–249, 1993.
4. M. Bellare and P. Rogaway. Provably secure session key distribution—the three
party case. In 27th ACM Symposium on the Theory of Computing, pp. 57–66, 1995.

5. M. Blum, P. Feldman and S. Micali. Non-interactive zero-knowledge and its ap-
plications. In 20th ACM Symposium on the Theory of Computing, pp. 103–112,
1988.

6. D. Boneh. The decision Diffie-Hellman problem. In Proceedings of the Third Algo-

rithmic Number Theory Symposium (LNCS 1423), pp. 48–63, 1998.
7. C. Boyd. Digital multisignatures. In H. J. Beker and F. C. Piper, editors, Cryp-

tography and Coding, pages 241–246. Clarendon Press, 1986.
8. V. Boyko, P. MacKenzie, and S. Patel. Provably secure password authentication
and key exchange using Diffie-Hellman. In EUROCRYPT 2000 (LNCS 1807), pp.
156–171, 2000.

9. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited.
In 30th ACM Symposium on the Theory of Computing, pp. 209–218, 1998.

10. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally Composable Two-
party Computation. In 34th ACM Symposium on the Theory of Computing, 2002.

11. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In CRYPTO ’89 (LNCS
435), pages 307–315, 1989.

12. A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano and A. Sahai. Robust
non-interactive zero knowledge. In CRYPTO 2001 (LNCS 2139), pp. 566–598,
2001.

13. T. Dierks and C. Allen. The TLS protocol, version 1.0, IETF RFC 2246, January
1999.

402 P. MacKenzie, T. Shrimpton, and M. Jakobsson

14. W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. Info.

Theory, 22(6):644–654, 1976.
15. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete

logarithm. IEEE Trans. Info. Theory, 31:469–472, 1985.
16. P. Feldman. A Practical Scheme for Non-Interactive Verifiable Secret Sharing. In

28th IEEE Symp. on Foundations of Computer Science, pp. 427-437, 1987
17. W. Ford and B. S. Kaliski, Jr. Server-assisted generation of a strong secret from

a password. In Proceedings of the 5th IEEE International Workshop on Enterprise

Security, 2000.
18. Y. Frankel, P. MacKenzie, and M. Yung. Adaptively-secure distributed threshold

public key systems. In European Symposium on Algorithms (LNCS 1643), pp. 4–27,
1999.

19. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. The (in)security of distributed
key generation in dlog-based cryptosystems. In EUROCRYPT ’99 (LNCS 1592),
pp. 295–310, 1999.

20. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS signa-
tures. In EUROCRYPT ’96 (LNCS 1070), pages 354–371, 1996.

21. O. Goldreich and Y. Lindell. Session-key generation using human passwords only.
In CRYPTO 2001 (LNCS 2139), pp. 408–432, 2001.

22. O. Goldreich, S. Micali, and A. Wigderson. How to Play any Mental Game – A
Completeness Theorem for Protocols with Honest Majority. In 19th ACM Sympo-

sium on the Theory of Computing, pp. 218–229, 1987.
23. D. Jablon. Strong password-only authenticated key exchange. ACM Computer

Communication Review, ACM SIGCOMM, 26(5):5–20, 1996.
24. D. Jablon. Password authentication using multiple servers. In em RSA Conference

2001, Cryptographers’ Track (LNCS 2020), pp. 344–360, 2001.
25. J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key exchange

using human-memorable passwords. In EUROCRYPT 2001 (LNCS 2045), pp. 475–
494, 2001.

26. P. MacKenzie, S. Patel, and R. Swaminathan. Password authenticated key ex-
change based on RSA. In ASIACRYPT 2000, (LNCS 1976), pp. 599–613, 2000.

27. M. Naor and M. Yung. Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks. In 22nd ACM Symposium on the Theory of Computing, pp.
427–437, 1990.

28. SSH Communications Security. http://www.ssh.fi, 2001.
29. T. Wu. The secure remote password protocol. In Proceedings of the 1998 Internet

Society Network and Distributed System Security Symposium, pp. 97–111, 1998.

