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Abstract. We consider the problem of constructing randomness extrac-
tors that are locally computable; that is, read only a small number of
bits from their input. As recently shown by Lu (CRYPTO ‘02 ), locally
computable extractors directly yield secure private-key cryptosystems in
Maurer’s bounded storage model (J. Cryptology, 1992).
We suggest a general “sample-then-extract” approach to constructing
locally computable extractors. Plugging in known sampler and extrac-
tor constructions, we obtain locally computable extractors, and hence
cryptosystems in the bounded storage model, whose parameters improve
upon previous constructions and come quite close to the lower bounds.
The correctness of this approach follows from a fundamental lemma of
Nisan and Zuckerman (J. Computer and System Sciences, 1996), which
states that sampling bits from a weak random source roughly preserves
the min-entropy rate. We also present a refinement of this lemma, show-
ing that the min-entropy rate is preserved up to an arbitrarily small
additive loss, whereas the original lemma loses a logarithmic factor.

1 Introduction

Maurer’s bounded storage model for private-key cryptography [2] has been the
subject of much recent activity. In this model, one assumes that there is pub-
lic, high-rate source of randomness and that all parties have limited storage so
that they cannot record all the randomness from the source. Remarkably, this
quite plausible model makes it possible to construct private-key cryptosystems
that are information-theoretically secure and require no unproven complexity
assumptions (in contrast to most of modern cryptography). Intuitively, a shared
secret key can be used by legitimate parties to randomly select bits from the ran-
dom source about which the adversary has little information (due to the bound
on its storage). With some further processing, the legitimate parties can convert
these unpredictable bits into ones which the adversary cannot distinguish from
truly random (in an information-theoretic sense), and hence they can safely be
used for cryptographic purposes, e.g. as a one-time pad for encryption.

? A preliminary version of this paper has appeared on the Cryptology e-print
archive [1] and a full version will appear in the Journal of Cryptology.
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A sequence of works [2–8] has given increasingly secure and efficient protocols
in this model. In particular, the works of Aumann, Ding, and Rabin [5, 6] showed
that protocols in this model have the novel property of “everlasting security”
— the security is preserved even if the key is reused an exponential number of
times and is subsequently revealed to the adversary.

Recently, Lu [8] showed that work in this model can be cast nicely in the
framework of randomness extractors. Extractors, introduced by Nisan and Zuck-
erman [9], are procedures for extracting almost-uniform bits from sources of
biased and correlated bits. These powerful tools have been the subject of in-
tense study, and have found many applications to a wide variety of topics in the
theory of computation. (See the surveys [10, 11].) One of the first applications,
in the original paper of Nisan and Zuckerman, was to construct pseudorandom
generators for space-bounded computation. Thus, they seem a natural tool to
use in the bounded storage model, and indeed Lu [8] showed that any extractor
yields secure private-key cryptosystems in the bounded storage model. However,
the efficiency considerations of the bounded storage model require a nonstan-
dard property from extractors — namely that they are locally computable;1 that
is, they can be computed by reading only a few bits from the random source.
Lu constructed locally computable extractors by first constructing locally com-
putable error-correcting codes, and then plugging them into the specific extractor
construction of Trevisan [13].

In this paper, we suggest a general “sample-then-extract” approach to con-
structing locally computable extractors: use essentially any randomness-efficient
“sampler” to select bits from the source and then apply essentially any extractor
to the selected bits. Plugging in known sampler and extractor constructions, we
obtain locally computable extractors, and hence cryptosystems in the bounded
storage model, whose parameters improve upon previous constructions and come
quite close to the lower bounds.

The correctness of this approach follows directly from a fundamental lemma
of Nisan and Zuckerman [9]. Roughly speaking, the lemma states that a random
of sample of bits from a string of high min-entropy2 also has high min-entropy.
We also present a refinement of this lemma, showing that the min-entropy rate
is preserved up to an arbitrarily small additive loss, whereas the original lemma
loses a logarithmic factor. This improvement is not necessary for the sample-
then-extract approach to work, but increases its efficiency. Together with some
of our techniques for constructing samplers, it has also played a role in the recent
explicit construction of extractors that are “optimal up to constant factors” [14].

In retrospect, several previous cryptosystems in the bounded storage model,
such as [3] and [5], can be viewed as special cases of the sample-then-extract

1 This terminology was suggested by Yan Zong Ding and we prefer it to the termi-
nology “on-line extractors,” which was used (with different meanings) in [12, 8]. The
issue of “local computation” versus “on-line computation” is discussed in more detail
in Section 3.

2 Like Shannon entropy, the min-entropy of a probability distribution X is a measure
of the number of bits of “randomness” in X. A formal definition is given in Section 3.
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approach, with particular choices for the extractor and sampler. By abstracting
the properties needed from the underlying tools, we are able to use state-of-the-
art extractors and samplers, and thereby obtain our improvements.

2 Preliminaries

Except where otherwise noted, we refer to random variables taking values in
discrete sets. We generally use capital letters for random variables and lower-

case letters for specific values, as in Pr [X = x]. If S is a set, then x
R←S indicates

that x is selected uniformly from S. For a random variable A and an event E,
we write A|E to mean A conditioned on E.
The statistical difference (or variation distance) between two random vari-

ables X, Y taking values in a universe U is defined to be

∆(X,Y )
def
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We say X and Y are ε-close if ∆(X,Y ) ≤ ε.

The min-entropy of X is H∞(X)
def
= minx log(1/Pr[X = x]). (All logarithms

in this paper are base 2.) Intuitively, min-entropy measures randomness in the
“worst case,” whereas standard (Shannon) entropy measures the randomness in
X “on average.” X is called a k-source if H∞(X) ≥ k, i.e. for all x, Pr [X = x] ≤
2−k.

3 The Bounded Storage Model

The Random Source. The original model of Maurer [2] envisioned the random
source as a high-rate stream of perfectly random bits being broadcast from
some natural or artificial source of randomness. However, since it may difficult
to obtain perfectly random bits from a physical source, particularly at a high
rate, we feel it is important to investigate the minimal conditions on the random
source under which this type of cryptography can be performed. As noted in [8,
7], the existing constructions still work even if we only assume that the source
has sufficient “entropy”. Below we formalize this observation, taking particular
note of the kind of independence that is needed when the cryptosystem is used
many times.
We model the random source as a sequence of random variables X1, X2, . . .,

each distributed over {0, 1}n, where Xt is the state of the source at time period
t. To model a random source which is a high-rate “stream” of bits, the Xt’s can
be thought of as a partition of the stream into contiguous substrings of length
n. However, one may also consider random sources that are not a stream, but
rather a (natural or artificial) “oracle” of length n, which changes over time and
can be probed at positions of one’s choice. In both cases, n should be thought
of as very large, greater than the storage capacity of the adversary (and the
legitimate parties).
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To obtain the original model of a perfectly random stream, each the Xt’s can
be taken to be uniform on {0, 1}t and independent of each other. Here we wish
to allow biases and correlations in the source, only assuming that each Xt has
sufficient randomness, as measured by min-entropy (as advocated in [15, 16]).
That is, we will require each Xt to be an αn-source for some α > 0. Using a
worst-case measure like min-entropy rather than Shannon entropy is important
because we want security to hold with high probability and not just “on average”.
(The results will also apply for random sources that are statistically close to
having high min-entropy, such as those of high Renyi entropy.)
For our cryptosystems, we will actually need to require that the random

source has high min-entropy conditioned on the future.

Definition 1. A sequence of random variables X1, X2, . . ., each distributed over
{0, 1}n is a reverse block source of entropy rate α if for every t ∈ N and every
xt+1, xt+2, . . ., the random variable Xt|Xt+1=xt+1,Xt+2=xt+2,... is an αn-source.

As the terminology suggests, this is the same as the Chor-Goldreich [15] notion of
a block source, but “backwards” in time. Intuitively, it means that Xt possesses
αn bits of randomness that will be “forgotten” at the next time step. This is
somewhat less natural than the standard notion of a (forward) block source, but
it still may be a reasonable model for some physical sources of randomness that
are not perfectly random.3 Below we will see why some condition of this form
(high entropy conditioned on the future) is necessary for the cryptography. In the
special case α = 1, Definition 1 is equivalent to requiring that Xt’s are uniform
and independent, so in this case the issue of reversal is moot.

Cryptosystems. Here, as in previous works, we focus on the task of using a
shared key to extract pseudorandom bits from the source. These pseudorandom
bits can then be used for private communication or message authentication.
A pseudorandom extraction scheme in the bounded storage model is a function
Ext : {0, 1}n × {0, 1}d → {0, 1}m (typically with d,m ¿ n). Such a scheme
is to be used as follows. Two parties share a key K ∈ {0, 1}d. At time t, they
apply Ext(·,K) to the random source Xt to obtain m pseudorandom bits, given
by Yt = Ext(Xt,K). At time t + 1 (or later), Yt will be pseudorandom to the
adversary (if the scheme is secure), and hence can be used by the legitimate
parties as a shared random string for any purpose (e.g. as a one-time pad for
encryption). The pseudorandomness of Yt will rely on the fact that, at time t+1
and later, Xt is no longer accessible to the adversary. More generally, we need
Xt to be unpredictable from future states of the random source, as captured
by our notion of a reverse block source. Note that even if Yt will only be used
exactly at time t+1, we still need Xt to have high min-entropy given the entire
future, because the adversary can store Yt.
We now formally define security for a pseudorandom extraction scheme.

Let βn be the bound on the storage of the adversary A, and denote by St ∈
3 The consideration of such sources raises interesting philosophical questions: does the
universe keep a perfect record of the past? If not, then reverse block sources seem
plausible.



On Constructing Locally Computable Extractors 65

{0, 1}βn the state of the adversary at time t. For a sequence of random vari-
ables Z1, Z2, . . ., we will use the shorthand Z[a,b] = (Za, Za+1, . . . , Zb), Z[a,∞) =
(Za, Za+1, . . .). Following the usual paradigm for pseudorandomness, we consider
the adversary’s ability to distinguish two experiments — the “real” one, in which
the extraction scheme is used, and an “ideal” one, in which truly random bits
are used. Let A be an arbitrary function representing the way the adversary
updates its storage and attempts to distinguish the two experiments at the end.

Real Experiment: Let X1, X2, . . . be the random source, and let K
R←{0, 1}d.

For all t, let Yt = Ext(Xt,K) be the extracted bits. Let S0 = 0
βn, and for t =

1, . . . , T , let St = A(Y[1,t−1], St−1, Xt). Output A(Y[1,T ], ST , X[T+1,∞),K) ∈
{0, 1}.

Ideal Experiment: Let X1, X2, . . . be the random source, and let K
R←{0, 1}d.

For all t, let Yt
R← {0, 1}m. Let S0 = 0

βn, and for t = 1, . . . , T , let St =
A(Y[1,t−1], St−1, Xt). Output A(Y[1,T ], ST , X[T+1,∞),K) ∈ {0, 1}.

Note that at each time step we give the adversary access to all the past Yi’s
“for free” (i.e. with no cost in the storage bound), and in the last time step, we
give the adversary the adversary access to all future Xi’s and the key K. The
benefits of doing this are explained below.

Definition 2. We call Ext : {0, 1}n × {0, 1}d → {0, 1}m ε-secure for storage
rate β and entropy rate α if for every reverse block source (Xt) of entropy rate
α, every adversary A with storage bound βn, and every T > 0, A distinguishes
between the real and ideal experiments with advantage at most T · ε.

Remarks:

– In the real experiment, we give the extracted strings Yt explicitly to the
adversary, as is typical in definitions of pseudorandomness. However, when
they are used in a cryptographic application (e.g. as one-time pads), they of
course will not be given explicitly to the adversary. The string Yt−1 extracted
at time t−1 is not given to the adversary (i.e. is not used in the application)
until time t. As mentioned above, this is crucial for security.

– The definition would be interesting even if Y1, . . . , Yt−2 were not given to the
adversary at time t, (i.e. St = A(Yt−1, St−1, Xt)), and ifK andXT+2, XT+3, . . .
were not given to the adversary at the end. Giving all the previous Yi’s im-
plies that it is “safe” to use Yi at any time period after i (rather than
exactly at time i + 1). Giving the adversary all subsequent Xi’s at the end
is to guarantee that the security does not deteriorate if the adversary waits
and watches the source for some future time periods. Giving the adversary
the key at the end means that even if the secret key is compromised, earlier
transactions remain secure. This is the remarkable property of “everlasting
security” noticed and highlighted by [5].

– We require that the security degrade only linearly with the number of times
the same key is reused.
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– No constraint is put on the computational power of the adversary except for
the storage bound of βn (as captured by St ∈ {0, 1}βn). This means that the
distributions of (Y[1,T−1], ST , X[T+1,∞),K) in the real and ideal experiments
are actually close in a statistical sense — they must have statistical difference
at most T · ε.

– The definition is impossible to meet unless α > β: If α ≤ β, we can take
each Xt to have its first αn bits uniform and the rest fixed to zero. Then an
adversary with βn storage can entirely record Xt, and thus can compute Yt

once K is revealed. (Even if K is not revealed, in this example the bounded-
storage model still clearly provides no advantage over the standard private-
key setting, and hence is subject to the usual limitations on information-
theoretic security [17].)

As usual, the above definition implies that to design a cryptosystem (e.g.
private-key encryption or message authentication) one need only prove its secu-
rity in the ideal experiment, where the two parties effectively share an infinite
sequence of random strings Y1, Y2, . . .. Security in the bounded storage model
immediately follows if these random Yi’s are then replaced with ones produced
by a secure pseudorandom extraction scheme.

Efficiency Considerations. In addition to security, it is important for the extrac-
tion scheme to be efficient. In the usual spirit of cryptography, we would like the
honest parties to need much smaller resources than the adversary is allowed. In
this case, that means we would like the computation of Ext to require much less
space than the adversary’s storage bound of βn. Note that the honest parties
will have to store the entire extracted key Yt ∈ {0, 1}m during time t (when it is
not yet safe to use), so reducing their space to m is the best we can hope for (and
since we envision m ¿ n, this is still very useful). However, since n is typically
envisioned to be huge, it is preferable to reduce not just the space for Ext to
much less than n, but also the time spent.4 Thus, we adopt as our efficiency
measure the number of bits read from the source. Of course, once these bits are
read, it is important that the actual computation of Ext is efficient with respect
to both time and space. In our constructions (and all previous constructions),
Ext can be computed in polynomial time and polylogarithmic work space (in-
deed even in NC). Thus the total storage required by the legitimate parties is
dominated by the number of bits read from the source.
The following (proven in the full version) shows that the number of bits read

from the source must be linear in m, and must grow when the difference between
the entropy rate and storage rate goes to zero.

Proposition 3. If Ext : {0, 1}n × {0, 1}d → {0, 1}m is an ε-secure pseudoran-
dom extraction scheme for storage rate β and entropy rate α, then Ext(·,K)
depends on at least (1− ε− 2−m) · (1/(α− β)) ·m bits of its input (on average,
taken over K).

4 If having Ext computable in small space with one pass through the random source
is considered sufficiently efficient, then the work of Bar-Yossef et al. [12] is also
applicable here. See Section 4.
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reference key length # bits read restrictions

[3] O(log n) O(m/ε2) interactive

[4] O(log n · log(1/ε)) O(m · log(1/ε)) α = 1,β < 1/m

[5] O(m · log n · log(1/ε)) O(m · log(1/ε))

[6] O(log n · log(1/ε)) O(m · log(1/ε)) α = 1, β < 1/ logm

[7] O(log n · log(1/ε)) O(m · log(1/ε))

[8] O(m · (log n+ log(1/ε))) O(m · log(1/ε))

[8] O((log2(n/ε)/ logn)) O(m · log(1/ε)) m ≤ n1−Ω(1)

here O(log n+ log(1/ε)) O(m+ log(1/ε)) ε > exp(−n/2O(log∗ n))

Fig. 1. Comparison of pseudorandom extraction schemes in the bounded storage
model. Parameters are for ε-secure schemes Ext : {0, 1}n × {0, 1}d → {0, 1}m, for
constant storage rate β and entropy rate α, where α > β. We only list the parameters
for the case that the number of bits read from the source is o(n), as n is assumed to
be huge and infeasible.

Another common complexity measure in cryptography is the key length,
which should be minimized. Figure 1 describes the performance of previous
schemes and our new constructions with respect to these two complexity mea-
sures.5 With respect to both measures, our constructions are within a constant
factor of optimal. In fact, for the number of bits read, this constant factor can
be made arbitrarily close to 1.

We now touch upon a couple of additional efficiency considerations. First,
if the random source is indeed a high-rate stream (as opposed to an “oracle
source”), it is important that the positions to be read from the source can be
computed offline (from just the key) and sorted so that they can be quickly read
in order as the stream goes by. This is the case for our scheme and previous ones.

Second, one can hope to reduce the space of the legitimate parties to exactly
m+d (i.e., the length of the extracted string plus the key). That is, even though
the schemes read more than m bits from the source, the actual computation of
the m-bit extracted string can be done “in place” as the bits from the source are
read. This property holds for most of the previous constructions, as each bit of
the extracted string is a parity of O(log(1/ε)) bits of the source. Our construction
does not seem to have this property in general (though specific instantiations
may); each bit of the output can be a function of the entire O(m + log(1/ε))
bits read from the source. Still the space used by our scheme is O(m+log(1/ε)),
only a constant factor larger than optimal.

5 Most of the previous schemes were explicitly analyzed only for the case of a perfectly
random source, i.e. α = 1, but the proofs actually also work for weak random sources
provided α > β (except where otherwise noted) [8]. Also note that the schemes with
key length greater than m do not follow trivially from the one-time pad, because the
same key can be used many times.
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4 Locally Computable Extractors

In this section, we define extractors and locally computable extractors, and recall
Lu’s result [8] about their applicability to the bounded storage model. Then we
discuss averaging samplers and describe how using them to sample bits from
a random source preserves the min-entropy rate, via a lemma of Nisan and
Zuckerman [9] which we refine. Finally, we give our general sample-then-extract
construction which combines any extractor and any averaging sampler to yield
a locally computable extractor.

An extractor is a procedure for extracting almost-uniform bits from any ran-
dom source of sufficient min-entropy. This is not possible to do deterministically,
but it is possible using a short seed of truly random bits, as captured in the fol-
lowing definition of Nisan and Zuckerman.

Definition 4 ([9]). Ext : {0, 1}n×{0, 1}d → {0, 1}m is a strong6 (k, ε)-extractor
if for every k-source X, the distribution Ud ◦ Ext(X,Ud) is ε-close to Ud × Um.

The goal in constructing extractors is to minimize the seed length d and
maximize the output length m. We will be precise about the parameters in
later sections, but, for reference, an “optimal” extractor has a seed length of
d = O(log n+log(1/ε)) and an output length of m = k−O(log(1/ε)), i.e. almost
all of the min-entropy is extracted using a seed of logarithmic length.

Recently, Lu proved that any extractor yields secure cryptosystems in the
bounded storage model:

Theorem 5 (implicit in [8]). If Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong
(δn− log(1/ε), ε)-extractor, then for any β > 0, Ext is an 2ε-secure pseudoran-
dom extraction scheme for storage rate β and entropy rate β + δ.

However, as noted by Lu, for a satisfactory solution to cryptography in the
bounded storage model, the extractor should only read only a few bits from the
source.

Definition 6. Ext : {0, 1}n × {0, 1}d → {0, 1}m is t-locally computable (or t-
local) if for every r ∈ {0, 1}d, Ext(x, r) depends on only t bits of x, where the
bit locations are determined by r.

Thus, in addition to the usual goals of minimizing d and maximizing m, we
also wish to minimize t. Bar-Yossef, Reingold, Shaltiel, and Trevisan [12] studied
a related notion of on-line extractors, which are required to be computable in
small space in one pass. They show that space approximately m is necessary
and sufficient to evaluate extractors with output length m. Since the small-
space requirement is weaker than being locally computable, their lower bound

6 A standard (i.e. non-strong) extractor requires only that Ext(X,Ud) is ε-close to
uniform.
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also applies here.7 But a stronger lower bound for locally computable extractors
can be obtained by combining Proposition 3 and Theorem 5 with β = 0, or by
mimicking the proof of Proposition 3 directly for t-local extractors to obtain the
following slightly better bound:

Proposition 7. If Ext : {0, 1}n × {0, 1}d → {0, 1}m is a t-local strong (δn, ε)-
extractor, then t ≥ (1− ε− 2−m) · (1/δ) ·m.

Lu [8] observed that the encryption schemes of Aumann, Ding, and Rabin [4–
6] can be viewed as locally computable extractors, albeit with long seeds. He
constructed locally computable extractors with shorter seeds based on Trevisan’s
extractor [13]. The construction of Dziembowski and Maurer [7] is also a locally
computable extractor. The parameters of these constructions can be deduced
from Figure 1.
Our construction of locally computable extractors is based on a fundamental

lemma of Nisan and Zuckerman [9], which says that if one samples a random
subset of bits from a weak random source, the min-entropy rate of the source is
(nearly) preserved. More precisely, if X ∈ {0, 1}n is a δn-source and XS ∈ {0, 1}t
is the projection of X onto a random set S ⊂ [n] of t positions, then, with high
probability, XS is ε-close to a δ′t-source, for some δ′ depending on δ. Thus,
to obtain a locally computable extractor, we can simply apply a (standard)
extractor to XS , and thereby output roughly δ′t almost-uniform bits. That is,
part of the seed of the locally computable extractor will be used to select S, and
the remainder as the seed for applying the extractor to XS .
However, choosing a completely random set S of positions is expensive in the

seed length, requiring approximately |S| · log n random bits. (This gives a result
analogous to [5], because |S| ≥ m.) To save on randomness, Nisan and Zucker-
man [9] showed that S could be sampled in a randomness-efficient manner, using
k-wise independence and/or random walks on expander graphs. More generally,
their proof only requires that w.h.p. S has large intersection with any subset of
[n] of a certain density (cf., [18]). In order to achieve improved performance,
we will impose a slightly stronger requirement on the sampling method: for any
[0, 1]-valued function, w.h.p. its average on S should approximate its average on
[n]. Such sampling procedures are known as averaging (or oblivious) samplers,
and have been studied extensively [19–22]. Our definition differs slightly from the
standard definition, to allow us to obtain some savings in parameters (discussed
later).

Definition 8. A function Samp : {0, 1}r → [n]t is a (µ, θ, γ) averaging sampler
if for every function f : [n] → [0, 1] with average value 1

n

∑

i f(i) ≥ µ, it holds
that

Pr
(i1,...,it)

R
←Samp(Ur)





1

t

t
∑

j=1

f(ij) < µ− θ



 ≤ γ.

7 This is because their space lower bounds apply also to a nonuniform branching
program model of computation, where the space is always at most the number of
bits read from the input.



70 S. Vadhan

Samp has distinct samples if for every x ∈ {0, 1}r, the samples produced by
Samp(x) are all distinct.

That is, for any function f whose average value is at least µ, with high
probability (i.e., at least 1 − γ) the sampler selects a sample of positions on
which the average value of f is not much smaller than µ. The goal in constructing
averaging samplers is usually to simultaneously minimize the randomness r and
sample complexity t. We will be precise about the parameters in later sections,
but, for reference, an “optimal” averaging sampler uses only t = O(log(1/γ))
samples and r = O(log n+ log(1/γ)) random bits (for constant µ, θ).
In contrast to most applications of samplers, we will not necessarily be inter-

ested in minimizing the sample complexity. Ideally, we prefer samplers where the
number of distinct samples can be chosen anywhere in the interval [t0, n], where
t0 is the minimum possible sample complexity. (Note that without the require-
ment of distinct samples, the number of samples can be trivially increased by
repeating each sample several times.) Another atypical aspect of our definition is
that we make the parameter µ explicit. Averaging samplers are usually required
to give an approximation within additive error θ regardless of the average value
of f , but being explicit about µ will allow us to obtain some savings in the
parameters.
Using averaging samplers (rather than just samplers that intersect large sets)

together with an idea from [23] allows us to obtain a slight improvement to the
Nisan–Zuckerman lemma. Specifically, Nisan and Zuckerman show that sampling
bits from a source of min-entropy rate δ yields a source of min-entropy rate
Ω(δ/ log(1/δ)); our method can yield min-entropy rate δ − τ for any desired τ .
For a string x ∈ {0, 1}n and a sequence s = (i1, . . . , it) ∈ [n]t, define xs ∈

{0, 1}t to be the string xi1xi2 · · ·xit . Recall that for a pair of jointly distributed
random variables (A,B), we write B|A=a for B conditioned on the event A = a.

Lemma 9 (refining [9]). Suppose Samp : {0, 1}r → [n]t is an (µ, θ, γ) averag-
ing sampler with distinct samples for µ = (δ−2τ)/ log(1/τ) and θ = τ/ log(1/τ).
Then for every δn-source X on {0, 1}n, the random variable (Ur, XSamp(Ur))

is (γ + 2−Ω(τn))-close to (A,B) where A is uniform on {0, 1}r and for every
a ∈ {0, 1}r,8 the random variable B|A=a is (δ − 3τ)t-source.

The above lemma is where we use the fact that the sampler has distinct
samples. Clearly, sampling the same bits of X many times cannot increase the
min-entropy of the output, whereas the above lemma guarantees that the min-
entropy grows linearly with t, the number of samples.
An alternative method to extract a shorter string from a weak random source

while preserving the min-entropy rate up to a constant factor was given by Rein-
gold, Shaltiel, and Wigderson [18], as a subroutine in their improved extractor
construction. However, the string produced by their method consists of bits of

8 Intuitively, the reason we can guarantee that B has high min-entropy conditioned
on every value of A, is that the “bad” values of A are absorbed in the γ + 2−Ω(τn)

statistical difference.
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an encoding of the source in an error-correcting code rather than bits of the
source itself, and hence is not good for constructing locally computable extrac-
tors (which was not their goal). As pointed out to us by Chi-Jen Lu and Omer
Reingold, Lemma 9 eliminates the need for error-correcting codes in [18].
The proof of Lemma 9 is deferred to the full version.Given the lemma, it

follows that combining an averaging sampler and an extractor yields a locally
computable extractor.

Theorem 10 (sample-then-extract). Suppose that Samp : {0, 1}r → [n]t is
an (µ, θ, γ) averaging sampler with distinct samples for µ = (δ − 2τ)/ log(1/τ)
and θ = τ/ log(1/τ). and Ext : {0, 1}t×{0, 1}d → {0, 1}m is a strong ((δ−3τ)t, ε)
extractor. Define Ext′ : {0, 1}n × {0, 1}r+d → {0, 1}m by

Ext′(x, (y1, y2)) = Ext(xSamp(y1), y2).

Then Ext′ is a t-local strong (δn, ε+ γ + 2−Ω(τn)) extractor.

Proof. For every (y1, y2), Ext
′(x, (y1, y2)) only reads the t bits of x selected by

Samp(y1), so Ext
′ is indeed t-local. We now argue that it is a (δn, ε + γ +

2−Ω(τn)) extractor. Let X be any δn-source. We need to prove that the random
variable Z = (Ur, Ud,Ext

′(X, (Ur, Ud))) = (Ur, Ud,Ext(XSamp(Ur), Ud)) is close

to uniform. By Lemma 9, (Ur, XSamp(Ur)) is (γ+2
−Ω(τn))-close to (A,B) where A

is uniform on {0, 1}r and B|A=a is a (δ−3τ)t-source for every a. This implies that
Z is (γ+2−Ω(τn))-close to (A,Ud,Ext(B,Ud)). Since Ext is a strong ((δ−3τ)t, ε)
extractor, (Ud,Ext(B|A=a, Ud)) is ε-close to Ud×Um for all a. This implies that
(A,Ud,Ext(B,Ud)) is ε-close to A× Ud × Um = Ur × Ud × Um. By the triangle
inequality, Z is (ε+ γ + 2−Ω(τn))-close to Ur × Ud × Um. ut
For intuition about the parameters, consider the case when δ > 0 is an

arbitrary constant, τ = δ/6, and γ = ε. Then using “optimal” averaging samplers
and extractors will give a locally computable extractor with seed length r+ d =
O(log n+ log(1/ε)) and output length m = Ω(δt)−O(log(1/ε)). This matches,
up to constant factors, the seed length of an optimal extractor (local or not) and
the optimal relationship between the output length and the number of bits read
from the source.
We stress that the above refinement to the Nisan–Zuckerman lemma is not

necessary to achieve these parameters (or those in Figure 1). Those parameters
can be obtained by applying the sample-then-extract method with the original
lemma and sampler of Nisan and Zuckerman [9] together with the extractor of
Zuckerman [21]. The advantage provided by the refined lemma lies in the hidden
constant in the number of bits read from the source. Specifically, by taking
τ → 0, the ratio between m and t approaches δ, which is essentially optimal by
Proposition 7.

5 Non-Explicit Constructions

In this section, we describe the locally computable extractors obtained by using
truly optimal extractors and samplers in Theorem 10. This does not give effi-
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cient constructions of locally computable extractors, because optimal extractors
and samplers are only known by nonconstructive applications of the Probabilis-
tic Method. However, it shows what Theorem 10 will yield as one discovers
constructions which approach the optimal bounds. In fact, the explicit construc-
tions known are already quite close, and (as we will see in Section 6) match
the optimal bounds within constant factors for the range of parameters most
relevant to the bounded storage model.

5.1 The Extractor

The Probabilistic Method yields extractors with the following expressions for
the seed length d and output length m, both of which are tight up to additive
constants [24].

Lemma 11 (nonconstructive extractors (cf., [21, 24])). For every n, k ≤
n, ε > 0, there exists a strong (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m
with d = log(n− k) + 2 log(1/ε) +O(1), m = k − 2 log(1/ε)−O(1).

5.2 The Sampler

Similarly, the following lemma states the averaging samplers implied by the
Probabilistic Method. There are matching lower bounds for both the randomness
complexity and the sample complexity [20] (except for the dependence on µ,
which was not considered there). The proof of the lemma (given in the full
version) follows the argument implicit in [21], with the modifications that it
makes the dependence on µ explicit and guarantees distinct samples.

Lemma 12 (nonconstructive samplers). For every n ∈ N, 1/2 > µ > θ > 0,
γ > 0, there is a (µ, θ, γ) averaging sampler Samp : {0, 1}r → [n]t that uses

– t distinct samples for any t ∈ [t0, n], where t0 = O
(

µ
θ2 · log 1

γ

)

.

– r = log(n/t) + log(1/γ) + 2 log(µ/θ) + loglog(1/µ) +O(1) random bits.

5.3 The Local Extractor

Plugging the above two lemmas into Theorem 10, we obtain the following.

Theorem 13 (nonconstructive local extractors). For every n ∈ N, δ > 0,
ε > 0, and m ≤ δn/2−2 log(1/ε)−O(1), there is a t-local strong (δn, ε) extractor
Ext : {0, 1}n × {0, 1}d → {0, 1}m with

– d = log n+ 3 log(1/ε) + loglog(1/δ) +O(1).

– t = O
(

m+log(1/δ)·log(1/ε)
δ

)

.

In fact, the hidden constant for the m/δ term in the expression for t can be
made arbitrarily close to the optimal value of 1 (by paying a price in the other
hidden constants). We defer the exact expressions to the full version.
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6 Explicit Constructions

In the previous section, we showed that very good locally computable extractors
exist, but for applications we need explicit constructions. For an extractor Ext :
{0, 1}n × {0, 1}d → {0, 1}m or a sampler Samp : {0, 1}r → [n]t, explicit means
that it is computable in polynomial time and polylogarithmic work-space with
respect to its input+output lengths (i.e., n+d+m for an extractor and r+t log n
for a sampler). For a t-local extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, we give
it oracle access to its first input and view the input length as log n+ t+ d (log n
to specify the length of the oracle, and t as the number of bits actually read).
There are many explicit constructions of averaging samplers and extractors in

the literature and thus a variety of local extractors can be obtained by plugging
these into Theorem 10. We do not attempt to describe all possible combinations
here, but rather describe one that seems particularly relevant to cryptography in
the bounded storage model. We recall the following features of this application:

– The local extractor should work for sources of min-entropy (α − β)n −
log(1/ε), which is Ω(n) for most natural settings of the parameters. (Re-
call that α is the entropy rate of the random source and β is the storage rate
of the adversary.) That is, we can concentrate on constant min-entropy rate.

– Optimizing the number of bits read from the source seems to be at least as
important as the seed length of the extractor.

– The error ε of the extractor will typically be very small, as this corresponds
to the “security” of the scheme.

– We are not concerned with extracting all of the entropy from the source,
since we anyhow will only be reading a small fraction of the source.

6.1 The Extractor

With the above criteria in mind, the most natural extractor to use (in Theo-
rem 10) is Zuckerman’s extractor for constant entropy rate [21]:

Lemma 14 ([21]). For every constant δ > 0, every n ∈ N, and every ε >
exp(−n/2O(log∗ n)), there is an explicit strong (δn, ε)-extractor Ext : {0, 1}n ×
{0, 1}d → {0, 1}m with d = O(log n+ log(1/ε)) and m = δn/2.

6.2 The Sampler

For the averaging sampler, the well-known sampler based on random walks on
expander graphs provides good parameters for this application. Indeed, its ran-
domness and sample complexities are both optimal to within a constant factor
when µ and θ are constant (and the minimal sample complexity is used). How-
ever, we cannot apply it directly because it does not guarantee distinct samples,
and we do not necessarily want to minimize the number of samples. Nisan and
Zuckerman [9] presented some methods for getting around these difficulties, but
their analysis does not directly apply here since we impose a stronger require-
ment on the sampler. (As mentioned earlier, we could use their sampler with
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their version of Lemma 9, at the price of worse constant factors in the number
of bits read from the source.) Thus we introduce some new techniques to deal
with these issues.

The following gives a modification of the expander sampler which guarantees
distinct samples.

Lemma 15 (modified expander sampler). For every 0 < θ < µ < 1, γ > 0,
and n ∈ N, there is an explicit (µ, θ, γ) averaging sampler Samp : {0, 1}r → [n]t
that uses

– t distinct samples for any t ∈ [t0, n], where t0 = O
(

1
θ2 · log(1/γ)

)

, and

– r = log n+O(t · log(1/θ)) random bits.

The main idea in the proof is to show that a “short” random walk on a “good”
expander is unlikely to have “many” repeats. Specifically, in a random walk of
length t on an n-vertex expander of normalized second eigenvalue λ, the expected
fraction of repeated vertices is at most t/n+O(λ). We prove this by the “trace
method,” which expresses repeat probabilities in terms of the trace of powers
of the adjacency matrix. Given this bound on expected repeats, we obtain our
sampler by taking several random walks on the expander (dependently, using
another expander!) until we obtain a walk with a small fraction of repeats,
from which we can safely discard the repeats without substantially affecting the
sampler’s estimate. Details are given in the full version.

A drawback of the expander sampler is that the randomness increases with
the number of samples, whereas in the optimal sampler of Lemma 12 the ran-
domness actually decreases with the number of samples. To fix this, we use the
following lemma, which shows that the number of (distinct) samples can be
increased at no cost.

Lemma 16. Suppose there is an explicit (µ, θ, γ) averaging sampler Samp :
{0, 1}r → [n]t with distinct samples. Then for every m ∈ N, there is an explicit
(µ, θ, γ) averaging sampler Samp′ : {0, 1}r → [m · n]m·t with distinct samples.

In fact, there is a gain as the sample complexity increases, because the
randomness complexity depends only on the original value of n, rather than
n′ = m · n. This simple observation about samplers (employed in conjunction
with Lemma 9) has played a role in the recent construction of extractors that
are “optimal up to constant factors” [14].

To apply this lemma to construct a sampler with given values of n, t, µ, θ,
and γ, it is best to start with a sampler Samp0 : {0, 1}r0 → [n0]

t0 using the
minimal sample complexity t0 = t0(θ, µ, γ) < t and domain size n0 = n · (t0/t).
For example, for constant µ and θ, the sampler of Lemma 15 will give t0 =
O(log(1/γ)) and r0 = log n0 + O(log(1/γ)) = log(n/t) + O(log(1/γ)). Then
setting m = t/t0, Lemma 16 gives a sampler for domain size n0 ·m = n, using
t0 ·m = t distinct samples, and r0 random bits. This is how we obtain our final
sampler, stated in the next lemma.
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Lemma 17. For every n ∈ N, 1 > µ > θ > 0, γ > 0, there is a (µ, θ, γ)
averaging sampler Samp : {0, 1}r → [n]t that uses

– t distinct samples for any t ∈ [t0, n], where t0 = O
(

1
θ2 · log 1

γ

)

, and

– r = log(n/t) + log(1/γ) · poly(1/θ) random bits.

Unfortunately, when t/t0 and n · (t0/t) are not integers, some care is needed
to deal with the rounding issues in the argument given above. The tedious details
are given in the full version.

6.3 The Local Extractor

Analogously to Theorem 13, we plug Lemmas 14 and 17 into Theorem 10 to
obtain:

Theorem 18 (explicit local extractors). For every constant δ > 0, n ∈ N,
ε > exp(−n/2O(log∗ n)), m ≤ δn/4, there is an explicit t-local strong (δn, ε)
extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with

– d = O(log n+ log(1/ε)).
– t = O (m+ log(1/ε)).

The above construction does generalize to the case of subconstant δ. The
expression for t is actually t = O(m/δ+log(1/ε)/δ2), which is not too bad com-
pared with non-explicit construction of Theorem 13. In fact, as in Theorem 13,
the hidden constant in the m/δ term can be made arbitrarily close to the opti-
mal value of 1. The seed length d is d = O((log n + log(1/ε)) · poly(1/δ)), but
here the multiplicative dependence on poly(1/δ) is much worse than the additive
dependence on loglog(1/δ) in Theorem 13. This is due to both underlying com-
ponents — the extractor (Lemma 14) and the averaging sampler (Lemma 17).
The dependence on δ in the extractor component can be made logarithmic by
using one of the many known explicit extractors for subconstant min-entropy
rate. For the averaging sampler, too, there are constructions whose randomness
complexity is within a constant factor of optimal [21]. However, these construc-
tions have a sample complexity that is only polynomial in the optimal bound,
resulting in a t-local extractor with t ≥ poly(log(1/γ), 1/δ). It is an interesting
open problem, posed in [22], to construct averaging samplers whose sample and
randomness complexities are both within a constant factor of optimal. (Without
the “averaging” constraint, there are samplers which achieve this [25, 26, 22].)

6.4 Previous Constructions.

Some previous constructions of cryptosystems in the bounded storage model can
be understood using our approach, namely Theorem 10 together with Theorem 5
(of [8]). For example, the cryptosystem of Cachin and Maurer [3] amounts to
using pairwise independence for both the averaging sampler and the extractor.
(The fact that pairwise independence yields a sampler follows from Chebychev’s
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Inequality [27], and that it yields an extractor is the Leftover Hash Lemma of
[28].) Actually, in the description in [3], the seed for the extractor is chosen at the
time of encryption and sent in an additional interactive step. But it follows from
this analysis that it actually can be incorporated in the secret key, so interaction
is not necessary.
Our approach also yields an alternative proof of security for the ADR cryp-

tosystem [4, 5]. Consider the sampler which simply chooses a random t-subset
of [n] for t = O(log(1/ε)) and the extractor Ext : {0, 1}t × {0, 1}t → {0, 1}
defined by Ext(x, r) = x · r mod 2. The correctness of the sampler follows from
Chernoff-type bounds, and the correctness of the extractor from the Leftover
Hash Lemma [28]. Combining these via Theorem 10 yields a locally computable
extractor which simply outputs the parity of a random subset of O(log(1/ε)) bits
from the source. This is essentially the same as the ADR cryptosystem, except
that the size of the subset is chosen according to a binomial distribution rather
than fixed. However, the security of the original ADR cryptosystem follows, be-
cause subsets of size exactly t/2 are a nonnegligible fraction (Ω(1/

√
t)) of the

binomial distribution. To extract m bits, one can apply this extractor m times
with independent seeds, as done in [5].
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