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Abstract. Unconditional cryptographic security cannot be generated
simply from scratch, but must be based on some given primitive to start
with (such as, most typically, a private key). Whether or not this implies
that such a high level of security is necessarily impractical depends on
how weak these basic primitives can be, and how realistic it is therefore
to realize or find them in—classical or quantum—reality. A natural way
of minimizing the required resources for information-theoretic security is
to reduce the length of the private key. In this paper, we focus on the level

of its secrecy instead and show that even if the communication channel is
completely insecure, a shared string of which an arbitrarily large fraction
is known to the adversary can be used for achieving fundamental cryp-
tographic goals such as message authentication and encryption. More
precisely, we give protocols—using such a weakly secret key—allowing
for both the exchange of authenticated messages and the extraction of
the key’s entire amount of privacy into a shorter virtually secret key.
Our schemes, which are highly interactive, show the power of two-way
communication in this context: Under the given conditions, the same
objectives cannot be achieved by one-way communication only.

Keywords. Information-theoretic security, authentication, privacy am-
plification, extractors, quantum key agreement.

1 Information-Theoretic Security and its Price

1.1 Unconditional Authentication and Privacy Amplification
with an Arbitrarily Weak Key by Completely Insecure
Communication

The main advantage of information-theoretic—as opposed to computational—
cryptographic security is the fact that it can be based on a mathematical proof
which does not depend on any assumption on the hardness of certain computa-
tional tasks nor on an adversary’s computing power or memory space. An im-
portant disadvantage of such unconditional security, on the other hand, is often
perceived to be its impracticality. At the origin of this belief stands Shannon’s



famous result [22] stating that the perfectly secret transmission of a message over
a public channel requires a private key of, roughly speaking, the same length.

In the present paper, we take a step towards making unconditional security
more practical by showing that such a private key can be generated, by com-
munication over a completely insecure channel, from an arbitrarily weakly secret
key. One of the main ingredients of our protocol is a new interactive method
for unconditionally secure message authentication requiring only a weak secret
key as well. No such method has previously been known which works when the
adversary knows more than half of the partial secret.

The problem of extracting a highly secret from a longer, partly compromised
key—so-called privacy amplification [4], [3]—has been studied intensively since
it is the final step of any information-theoretic key-agreement protocol based on
classical or quantum correlations (e.g., quantum key agreement [2]). It is a direct
consequence of our result that the assumption—usually made in the context of
privacy amplification—that the communication channel is authentic can simply
be dropped: Privacy amplification by communication over a completely insecure
channel is possible even with arbitrarily weakly secret strings, and the length of
the extractable private key is asymptotically the same as in the case of an au-
thenticated channel or, equivalently, an only passive adversary. Previous results
were pointing into another direction [14], [24], [17].

1.2 Towards Making Unconditional Security Practical

The main motivation for this work is to relax the conditions under which uncon-
ditional cryptographic security can be achieved. Our results should be seen in
the context of a number of more or less recent steps, taken by various authors,
towards making unconditionally provable security more practical by reducing
the requirements for achieving it. For instance, techniques and protocols have
been proposed allowing for generating provably secret keys from noisy chan-
nels [26], [6], weakly correlated classical information by public [13], [3] and even
unauthenticated [15], [16], [17] communication, or from quantum channels [2];
reducing the required key size for authentication [23], [10] as well as encryp-
tion [21]; basing cryptographic tasks on keys from weak random sources [7]; or
realizing information-theoretic secrecy against memory-bounded yet otherwise
unlimited adversaries [12], [1], [8], to mention just a few.

1.3 Determining the Cryptographic Value of an Arbitrarily Weak
Secret: The Power of Interaction

In the setting where two parties initially share some key in order to achieve
cryptographic goals, two natural quantities to be minimized are the length and
the level of privacy of this key. In this paper we address the question what the
cryptographic value of a shared string is about which the adversary has almost
complete information if we also assume her to have perfect read and write access
to the communication channel. Our results show that such a key is useful both
for achieving authenticity (Section 2) and privacy (Section 3) in this scenario.



We consider the following model. Two parties Alice and Bob both know an
n-bit string S about which an adversary Eve has some partial information U .
We also assume her to be able to read, modify, or delete any message sent over
the communication channel connecting the legitimate partners. Ultimately, the
goal of Alice and Bob is the exchange of a message M in a both authentic and
confidential way. We achieve this in two steps which are described and analyzed
in detail in Sections 2 and 3, respectively. First, we give an interactive protocol
that allows, using the weak secret S, for the authentication of short messages.
Second, we use this authentication technique as a building block of a protocol for
distilling, from S, a highly secret string S ′′ the length of which is, roughly, the
min-entropy3 of S given Eve’s knowledge U = u; this string can then be used for
private key cryptography, in particular encryption and message authentication.

We describe our results in more detail. Let 0 < t ≤ 1 be an arbitrary constant,
and assume that tn is a lower bound on the min-entropy of (the n-bit string) S
from Eve’s viewpoint (i.e., conditioned on U = u). Then Protocol AUTH of Sec-
tion 2 allows for authenticating an l-bit messageM , where l = tn/s for a security
parameter s: The probability of a successful active attack is of order 2−Ω(s). The
protocol is computationally very efficient and uses Θ(l) rounds of communica-
tion. Note that all previously described protocols—interactive or one-way—for
authentication with a partially secret key work only under the assumption that
the key is more than “half secret” [24], [17].

Protocol AUTH can be used as a building block of a protocol allowing for
distilling a short but highly secret key S ′′ from the initial string S, using commu-
nication over a completely insecure channel only. Let again tn be the min-entropy
of the shared n-bit string S in Eve’s view. Then Protocol PA of Section 3 allows
Alice and Bob to generate a common string S ′′ of length (1−o(1))tn about which
Eve only has an exponentially (in n) small amount of information. In contrast
to privacy amplification over an authenticated channel, privacy amplification
secure against active adversaries has so far been known possible only for keys
offering a relatively high secrecy level initially (at least two thirds of the key
should be unknown to the adversary), and the length of the extractable secret
was only a small fraction of the key’s entropy [14], [24], [17]. It was speculated
that this might be the price which has to be paid for the missing authenticity
of the channel. Protocol PA shows that this is not so: Privacy amplification se-
cure against active adversaries is equally powerful as against passive adversaries
with respect to the condition on the initial string as well as to the size of the
extractable secret.

Our results can alternatively be interpreted as realizing encryption and au-
thentication using private keys generated by weak random sources—instead of
highly compromised keys—as studied in [18], [7]. In [18] it was shown that weakly
random keys from certain sources with substantial min-entropy do not allow for

3 The min-entropy H∞(X) of a random variableX with range X is simply the negative
logarithm of the maximal probability occurring: H∞(X) := − log(maxx∈X PX(x)).
We have 0 ≤ H∞(X) ≤ H(X) ≤ log |X | for all random variables X. All logarithms,
here and in the rest of the paper, are binary.



information-theoretically secure (one-way) encryption; in [7], it was proven that
a weakly random key allows for (one-way) authentication only if its min-entropy
exceeds half its length. Therefore, the results of [18] and [7] suggest that not all
private keys with substantial randomness—i.e., min-entropy—are useful for basic
cryptographic tasks. This is true, however, only in the one-way communication
model: Our results add to this picture by showing that if two-way communi-
cation is allowed (and perfect randomness is available locally), then keys from
all sources with non-negligible min-entropy allow for both authentication and
encryption.

In [10], it has been shown that the use of interaction in authentication allows
for dramatically reducing the length of the used (private) key. Our results un-
derline the power of two-way communication, suggested by that result, in this
context: Interaction alternatively allows for strongly relaxing the condition on
the degree of privacy of the used key.

2 Authentication with an Arbitrarily Weak Key

2.1 Intuition and Building Blocks

In standard (one-way) authentication, the message to be authenticated is sent
together with a so-called authenticator, i.e., an additional string depending on
that message and the secret key. These methods fail as soon as the adversary
has substantial knowledge about the key (more precisely, half the knowledge
in terms of min-entropy [7]) since, very roughly speaking, this knowledge could
consist of the correct authenticator for one or several messages. A possible way
of overcoming this problem is to use a challenge-response protocol. In [24] (see
also [17]), for instance, it was proposed that one party, the sender, sends the
message as a challenge, the reception of which is confirmed by the other, the
receiver, by sending back an authenticator. In this case the person in the middle
Eve has to find the correct authenticator of a message which is not of her choice,
even in the case of a substitution attack. As shown in [24], [17], one advantage
of this scheme is that the authenticator can be short and thus leaks only a small
amount of additional information about the key. On the other hand, however, its
security could be shown only under the assumption that the adversary knows less
than half the key; the same condition that characterizes the possibility of one-
way authentication [7]. The reason is the attack where Eve uses the receiver of
the message as an oracle and gets the correct response to a challenge of her choice
(where she can make this choice adaptively after having seen the challenge for
which she has to generate the correct response). In summary, such an interactive
authentication method, where the challenge is identical with the message to be
authenticated, may be preferable to one-way authentication in certain cases [24],
[17], but cannot, in order to resist adaptive substitution attacks, tolerate Eve to
have more knowledge about the “private” key—namely roughly half of it—than
simple one-way authentication.

In Section 2.2 we propose a new protocol solving this problem by, roughly
speaking, preventing adaptive substitution attacks completely. The main idea is to



encode the message differently: The message bits do not determine the challenge
strings (which are just random), but rather which of them will be answered.

Let us first have a look at how the authenticator should depend on the
key and the message. Since we want the adversary to be able to compute the
correct authenticator to only very few messages unless she knows the entire key,
a natural way is to interpret the key as a polynomial, and let the authenticator
be its evaluation at a point determined by the challenge. (This idea was already
used in previous protocols of this type [24], [17].) Lemma 1 states that when
this function is used, then even an adversary who knows almost the entire key
cannot correctly respond to a random challenge except with small probability.
A similar result was shown in [24], [17] with respect to Rényi entropy H2.

Lemma 1. Let n, k, and a be positive integers such that n = k ·a holds, and let,
for x ∈ {0, 1}k, fx : {0, 1}n → {0, 1}k be the function fx(s) :=

∑a−1
i=0 six

i. Here,
the strings si ∈ {0, 1}k are defined by s = (s0, s1, . . . , sa−1), and the k-bit strings
si, x, and fx(s) are interpreted as elements of GF (2k) with respect to a fixed
basis of GF (2k) over GF (2). Let now S be a random variable with range S ⊆
{0, 1}n and distribution PS such that when given x ∈ {0, 1}k chosen according
the uniform distribution, the probability that fx(S) can be guessed correctly is α.
Then we have maxs∈S PS(s) ≥ (α − a/2k)a or, equivalently, α ≤ 2−H∞(S)/a +
a/2k.

Proof. We can assume that the guessing strategy is deterministic, i.e., only de-
pends on x. For s ∈ S, let αs be the number of x for which fx(s) is guessed
correctly, divided by 2k. Then we have α = ES [αS ]. The probability that fxi

(S)
is guessed correctly simultaneously for a randomly chosen x1, . . . , xa ∈ GF (2k)
is lower bounded by

ES

[

a−1
∏

i=0

(

αs −
i

2k

)

]

≥ ES

[(

αs −
a

2k

)a]

≥
(

ES

[

αs −
a

2k

])a

=
(

α− a/2k
)a

. (1)

(The second inequality of (1) is Jensen’s inequality [9].) Therefore, there must
exist a particular a-tuple x1, . . . , xa such that the values fxi

(S) are simulta-
neously guessed correctly with probability at least (α − a/2k)a. On the other
hand, S is uniquely determined by these fxi

(S) since fx(s) is a polynomial in
x of degree at most a− 1 with coefficients s0, . . . , sa−1. Hence there must exist
a value s ∈ S with probability PS(s) at least (1), and this concludes the proof. 2

During the execution of Protocol AUTH and Protocol PA, the adversary ob-
serves a number of messages that depend on the key and hence leak information
about it. An important argument in the analysis of these protocols is an upper
bound on the effect of such information on the min-entropy of the key (from
the adversary’s viewpoint). Roughly speaking, the min-entropy does not, except
with small probability, decrease much more than by the number of physical bits
observed. Results similar to Lemma 2 were proven in [5], [24], [17].

Lemma 2. Let S, V , and W be discrete random variables with ranges S, V,
and W, respectively, such that S and V are independent, and let b ≥ 0. Then
Prob VW [H∞(S|V = v,W = w) ≥ H∞(S)− log |W| − b] ≥ 1− 2−b.



Proof. We have Prob [PW |V (w, v) < 2−b/|W|] < 2−b (where PW |V stands for
the conditional distribution of W given V ), which implies that PS|VW (s, v, w) =
PSVW (s, v, w)/PVW (v, w) = PS(s)·PV (v)·PW |SV (w, s, v)/(PV (v)·PW |V (w, v)) ≤
PS(s)/PW |V (w, v) ≤ PS(s) · |W| · 2b holds with probability at least 1− 2−b over
V and W . The statement now follows by maximizing over s ∈ S and by taking
negative logarithms. 2

Lemma 3 finally gives a bound on the min-entropy of substrings in terms of the
min-entropy of the full string [14]. It follows from the fact that every r-bit string
s′ corresponds to exactly 2n−r n-bit strings s.

Lemma 3. Let S be a random variable with range S ∈ {0, 1}n, and let S′ be an
r-bit substring of S. Then we have H∞(S′) ≥ H∞(S)− (n− r).

2.2 The Authentication Protocol and its Analysis

We now give Protocol AUTH. Let s be a string of length n and k a divisor of
n. For s ∈ {0, 1}n and x ∈ {0, 1}k, let fx(s) be defined as in Lemma 1. Finally,
b = (b1, . . . , br) are the bits to be authenticated; the bits are authenticated sep-
arately, one after another.

Protocol AUTH (Authentication)

Alice Bob
s ∈ {0, 1}n , k|n s ∈ {0, 1}n , k|n
b = (b1, . . . , br) ∈ {0, 1}r

for i = 1, 2, . . . , r:
xi ∈r {0, 1}k

-

xi

compute fxi
(s)

yi ∈r {0, 1}k

¾

fxi
(s), yi

if fxi
(s) is incorrect:

reject and abort
if bi = 1:

compute fyi
(s) (bi, ai), where

ai =⊥ if bi = 0,

-

ai = fyi
(s) if bi = 1.

if fyi
(s) is incorrect:

reject and abort

Let us first discuss some properties of Protocol AUTH intuitively. Note first that
since the values xi and yi, which are chosen randomly, are independent from the
message bit bi, a person-in-the-middle attack in which xi or yi is substituted
by another value is of no use for changing a message bit: only the fact whether



a response was given or not is important. If no such response is given by the
legitimate party, then it is, according to Lemma 1, in any case difficult for the
adversary to generate one, provided the min-entropy of the key is still large
enough. This is why it is hard for the adversary to flip a bit from 0 to 1.

Since, on the other hand, an active adversary can simply delete a given re-
sponse, it is trivial to flip a message bit 1 into a 0. Furthermore, message bits 0
can always be generated towards Bob without participation of Alice at all. We
will take care of these problems later and transform the “semi-authentication
protocol” into a complete authentication allowing for no undetected modifica-
tions of the message at all.

Let us, however, first make precise what Protocol AUTH, as given above,
achieves. Lemma 4 states that the two above-mentioned types of undetected
modifications of the message are the only ones possible unless Eve is able to
generate a random challenge’s response by herself. Note that statement 2 in
Lemma 4 is a formalization of the fact that the string Bob receives can be
obtained from the string sent by Alice by changing 1s into 0s and generating 0s
from scratch.

Lemma 4. Assume that Alice and Bob execute Protocol AUTH in the presence
of an adversary Eve, that Alice has not aborted the protocol and has, so far, au-
thenticated a string b = (b1, . . . , bj). Assume further that either Bob has rejected
and aborted, or that in his view, a protocol round has just been completed (i.e.,
that the last message he received was a message bit together with the authentica-
tion string if the bit was 1) and that the string sent and authenticated up to this
point is, still in Bob’s view, b′ = (b′1, . . . , b

′
j′).

Then if Eve has been passive, Bob has not rejected and b′ = b holds. If on the
other hand Eve is active, at least one of the following three statements is true.

1. Bob has rejected and aborted.
2. There exists an injective monotonically increasing function g : {1, . . . , j} →
{1, . . . , j′} such that for all 1 ≤ i ≤ j′, b′i = 1 implies both i ∈ Im(g) and
bg−1(i) = 1. (Note that this implies, in particular, j ′ ≥ j and wH(b

′) ≤
wH(b), where wH denotes the Hamming weight.)

3. Eve has successfully computed and sent fz(s) for a value z ∈ {0, 1}k that
she received from Alice or Bob without having received another message in-
between. (In this case, we say that Eve was able to answer a random challenge
without help.)

Proof. Assume first that there is no active adversary, i.e., that no message sent
has been modified or deleted. Then, clearly, Bob is accepting and b′ = b holds.

Let us suppose that Eve is (potentially) an active adversary. We prove the
statement by induction over j. Let first j = 0, i.e., Alice has not sent (nor
received) any message. Assume that Bob is accepting and has received the string
b′ = (b′1, . . . , b

′
j′). We have to show b′i = 0 for all 1 ≤ i ≤ j′ unless Eve was able to

answer a challenge without help. Assume b′i = 1 for some i. Then Bob’s challenge
yi must have been correctly answered (by fyi

(s)) without Bob sending any other



message between sending yi and receiving the response. Since also Alice has not
sent any message so far, Eve must have generated fyi

(s) without help.

Suppose now that the statement is true for j ≥ 0; we prove its validity for
j + 1. Assume that a protocol round has been concluded in Bob’s view, and
that 1. and 3. are not true. Let (b′1, . . . , b

′
j′′) be the string authenticated so

far in Bob’s view. Just before Bob’s receiving of xj+1 (or a possibly modified
value x′j+1) and sending of fxj+1

(s) (or of the value fx′j+1
(s) that will allow

Eve to determine fxj+1
(s)—and since 3. is wrong she must have received such

a message), a protocol round had been concluded in his view and the message
received up to that point was an initial substring of b′, i.e., (b′1, . . . , b

′
j′) for some

j′ ≤ j′′. At that point, Alice had authenticated the string (b1, . . . , bj). By the
induction hypothesis, and since 1. and 3. do not hold, there exists g : {0, 1}j →
{0, 1}j′ with the required properties. For establishing the statement for j+1 (i.e.,
proving that g can be extended to {1, . . . , j + 1}), we have to show two facts.
First, j′′ > j′ must hold, and secondly, we must have wH((bj′+1, . . . , bj′′)) ≤ 1,
where equality implies bj+1 = 1.

Since Alice has received fxj+1
(s), and since this cannot have been generated

by Eve without help, Bob must have sent at least one message after Alice’s
sending of xj+1. Thus, because Bob is still accepting, we have j ′′ > j′. On the
other hand, for every value i ∈ {j ′ + 1, . . . , j′′} with b′i = 1, Bob must have
received fyi

(s) correctly after his challenge yi. Since Eve has not computed this
value without help (3. is untrue), Alice must have sent a value fy′j+1

between

Bob’s sending and receiving of yi and fyi
(s), respectively. This implies both

wH((bj′+1, . . . , bj′′)) ≤ 1—since Alice has sent at most one such value during
what was a single protocol round in her view—and that in case of equality, Alice
must have authenticated the bit bj+1 = 1 in the last step. This concludes the
induction step and the proof. 2

Clearly, Protocol AUTH cannot be used directly for the authentication of
messages (b1, . . . , br) by the following three reasons. First of all, it is, for an
active adversary, easy to flip a bit from 1 to 0 without being detected, or to
insert a 0 at any point. Secondly, Eve can block all messages sent after some
point without Bob realizing that he only received part of the message. (In this
case, Alice, but not Bob, would realize the attack, reject, and abort.) Finally, Bob
can be used as an oracle for finding out the entire key: Eve simply impersonates
Alice and authenticates a sufficient number of 0s to Bob.

The third problem can be solved by limiting the length of the message; this
limit L must be chosen such that even 2L values fz(s) (where 2L different values
for z can be chosen by Eve) do not reveal the entire key, but leave sufficient
uncertainty in terms of min-entropy to guarantee the security of the protocol.

In order to get rid of the first two problems, we restrict the set of possible
messages (of even length r): a string b = (b1, . . . , br) is a valid message only
if it is balanced, i.e., if half the bits are 0s and the other half are 1s, and if
every initial substring (b1, . . . , bi), i < r, is “underweight”: the number of 1s is
strictly less than i/2. If, given that the sent string b satisfies these conditions,



Bob accepts the outcome4 only if the received string b′ is balanced, then he is
prevented from erroneously accepting in case Eve performs one of the described
attacks, and b′ = b must hold. Fortunately, the given restriction on the strings
to be authenticated only reduces the effective message length insignificantly, as
Lemma 5 shows. It follows from a well-known result on random walks (see for
example [9]), and from Stirling’s formula.

Lemma 5. Let r be an even integer and let z(r) be the number of r-bit strings
b = (b1, . . . , br) satisfying wH((b1, . . . , br)) = r/2 and wH((b1, . . . , bi)) < i/2
for all 1 ≤ i < r. Then we have z(r) =

(

r
r/2

)

/(2(r − 1)) = Θ(2r/r3/2), hence

log(z(r)) = (1− o(1))r.

Let us assume from now on that Protocol AUTH is used in the way described
above: Bob rejects and aborts when given more than L challenges (where L is
an additional protocol parameter to be properly chosen), and he accepts the
outcome only if the received message is balanced. We will prove that with this
modification, Protocol AUTH is a secure authentication protocol.

Note that since the protocol uses two-way communication, also Alice can
detect an active attack, reject, and abort the protocol. Unfortunately, it is not
possible to achieve agreement of Alice’s and Bob’s acceptance states in every
case in the presence of an active adversary (who can, for instance, delete the
final message sent). However, our protocol does achieve that whenever Bob ac-
cepts, then so does Alice, and Bob has received the correct string (except with
small probability). This means that every active attack detected by Alice is au-
tomatically also perceived by Bob; the final decision whether the authentication
succeeded is hence up to the receiver—just as in one-way authentication.

Theorem 1 makes the security of Protocol AUTH precise. It is only due
to simplicity that the result is stated asymptotically. The protocol is useful
already for short strings. The proof of Theorem 1 explicitly shows all the involved
constants that are neglected in the asymptotic notation.

Theorem 1. Let S be a random variable, with range S ⊆ {0, 1}n, known to
Alice and Bob, and let U summarize an adversary Eve’s entire knowledge about
S. Assume H∞(S|U = u) ≥ tn for the particular value u ∈ U known to Eve,
where 0 < t ≤ 1 is a constant. Let now k < tn/7 be of order 5 k = ω(log n). Then,
for some l = (1− o(1))(tn− k)/3k, Protocol AUTH can be used to authenticate,
by communication over a completely insecure channel, a message m of at most l
bits sent from Alice to Bob. More precisely, the following holds: If Eve is passive,
then Alice and Bob accept the outcome of the protocol and Bob receives the correct
message. If Eve is active, then, with probability 1 − 2−Ω(k), either Bob rejects
and aborts the protocol, or Alice and Bob both accept and Bob receives the correct
message m.

4 We say that a party accepts the outcome of a protocol if he has not rejected and
aborted and the execution of the protocol is, or could be, finished from his point of
view.

5 Here, f = ω(g) stands for f/g →∞.



Remark. Note that k can be freely chosen subject to the conditions k < tn/7
and k = ω(log n). Since the success probability of an active attack is bounded
as 2−Ω(k), choosing a greater k is more secure; on the other hand, the smaller k
is, the longer can the authenticated message be.

Proof of Theorem 1. We first observe that we can assume n to be a multiple of
k if we replace, at the same time, the entropy condition by H∞(S|U = u) >
tn− k > 6k. The reason is that Alice and Bob can cut at most k− 1 bits at the
end of S, reducing the min-entropy by less than k according to Lemma 3.

Let now L be the greatest even integer such that L ≤ (tn − k)/3k holds,
and let l := blog z(L)c = (1 − o(1))(tn − k)/3k. Here, z is the function defined
in Lemma 5; the maximum message length l is hence chosen such that there
exists a one-to-one mapping from {0, 1}l to the set of L-bit strings satisfying the
conditions of Lemma 5. If the length of the actual messagem to be authenticated
is shorter, then the number r of bits bi in Protocol AUTH is smaller as well. Let
in the following b = (b1, . . . , br) be the r-bit string (where r ≤ L holds) which
satisfies the conditions of Lemma 5 and corresponds to the message m.

Assume that Alice and Bob execute Protocol AUTH with respect to the key
S, the parameter k, maximal message length L, and the string b. Let first Eve
be passive. Then, clearly, Alice and Bob accept the outcome of the protocol and
Bob receives the correct message, as sent by Alice.

Let now Eve be a possibly active adversary. Since neither Alice nor Bob gen-
erate and send responses for more than L challenges during the execution of the
protocol (L is the maximum possible length of the string b; if Bob, for instance, is
challenged for more than L times, he will conclude that there is an active attack,
reject, and abort), we have at every point in the protocol that, for any a ≥ 0,

ProbC [H∞(S|U = u,C = c) ≥ tn− k − 2Lk − 2La] ≥ 1− 2L2−a (2)

holds, where C stands for the collection of all messages sent by Alice and Bob
so far. Inequality (2) follows from 2L-fold application of Lemma 2: At most 2L
times, Eve has observed a string fx(s) (or fy(s)) where X and S are, given
Eve’s entire knowledge at this point, independent. (It is important to see that
the latter is true even if x is chosen by Eve herself, depending on all her knowl-
edge. When applying Lemma 2 here, the distribution PS in the statement of the
lemma has to be replaced by PS|U=u,C′=c′ , where U = u and C ′ = c′ summarize
this knowledge.)

Since the total number of challenges generated by Alice or Bob in Proto-
col AUTH with maximal message length L is also upper bounded by 2L, the
probability Prob [A] of the event A that Eve can correctly answer one of them
without help is, according to Lemma 1, inequality (2), and the union bound, at
most

Prob [A] ≤ 2L

(

2−(tn−k−2L(k+a))/(n/k) +
n/k

2k

)

+ 2L2−a



for any a ≥ 0; the choice a := (tn− k)/(12L) leads to

Prob [A] ≤ 2
tn− k

3k

(

2−(tn−k)/(6n/k) +
n/k

2k
+ 2−(tn−k)/(12L)

)

= O((n/k)2) · 2−Ω(k) = 2−Ω(k) , (3)

where the first “equality” in (3) holds because of k < tn/7, and the second one
since k is of order ω(log n).

Let us assume that A does not occur, and that Bob accepts the outcome
of the protocol. Let (b1, . . . , bj), for j ≤ r, be the bits authenticated in Alice’s
view. According to Lemma 4, the string b′ = (b′1, . . . , b

′
j′) that Bob receives can

be obtained from (b1, . . . , bj) by inserting 0s and flipping 1s to 0s. Then, wH(b
′) =

j′/2—a necessary condition for Bob to accept—implies wH((b1, . . . , bj)) ≥ j′/2 ≥
j/2. Since b satisfies the conditions of Lemma 5, we have wH((b1, . . . , bj)) = j/2
and j = r (i.e., Alice has sent the entire message already and hence accepts
the outcome), as well as j′ = j = r and b′ = (b′1, . . . , b

′
j′) = (b1, . . . , bj) =

(b1, . . . , br) = b: Bob receives the correct string b and message m. 2

3 Confidentiality from an Arbitrarily Weak Key

3.1 Privacy Amplification and Extractors

Privacy amplification means extracting a weakly secret string’s randomness as
seen from the adversary’s viewpoint, and has been shown possible under the
assumption that either the communication channel is authentic [4], [3], [5], or
that the initial key’s privacy level is already high [14], [24], [25], [17]. Here, we
show that these two restrictions can be dropped simultaneously.

It was shown in [3] that—in the authentic-channel model—universal hashing
is a good technique for privacy amplification, allowing for extracting virtually
all the so-called Rényi entropy into a highly secret key. Another randomness-
extraction technique, which has attracted a lot of attention recently in the
context of derandomization of probabilistic algorithms, are extractors, which
allow, by using only very few additional truly random bits, for extracting a
weakly random source’s complete min-entropy. The fact that extractors can dis-
till only the min-entropy—instead of the Rényi entropy, which is a priori up to
two times greater—is insignificant according to a recent unpublished result [11]
stating that for every distribution P , there exists a distribution P ′ such that
the variational distance between P and P ′ (both with range X ), defined as
d(P, P ′) := (

∑

x∈X |P (x)− P ′(x)|)/2, is small and H∞(P ′) ≈ H2(P ) holds.
This means that universal hashing is ultimately nothing else than a particular
extractor—one which is, however, very inefficient with respect to the number of
additional randomness required.

Using extractors, we show in Sections 3.2 and 3.3 that privacy amplification
over an unauthenticated public channel can be (almost) as powerful—both with
respect to the conditions for the possibility in principle and to the length of the
resulting key—as over an authentic channel. When used for privacy amplification



over a public channel, extractors should be strong, meaning that the output’s
distribution is close to uniform even when given the truly random bits. The
existence of such extractors, distilling virtually all the source’s min-entropy, was
proven in [19], [20]. Theorem 2 is a direct consequence of these results.

Theorem 2. For integers D ≤ n and a real number ε of order Ω(2−n/ logn)
there exist r = O(((log n)2 + log(1/ε)) logD), m = D− 2 log(1/ε)−O(1), and a
function E : {0, 1}n × {0, 1}r → {0, 1}m with the following property. If X is a
random variable with range X ⊆ {0, 1}n and such that H∞(X) ≥ D holds, and if
Ur stands for a random variable independent of X and with uniform distribution
over {0, 1}r, then we have d

(

P(E(X,Ur),Ur), PUm+r

)

≤ ε, where PUm+r
is the

uniform distribution over {0, 1}m+r.

A function E having the properties given in Theorem 2 is called a strong (D, ε)-
extractor.

Lemma 6 below justifies the use of strong extractors for privacy amplification
(both in the passive- and active-adversary cases, and with respect to our new
simplified notion of security of privacy amplification given below): The extrac-
tor’s output is, with high probability, equal to a perfectly uniformly distributed
“ideal” key independent of the random bits: The adversary has no information
at all about this ideal key.

Lemma 6. Let E be a function as in Theorem 2 with parameters n, D, r,
m, and ε, let S be a random variable with H∞(S) ≥ D, and let R = Ur be the
random variable corresponding to a uniformly distributed r-bit string independent
of S. Let S′ := E(S,R). Then there exists a uniformly distributed m-bit random
variable S′id which is independent of R and such that Prob [S ′ = S′id] ≥ 1 − ε
holds.

Proof. For every value r0 that R can take, there exists a uniformly distributed
string S′id(r0) with Prob [E(S, r0) 6= S′id(r0)] = d(PE(S,r0), PUm

) (again, PUm
is

the uniform distribution over {0, 1}m).
Let S′id be the random variable defined by all the S ′id(r0). The statement now

follows from d
(

P(E(S,R),R), PUm+r

)

= ER
[

d
(

PE(S,R), PUm

)]

, which is true since
R is uniform, and from Prob [E(S,R) 6= S ′id] = ER[Prob [E(S,R) 6= S′id(R)]]. 2

3.2 The Idea Behind Protocol PA

Given Protocol AUTH of Section 2 and the extractors described in Section 3.1,
it seems obvious how to achieve privacy amplification over an unauthenticated
channel: Alice chooses the extractor’s random input bits and sends them, using
Protocol AUTH, to Bob. However, this solution has a conceptual error. Eve can,
knowing the bits b1, . . . , bi already sent, perform active attacks—replacing xi+1

or yi+1 by values x′i+1 and y′i+1 of her choice and therefore learning fx′i+1
(S) and

fy′i+1
(S)—and obtain information about S that depends on the bits bj ; in other

words, the extractor’s second input would in this case not be independent of S
from Eve’s viewpoint, and Theorem 2 would not apply.



On the other hand, however, the string S must be used both for authentica-
tion and as the input for privacy amplification. This dilemma can be resolved
by a two-step protocol: First, an extractor is used to generate, from S, a short
key S′ about which all the information—depending on the extractor bits or
not—revealed during Protocol AUTH gives Eve less than half the total informa-
tion (except with small probability). In a second step, the random bits actually
used to apply privacy amplification on S are authenticated with the key S ′. The
crucial point here is that the information Eve learns about S during this second
authentication is at most S ′, since “the rest” of S is not used at all. Such a two-
step approach hence allows for controlling the information Eve obtains during
the two authentication phases, even when she is carrying out active attacks.

For the second authentication, a key—namely S ′—about which Eve knows
less than half (in terms of min-entropy) can be used. In this case, a simpler
and more efficient method than Protocol AUTH can be applied, namely strongly
universal (SU-) hashing [23]. A result similar to Lemma 7, but with respect to
Rényi entropy H2, was proven in [14].

Lemma 7. Let n be an even integer. Assume that Alice and Bob both know the
value taken by a random variable S with range S ⊆ {0, 1}n and conditional min-
entropy H∞(S|U = u) ≥ n/2+R, where U = u summarizes an adversary’s entire
knowledge about S. Assume further that Alice and Bob use S to authenticate an
n/2-bit message M , where M and S are independent, given U = u, with strongly
universal hashing, i.e., with the authenticator A = MS1 + S2, where S1 and S2

are the first and second halves of S, and where M , S1, S2, and A are interpreted
as elements of GF (2n/2) with respect to a fixed basis of GF (2n/2) over GF (2).
Then Bob always accepts and receives the correct message if the adversary is
passive, and in general we have with probability 1−2−Ω(R) that Bob either rejects
or receives the correct message M , even if the adversary has full control over the
communication channel.

Proof. If Eve is passive, then, clearly, Bob accepts and receives the correct
message. In general, the probability of a successful impersonation attack is at
most the maximum probability of a subset of 2n/2 keys, i.e., at most 2n/2 ·
2−H∞(S|U=u) ≤ 2−R. Let now (m, a) be the correctly authenticated message
observed by Eve in a substitution attack. According to Lemma 2, applied to
the distribution PS|U=u, this pair is with probability ≥ 1 − 2−R/2 such that
H∞(S|M = m,A = a, U = u) ≥ R/2 holds. (Note that M is independent of S,
given U = u.) Because generating another correct pair (m′, a′), for m′ 6= m, is
equivalent to guessing S and because of the union bound, the success probability
of this attack is upper bounded by 2−R/2 + 2−R/2 = 2−(R/2−1). 2

3.3 Asymptotically Optimal Privacy Amplification by Insecure
Communication

We are now ready to give Protocol PA, and to prove our second main result.
In the following, s is the n-bit key known to Alice and Bob about which Eve’s



information U = u is limited by H∞(S|U = u) ≥ tn, where t is an arbitrary
constant with 0 < t ≤ 1. E1 and E2 are suitably chosen extractors.

Protocol PA (Privacy Amplification)

Alice Bob
s ∈ {0, 1}n s ∈ {0, 1}n

r ∈r {0, 1}Θ(
√
n) AUTH(r) with

-

k = Θ(
√
n/ log n)

s′ = E1(s, r) s′ = E1(s, r)

len(s′) = l′ = Θ(n/ log n)
s′ = (s′1, s

′
2)

r′ ∈r {0, 1}l
′/2

a = s′1r
′ + s′2

-

r′, a

if a is incorrect:
reject

if a is correct:
s′′ = E2(s, r

′) s′′ = E2(s, r
′)

len(s′′) = (1− o(1))tn

In the first protocol phase, Alice authenticates the string r with Protocol AUTH
(with parameter k).

Before stating the main result, we make a few remarks on the security
achieved by Protocol PA. Note first that privacy amplification cannot be guar-
anteed to work in every case if Eve is assumed to have full control over the
communication channel; the best one can hope for is that a possible active at-
tack is detected.

A natural security definition would require that, with high probability, any
party accepting the outcome of the protocol indeed has a highly secret key, and
that if both parties accept, their keys are identical. (As already mentioned in the
context of Protocol AUTH, one cannot demand for similar acceptance decisions
of Alice and Bob.) Our protocol achieves even more than that: If Bob accepts,
then everything went well (in particular, Alice also accepts).

The condition concerning the privacy of the resulting key stated and proven
below is, although equivalent to, somewhat simpler than security definitions used
previously in this context: Instead of giving a condition on the Shannon entropy
of the resulting key, we consider privacy amplification successful if the generated
key is, except with small probability, equal to a perfectly secret ideal key. This
allows for simplifying the security proofs.

Theorem 3. Assume that Alice and Bob know an n-bit string S satisfying
H∞(S|U = u) ≥ tn for arbitrary 0 < t ≤ 1, where U = u summarizes an



adversary Eve’s entire knowledge about S. Then Protocol PA allows, for suitable
choices of the parameters and the extractors E1 and E2, for privacy amplifica-
tion by communication over a completely insecure channel, distilling an arbitrar-
ily large fraction of the min-entropy of S, given U = u, into a virtually secret
string. More precisely, Protocol PA satisfies the following two conditions.

1. If Eve is passive, then Alice and Bob accept the outcome of the protocol
and end up with the same string S ′′ of length l′′ = (1 − o(1))tn with the
following property: There exists a string S ′′id of the same length such that
for all possible protocol communications C = c, PS′′

id
|C=c,U=u is the uniform

distribution over the set of l′′-bit strings, and such that Prob [S ′′ = S′′id] =

1− 2−Ω(n/(logn)2) holds.
2. If Eve is active, then the probability that either Bob rejects (and Alice either

rejects as well or accepts and has computed a key S ′′ satisfying 1.), or that
both Alice and Bob accept and that all the conditions of 1. hold, is of order
1− 2−Ω(

√
n/ logn).

S’’=E  (S,R’)2
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S

S

’

’’

Leaked Information

(1−o(1))tn

SU−Hashing, Key S’

Extractor

n

Eve’s Uncertainty: tn

   Bits

R
R’

AUTH(R), Key S

Authentication of R’:

Fig. 1. Privacy amplification over an unauthenticated channel with Proto-

col PA. The privacy of S is extracted in two steps. The short key S ′ is more than
half secret and used for authenticating the extractor bits for S ′′. This second key is the
output of the protocol and highly secret although the information Eve obtains in the
authentication depends on the extractor bits.

Proof. Note first that if Eve is passive, both parties accept the outcome and
compute the same string S ′′, the secrecy of which, as stated in 1., follows from
the subsequent analysis of the general case.

Let us hence assume that Eve is a possibly active adversary. Let ε > 0
be of order 2−Θ(

√
n/ logn). According to Theorem 2, there exist r = Θ(

√
n),

k = Θ(
√
n/ log n), and l′ = 7rk = o(n) as well as a strong extractor E1 :

{0, 1}n × {0, 1}r → {0, 1}l′ extracting l′ bits out of S (distributed according to



PS|U=u) with “error probability” ε. (Note that in fact, l′ could be chosen much
larger, namely almost tn, according to Theorem 2.)

The r randomly chosen bits R are now sent and authenticated using Pro-
tocol AUTH with parameter k. According to Theorem 1, the probability of a
successful active attack to this authentication is 2−Θ(k) = 2−Θ(

√
n/ logn).

Let S′ = E1(S,R) be the extractor’s output. Because of Lemma 6, there
exists an l′-bit string S′id that is uniformly distributed conditioned on U = u,
independent of the bits R (the second part of the extractor’s input), and such
that Prob [S′ = S′id] ≥ 1− ε = 1− 2−Ω(

√
n/ logn) holds.

Let C be all the messages sent by Alice and Bob during the execution of
Protocol AUTH. Since every party sends at most l = (1 + o(1))r messages (of
length k) of the form fx′i(s) or fy′i(s) (and since the respective challenges x′i and
y′i are, even if generated by Eve, independent of S, given Eve’s knowledge about
S at this moment), Lemma 2—applied 2l times—implies that

H∞(S′id|C = c, U = u) ≥ l′ − 2lk − lk = l′/2 +Ω(rk) (4)

holds with probability at least 1 − 2l2−lk = 1 − 2−Ω(n/ logn). The “equality”
in (4) is true because l′ has been defined to be equal to 7rk, and because of
l = (1 + o(1))r.

According to Lemma 7, the success probability of an active attack on the
second authentication, using strongly universal hashing with the key S ′, is hence
of order

2−Ω(n/ log n) + 2−Ω(rk) + 2−Ω(
√
n/ log n) = 2−Ω(

√
n/ logn) . (5)

(The first term in (5) is the probability that (4) does not hold, the second term
is the attack success probability if the key S ′id would be used and given that (4)
holds, and the third term is the probability that the actually used key S ′ differs
from S′id. The bound (5) then follows from the union bound.)

Let us now look at the remaining min-entropy of S, given all the communica-
tion Eve has observed. Note first that the last authentication reveals information
about S to Eve that depends on the random bits R′ sent in this step. This depen-
dence is a potential problem since R′ must be chosen completely independently
from S given Eve’s knowledge and is, with respect to authentication with Proto-
col AUTH, the reason for the “two-step” nature of Protocol PA. However, under
the (pessimistic) assumption that Eve learns the entire key S ′, she cannot obtain
any additional information about S, in particular no information depending on
R′, since the rest of S is not used at all in this authentication. In other words,
if we assume Bob to announce S ′ to Eve after the second authentication (what,
of course, he does not actually have to do), then R′ is independent of S given
Eve’s total knowledge.

We now have that H∞(S|C = c, S′ = s′, U = u) ≥ tn − Θ(rk) holds with
probability 1−2−Ω(rk) = 1−2−Ω(n/ logn), as above for S′. Because of Theorem 2,
there exists a strong extractor E2 : {0, 1}n×{0, 1}r′ → {0, 1}l′′ with parameters
r′ ≤ l′/2 = Θ(n/ log n) (note that l′/2 is the possible message length in the

last authentication), ε′ = 2−Θ(n/(logn)2), and l′′ = tn − Θ(rk) − 2 log(1/ε′) =



tn−o1(n)−o2(n) = (1−o(1))tn. The extractor’s output S ′′ = E2(S,R
′) satisfies,

according to Lemma 6, the following condition. There exists an l′′-bit string S′′id
such that PS′′

id
|C=c,U=u is the uniform distribution (where C is the entire protocol

communication) and Prob [S ′′ = S′′id] ≥ 1 − ε′ = 1 − 2−Ω(n/(logn)2) holds. The
final statement now follows from the union bound. 2

4 Concluding Remarks

We have shown that two parties who are connected by a communication channel
under full adversarial control and who share a key that is arbitrarily weakly secret
can not only exchange authenticated messages, but also generate an uncondi-
tionally secret key. The given protocols for achieving this are computationally
very efficient for the legitimate parties; they require two-way communication,
where the number of rounds is of order O(r) for the authentication protocol (if r
is the length of the message to be authenticated) and O(

√
n) for privacy ampli-

fication of a weak n-bit secret. Clearly, the extracted highly secret key can then
be used for all sorts of cryptographic tasks. The fact that unconditional security
can be achieved even under assumptions as weak as that shows that this—most
desirable—type of security might be more practical than generally assumed.

It is a natural question in this context whether such protocols can be given
which even tolerate Alice’s and Bob’s initial strings to differ in a certain fraction
of the positions (and how large this fraction can be). A positive answer to that
would be useful in the context of quantum key agreement, for instance, since the
usually-made assumption that the classical channel—used for the processing of
the raw key—is authenticated, or that Alice and Bob share a short secret key
already initially, could be dropped.
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