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Abstract. In this paper we introduce the method of bi-linear crypt-
analysis (BLC), designed specifically to attack Feistel ciphers. It allows
to construct periodic biased characteristics that combine for an arbitrary
number of rounds. In particular, we present a practical attack on DES
based on a 1-round invariant, the fastest known based on such invariant,
and about as fast as the best Matsui’s attack. For ciphers similar to DES,
based on small S-boxes, we claim that BLC is very closely related to LC,
and we do not expect to find a bi-linear attack much faster than by
LC. Nevertheless we have found bi-linear characteristics that are strictly
better than the best Matsui’s result for 3, 7, 11 and more rounds.

For more general Feistel schemes there is no reason whatsoever for BLC
to remain only a small improvement over LC. We present a construction
of a family of practical ciphers based on a big Rijndael-type S-box that
are strongly resistant against linear cryptanalysis (LC) but can be easily
broken by BLC, even with 16 or more rounds.
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1 Introduction

In spite of growing importance of AES, Feistel schemes and DES remain widely
used in practice, especially in financial /banking sector. The linear cryptanalysis
(LC), due to Gilbert and Matsui is the best known plaintext attack on DES, see
[4,25,27,16,21]. (For chosen plaintext attacks, see [21,2]).

A straightforward way of extending linear attacks is to consider nonlinear
multivariate equations. Exact multivariate equations can give a tiny improve-
ment to the last round of a linear attack, as shown at Crypto’98 [18]. A more
powerful idea is to use probabilistic multivariate equations, for every round, and
replace Matsui’s biased linear I/O sums by nonlinear I/O sums as proposed by
Harpes, Kramer, and Massey at Eurocrypt’95 [9]. This is known as Generalized
Linear Cryptanalysis (GLC). In [10,11] Harpes introduces partitioning crypt-
analysis (PC) and shows that it generalizes both LC and GLC. The correlation
cryptanalysis (CC) introduced in Jakobsen’s master thesis [13] is claimed even
more general. Moreover, in [12] it is shown that all these attacks, including also
Differential Cryptanalysis are closely related and can be studied in terms of the
Fast Fourier Transform for the cipher round function. Unfortunately, computing
this transform is in general infeasible for a real-life cipher and up till now, non-
linear multivariate I/O sums played a marginal role in attacking real ciphers.
Accordingly, these attacks may be excessively general and there is probably no
substitute to finding and studying in details interesting special cases.



At Eurocrypt’96 Knudsen and Robshaw consider applying GLC to Feistel
schemes [20], and affirm that in this case non-linear characteristics cannot be
joined together. We will demonstrate that GLC can be applied to Feistel ciphers,
which is made possible with our “Bi-Linear Cryptanalysis” (BLC) attack.

2 Feistel Schemes and Bi-Linear Functions

Differential [2] and linear attacks on DES [25,1] have periodic patterns with
invariant equations for some 1, 3 or 8 rounds. In this paper we will present
several new practical attacks with periodic structure for DES, including new
1-round invariants.

2.1 The Principle of the Bi-Linear Attack on Feistel Schemes

In one round of a Feistel scheme, one half is unchanged, and one half is linearly
combined with the output of the component connected to the other half. This will
allow bi-linear I/O expressions on the round function to be combined together.
First we will give an example with one product, and extend it to arbitrary bi-
linear expressions. Then in Section 3 we explain the full method in details (with
linear parts present too) for an arbitrary Feistel schemes. Later we will apply it
to get concrete working attacks for DES and other ciphers.
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Fig. 1. Fundamental remark: combining bi-linear expressions in a Feistel cipher
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In this paper we represent Feistel schemes in a completely “untwisted” way,
allowing to see more clearly the part that is not changed in one round. As a
consequence, the orientation changes compared to most of the papers and we
obtain an apparent (but extremely useful) distinction between odd and even
rounds of a Feistel scheme. Otherwise, our notations are very similar to these
used for DES in [23,18]. For example Lg[a] denotes a sum (XOR) of some subset
a of bits of the left half of the plaintext. Combinations of inputs (or outputs) of



round function number r» = 1,2, ... are denoted by I,[a] (or O,[f]). Our exact
notations for DES will be explained in more details when needed, in Section 6.1.
For the time being, we start with a simple rather self-explaining example (cf.
Figure 1) that works for any Feistel cipher.
Proposition 2.1.1 (Combining bi-linear expressions in a Feistel cipher).
For all (even unbalanced) Feistel ciphers operating on n +n' bits with arbitrary
round functions we have: Vo C {1,...,n},V8 C {1,...,n'}, Vr > 0:
[r/2] [r/2]
L,[a]R,[8] ® Lo[a]Ro[8] = Y Ozi-1[a]loi-1[8] & Y Ini[a]OxilA]
i=1 i=1 O
From one product this fundamental result extends immediately, by linearity,
to arbitrary bi-linear expressions. Moreover, we will see that these bi-linear ex-
pressions do not necessarily have to be the same in every round, and that they
can be freely combined with linear expressions (BLC contains LC).

3 Bi-linear Characteristics

For simplicity let n = n'. In this section we construct a completely general
bi-linear characteristic for one round of a Feistel cipher. Then we show how it
combines for the next round. Here we study bits locally and denote them by
A, B; etc. Later for constructing attacks for many rounds of practical Feistel
ciphers we will use (again) the notations L;[j1,-. ., ji] (cf. Section 6.1).

3.1 Constructing a Bi-linear Characteristic for One Round
Let S be a homogeneous bi-linear Boolean function GF(2") x GF(2") — GF(2).
Let S(A1,...,An; By,...,By) = ZS,']'A,'B]'.

Let fx be the round function of a Feistel cipher. We assume that there exist
two linear combinations u and v such that the function:

2-8i0iB; © 3 uiO0; ® Y- viB;
(B1,.., Bn) = { with (O1,...,0,) = fk(B1,...,B,)

is biased and equal to 0 with some probability p # 1/2 with p = p(K)
depending in some way on the round key K.

We have C; = A; @ O;. By bi-linearity (or from Proposition 2.1.1) the fol-

lowing holds: Z siAiB; ® Z 5i;0:;B; = z 5;CiB;
From this, for the first round, (could be also any odd-numbered round), we
obtain the following characteristic:

E SiinBj (&) Zu@'A@' D ZUiBi =
Z SijCiBj (&) Z u; C
Finally, we note that, the part linear in the B; can be arbitrarily split in two
parts: Y v;B; = Evgl)Bi @ Ev?Bi with v; = Uz(l) @ 111(2) foralli=1,...,n.
All this is summarized on the following picture:

} with probability p(K)
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Fig. 2. Constructing a bi-linear characteristic for an odd round of a Feistel cipher
3.2 Application to the Next (Even) Round
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Fig. 3. Constructing a bi-linear characteristic for an even round of a Feistel cipher
The same method can be applied to the next, even, round of a Feistel scheme,
with the only difference that the round function is connected in the inverse
direction. In this case, to obtain a characteristic true with probability # 1/2, we
need to have a bias in the function:
> tiiCiP @ 3 wiC; ® )i Py
(Cry-ees Cn) { with (Pi,... P) = fx(Crr-..,Ch)

3.3 Combining Approximations to Get a Bi-Linear Attack for an
Arbitrary Number of Rounds

It is obvious that such I/O sums as specified above can be combined for an

arbitrary number of rounds (contradicting [20] page 226). To combine the two

characteristics specified above, we require the following three conditions:

1. We need u = w").

2. We need v® = z.

3. We need the homogenous quadratic parts s et t to be correlated (seen as
Boolean functions). They do not have to be the same (though in many
cases they will). In linear cryptanalysis (LC), a correlation between two
linear combinations means that these linear combinations have to be the
same. In generalized linear cryptanalysis (GLC) [9], and in particular here,
for bi-linear I/O sums, it is no longer true. Correlations between quadratic
Boolean functions are frequent, and does not imply that s = ¢. For these
reasons the number of possible bi-linear attacks is potentially very large.



Summary: We observe that bi-linear characteristics combine exactly as in LC
for their linear parts, and that their quadratic parts should be either identical
(with orientation that changes in every other round), or correlated.

4 Predicting the Behaviour of Bi-linear Attacks

The behaviour of LC is simple and the heuristic methods of Matsui [25] are
known to be able to predict the behaviour of the attacks with good precision
(see below). Some attacks work even better than predicted. As already suggested
in [9,20] the study of generalised linear cryptanalysis is much harder.

4.1 Computing the Bias of Combined Approximations

A bi-linear attack will use an I/O sum for the whole cipher, being a sum of I/0O
sums for each round of the cipher such that the terms in the internal variables do
cancel. To compute the probability the resulting equation is true, is in general not
obvious. Assuming that the I/O sum uses balanced Boolean functions, (otherwise
it will be even harder to analyse) one can apply the Matsui’s Piling-up Lemma
from [25]. This however can fail. It is known from [9] that a sum of two very
strongly biased characteristics can have a bias much weaker than expected. The
resulting bias can even be exactly zero: an explicit example can be found in
Section 6.1. of [9]. Such a problem can arise when the connecting characteristics
are not independent. This will happen more frequently in BLC than in LC:
two linear Boolean functions are perfectly independent unless equal, for non-
linear Boolean functions, correlations are frequent. Accordingly, we do not sum
independent random variables and the Matsui’s lemma may fail.

At this stage there are two approaches: one can try to define a class of
attacks that can be proved to work, and restrict oneself only to studying such
attacks, or try to explore all possible attacks, including those that do work
experimentally without proof. This first approach is adopted in [9]: the Lemma
6 gives a sufficient condition to guarantee that the Piling-up lemma will apply.
For this the probability, that the characteristic is true, for a random partial key,
should be independent of the input (e.g. the input of the whole round). This
explains why Matsui’s attacks indeed work well. In [9] it allows to prove that the
proposed family of GLC attacks based on homomorphic properties will work as
predicted. We will also use this argument in Section 5.

In this paper we frequently adopt rather the second approach: try find as
many working attacks as possible, even if current theory does not allow to pre-
dict their behaviour with accuracy. A price to pay for this is that each application
of Matsui’s Lemma will be systematically questioned and confronted to experi-
mental results.

4.2 Key Dependence in Bi-Linear Attacks

Another important property of bi-linear cryptanalysis is that the existence of
a bias for one characteristic does frequently depend on the key. This does not
really happen for LC applied DES, because in DES all key bits are combined
linearly and a linear equation will be true with probability either p or 1 — p



depending on the key. However it will happen for LC and other ciphers, if key
bits are involved in a more complex way, for example for ICE [22].

In bi-linear cryptanalysis, the behaviour becomes complex already when the
key bits are combined linearly as in DES. Adding a constant (a key bit) to
an input of an S-box, does not only modify the constant part in a bi-linear
characteristic, but also the linear part. (We note that for DES only the linear
part in the output variables will be modified when the key changes). From this,
quite frequently two bi-linear characteristics for two parts of a cipher (e.g. for
S-boxes) will only connect together for some keys. Such attacks are still very
interesting and frequently also do work, with only a slightly weaker bias, for all
the other keys. For simplicity, no key bits are displayed in bi-linear characteristics
for one or several rounds of a cipher that are studied/displayed in this paper.
The values of biases we will present (unless otherwise stated) are given for the
reference key being zero. Yet typically we observed that they exist, and slightly
vary in value, also for any other key (chosen at random). In rare cases, the bias
works well only for a fraction of keys (e.g. 25 %): this happens in Appendix B.1.

4.3 Exploring Bi-linear Cryptanalysis

There are different approaches to finding interesting bi-linear attacks to block
ciphers. In few cases one can construct attacks that will provably or arguably
work (see [9] and later Section 5). Another method is to construct characteristics
“by hand” around some particularly strong bias found for one S-box.

We noted the two major difficulties: predicting the bias of combined charac-
teristics, and huge number of possible characteristics (including fragmentation
due to the fact they the bias does in general depend on the key). These make
it very difficult to have a systematic method (a computer program) that would
compute the best bi-linear characteristic for a given cipher. To check if an attack
indeed works requires to be able to generate as many plaintexts as for the real
attack. To find the best attack is even much harder. It requires to exhaustively
search and reject lots of other combinations that should work well but they don’t.
Each of them has to be tested on an equally large set of plaintexts.

5 The Killer Example for Bi-Linear Cryptanalysis

We will construct a practical cipher that is very secure w.r.t. all known attacks
for block ciphers, in particular for LC, yet broken by BLC. It mixes two group
operations: the XOR and the multiplication in GF'(2") e.g. n = 32 or 64. It uses
the inverse in GF(2") (cf. Rijndael): let Inv(X) = X! in GF(2") when X # 0
and 0 otherwise. We build a 2n-bit Feistel cipher with the i-th round function

being: fi(X) = Inw(X) - (K; ®G(X))  in GF(2"), (1)

with K; being the partial key, and G being some function with S-boxes and
arbitrary components {0,1}" — {0,1}". In order to get an insecure cipher, we
need to assume that some linear combination of outputs of G is biased. For
example, let Y1 ® Y53 = 0 with probability 3/4. Building a cipher with G alone
would be insecure for LC, however here G is composed by a group operation -
with Inv(X). The Inv(X) assures global diffusion and very high non-linearity



(cf. [3]). Accordingly our round function has very good resistance to linear and
differential cryptanalysis for most G, even when G = 0. But not against BLC.
First, we can consider a bi-linear attack with bi-linear equations over G F'(2"):

Vr > 0: [r/2] Lr/2] r
L, R, ®Ly-Ry = Z O2i—1-Iri—1 & Z Ly 0y = ZIi‘Oi (2)
=1 i=1 i=1

Let X -Y = (Z1,...,2y) with Z, = 3_,; M;? X;Y;. From (2), or if we prefer,
directly from Proposition 2.1.1 and by symmetry M ,ﬁj =M gi, we get:

Vk € {1, ey n},VT‘ >0 Z Ml? (LMR”‘ (&) Lo,’RoJ‘) = Z Z M,ﬁjI“Olj (3)

ij I=1 ij
Now, VI > 1, I; - O; = K; ® G(I;) with probability (1 — 1/2"). We rewrite it:
Vke{l,....n} V>0 Y MPI;0; = Ky & Gy (I;) (4)

ij
Then we use the linear output bias of G: Gy ® G5 = 0 with probability 3/4.
Vi>0 ZijIliOlj@ZM;jIliOlj =K @Gl(Ii)@Ki5EBG5(Ii) ~ (] (5)

ij ij

The last expression is equal to come constant denoted C; with probability
3/4. Finally, we combine with (3) (or equivalently sum these bi-linear expressions
over the whole cipher with r rounds). .

Z (M{J @ M;J) (er’RTj @ LgiROJ’) = Z C; with probability % + o1 (6)
ij =1

What we obtained is a biased bi-linear I/O sum for the whole cipher. We can
distinguish this cipher from a random permutation given about 22712 plaintexts.
For example 16 rounds will be broken on a laptop PC.

Does it work as predicted ? In general, as we explain in Section 4.1,
it is hard to predict accurately the behaviour of a composed bi-linear attack.
However we have little doubt it will work: the Inv(X) should render possible
correlation between approximations being combined negligible. In some case we
can even prove that this attack works: when G = 0, and also when one fixed
linear combination of output bits of G is 0, (the other parts can be arbitrary
functions). In these cases, dependencies cannot be a problem: we add equations
(5) true with probability 1 to get the equation (6) true with probability 1.

Related work: Similar results were previously obtained for some substitution-
permutation network (SPN) ciphers. In [9] Harpes, Kramer and Massey give an
example of 8bit SPN that is secure against LC and DC, but insecure for gener-
alised linear cryptanalysis due to a probabilistic homomorphic property of each
round relative to quadratic residuosity function modulo 28 4+ 1. The Jakobsen at-
tack for substitution ciphers that uses probabilistic univariate polynomials from
[15] can also be seen as a special case of GLC. However, it is the first time
that GLC allows to break a Feistel cipher, which contradicts the impossibility
professed by Knudsen and Robshaw [20]. This cipher is built with state-of-art
components (inverse in GF(2")) and can in addition incorporate any additional
fashionable component with lots of theory and designer tricks, as a part of G.



Due to G it will not have homomorphic properties. Moreover, by adjusting the
bias in G, the security of this cipher against BLC will be freely adjusted be-
tween (nearly) zero and infinity. It can therefore be arbitrarily weak for BLC,
and this even for a very large number of rounds. Yet, the security against the
usual attacks (LC, DC) should remain equally good (due to the big Inv S-box).

6 Bi-Linear Attacks on DES

6.1 Notation

We ignore the initial and final permutations of DES that have no incidence on the
attacks. We use the “untwisted method” of representing DES, as on the right-
hand figure, page 254 in [28]. The bit numbering is compatible with the FIPS
standard [8], and [23, 18], and differs from Biham, Shamir [2] or Matsui [25,27].
We denote the bits of the left hand side of the plaintext by Lg[1]... Lo[n]. The
bits of the right hand side are Ry[1]... Ro[n]. Similarly, as in other papers, the
plaintext after ¢ rounds will be L;, R;, except that we felt it necessary to have our
notations completely “untwisted” which implies that our L; and R; for an odd
i=1,3,... will be inversed compared to [23,18, 28], Then, we apply the popular
convention X[iy,...,4,]being X[i1] ® ... ® X[i,]. For example Lo[9,7,23,31] is
the XOR of 4 bits of the left half of the plaintext that are added to the outputs
of S1 in the first round. We denote the input bits to the i—th round function by
Li[1],...,1;[32]. Similarly the output bits will be O;[1],..., O;[1].

For odd 7 we have I;[j] = R;—1[j] = Ri[j] and O;[j] = L;—1[j] ® L;[j].

For even i we have I;[j] = L;_1[j] = L;[j] and O;[j] = Ri—1[j] ® Ri[j].

For individual S-boxes, we will denote the inputs/outputs by respectively
O[i] and J[j] with ¢, being directly the numbers 1..32 in the round function
of DES. For example O[8], O[14], 0[25], O[3] are the outputs of S-box S5, and
J[16],. .., J[21] are the inputs of this S-box S5. Depending on the key in round
i, we have I;[k] = J;[k] or I;[k] = J;[k] + 1. For better readability, we will avoid
naming precisely the key bits involved.

6.2 First Example of Bi-Linear Cryptanalysis of DES
Our simulations on DES S-boxes (cf. Appendix A) show that the following two
bi-linear characteristics exist for DES S-boxes S1 and S5:
0[8,14,25,3]® J[17] - O[3] =0 for S5 with probability 17/64
O[17] @ J[3]- O[17] =0 for S1 with probability 47/64
From these, acting as if all the key bits were zero (I;[k] = Ji[k]), we deduce
the following bi-linear characteristic for two rounds:

Lo[3,8, 14, 25] @ Lo[3]Ro[17] & Ro[17]® } 1

() Lol5.8.14.25] @ L(8|Ra[17] & Rol17) = K[sth] | 5 ~ 17672

The explanation is given on the following picture:
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Fig. 4. Our first example - an invariant bi-linear attack on DES ()

We verified this bias experimentally, and the probability is (we were lucky)
equal to the probability that is predicted by Matsui’s Piling-Up Lemma.

Key Dependence: Very surprisingly, the above equation (*) is biased, not
only when all key bits are 0, but for every DES key. This can be seen to come
from a couple of other (different) bi-linear characteristics from Appendix A.

More rounds: It is easy to see from the picture, and we verified it experi-
mentally, that (x) is also biased for 1,2, 3,4,5,6,7,8,9,10,11, ... rounds of DES,
and all this happens to work about equally well for an arbitrary key.

Relation to LC: The bias of (x) is closely related to some prominent equa-
tions of Matsui, see the extended version of this paper.

6.3 Invariant Attacks on DES

The equation (*) is an invariant equation, i.e. the input and the output bi-linear
expressions are the same. We have found a simple invariant bi-linear I/O sum
for DES that is biased for any key and for any number of rounds. For LC and
DES, such simple invariant characteristics do exist, have been found by Biham
(page 347 in [1]) in close relation to Davies-Murphy attack. The example (x)
above is one of the best we found for DES, and so far it also the only known
non-linear 1-round invariant attack on DES that works really well in practice.
Our invariant on DES is stronger than Biham’s. We recall that Biham uses a
bias on a sum of some outputs for two successive DES S-boxes. The best bias
obtained by Biham (also exhibited by Matsui in [26] and contained unnoticed in
the earlier Davies-Murphy attack [6,7]) is equal to (35/64 — 1/2) for 2 rounds
and for S-boxes S7-S8. This gives 1.4 - 2722 for 12 rounds. Instead, (*) gives
experimentally only about 1.3-2718. Accordingly, (x) is the strongest known
1-round invariant attack on DES.

To break full DES requires a bias for 14 rounds (Matsui’s 2R method) and
the Biham’s invariant requires then 2°° plaintexts. Our invariant attack requires
about 2%3 plaintexts (the bias of (%) for 14 rounds is expected to be about 2722,
we did not dispose of a sufficient computing power to compute it exactly).



6.4 How Good is Our First Example, BLC vs. LC

These new properties of DES give a chosen-plaintext attack on an arbitrary
number of rounds of DES, somewhat simpler than Matsui’s laborious search
for the best linear characteristic. If we try here to predict the resulting bias
for 14 rounds by applying the Matsui’s Piling-up formula, we would get for 14
rounds the bias of: 1.63-2717 which means an attack on full DES with only 232-6
known plaintexts (17). Unfortunately, unlike for LC in DES, such predictions are
frequently not valid for BLC. Starting from 3 rounds, the bias of our invariant
does not follow the prediction at all, yet remains significative. For example if we
apply Matsui’s Piling-Up Lemma to predict the bias for 4 rounds as 2+2 rounds,
we obtain 1.55- 279, while in practice it is about 1.80-28. Our invariant attack
seems very bad for 4 rounds, and unfortunately with (%) we never get a bias better
than obtained by Matsui. Yet, it is the best invariant attack on DES known, and
for more than 4 rounds the results are again not so bad. Only slightly worse
than Matsui. For example for 12 rounds the best result of Matsui from [25] gives
1.19 - 2717 while for (x) and a random key our simulation gives 1.3 -27!% To
break full DES Matsui requires about 23 plaintexts, and with () we also need
about 2?3 (and both are related). In the full version of this paper we give a
heuristic argumentation why for DES (but not in general !) the complexity of
the best bi-linear attack should be roughly the same than for LC.

For DES and 1-round invariants attacks extended to an arbitrary number of
rounds, BLC gives strictly better results than LC. It is also so for more complex
periodic constructions and we are going to see that BLC attacks can also be
strictly better than any existing linear attack.

6.5 Second Example of Bi-Linear Cryptanalysis of DES

In order to exhibit biases really better than Matsui we looked what is the best
bi-linear characteristic that exists in DES:

J[16,20]00[8, 14,25, 3]®J[16,17,20]-0[3] = 0 for S5 with probability 61/64.

We note that this equation can be seen as “causing” the existence of the
Matsui’s best equation (A) for S5: their difference is highly biased. Based mainly
on this, we constructed a periodic characteristic for 3,7, 11 and more rounds that
is strictly better than the best results of Matsui for the same number of rounds.
Proposition 6.5.1 (Our Best Attack on 11 Rounds of DES). For all keys,
the following equation is biased for 11 rounds of DES:

Lo[3, 8,14, 25] & Lo[3]Ro[16, 17, 20] & Ro[17]® 1
(%) L11[3,8,14,25] @ L11[3]R11[16, 17, 20] @ R11[17] = } — +around 1.2-271°
K[sth] + K[sth'|Lo[3] + K[sth"]|L11[3] 2

The exact construction to achieve this is a bit complicated. (cf. Appendix
B). The bias of this equation is strictly better than the best linear characteristic
for 11 rounds obtained by Matsui (which gives 1.91-2716 for 11 rounds). It has
been verified by computer simulations at every stage. We note also that both
are closely related: their difference, is a biased Boolean function.

Our second example allows us to give an attack strictly better than Matsui
for 11+2=13 rounds of DES. For the full 16-round DES our results are roughly



as good as Matsui (but we hope to improve this soon too). For 17 rounds of
DES, as the construction of our second example (xx) is periodic, we expect that
for 114+4=15 rounds it should also be better than the best bias of Matsui, which
would allow to break 154+2=17 rounds of DES faster than by LC. We do not
dispose of a sufficient computing power to fully confirm this fact.

7 Conclusion

It was stated that for Feistel ciphers non-linear characteristics cannot be joined
together for several rounds, see [20]. In this paper we show that generalised linear
cryptanalysis (GLC) is in fact possible for Feistel schemes. To achieve this goal,
we introduced bi-linear cryptanalysis (BLC). It gives a new (and the fastest
known) 1-round invariant attack on DES. Though more powerful, generalized
linear cryptanalysis is unfortunately much harder to study than LC. At present
heuristic constructions, to be confirmed (or not) by computer simulations are
the only method known to explore it. BLC is related to LC in multiple important
ways. It contains LC as a sub-set. LC can be used to construct good bi-linear
characteristics and vice-versa. BLC also contains LC as an extension: a combi-
nation of biased bi-linear characteristics may extend a concrete combination of
biased linear characteristics by adding quadratic polynomials. Yet BLC can be
strictly better than any (existing) linear attack. This was demonstrated for 3, 7,
11 and more rounds of DES, and also for s°DES.

In this paper we only initiate the study of bi-linear cryptanalysis. BLC and
GLC extend the role of LC as an essential tool to evaluate the real-life security
of many practical ciphers. An interesting contribution of this paper is to point
out that, though GLC is excessively general to be systematically explored, the
properties of the top-level structure of a cryptographic scheme (e.g. being a
Feistel scheme) will determine the type of the attacks (e.g. BLC) that may indeed
work. Our new attack can be quite devastating: we constructed a large family of
practical ciphers based on big Rijndael-type S-box, that are strongly resistant
against LC and all previously known attacks on Feistel ciphers, yet can be broken
in practice with BLC for an important number of rounds. Fortunately, for DES,
BLC gave only slight improvements over LC and does not cause excessive trouble.
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A Selected Bi-Linear Characteristics of DES S-boxes

In this section we give some bi-linear characteristics for DES S-boxes. Our results
are not exhaustive: the number of possible bi-linear characteristics is huge and
we do not have a fast method to find all interesting characteristics. Accordingly
we are not certain to have found the best existing characteristics. It is certain
that there is no characteristics true with probability 1, as these are easy to check
algebraically. Otherwise we explored all cases that use up to two products and
we conjecture that the other does not have practical relevance for the security
of DES. We give here some interesting results we have found. More will appear
in the extended version of this paper.

Table 1. A few selected bi-linear characteristics for DES S-boxes

equation remarks and
input output input*output comments

S55|12/64 17 8,14,25,3 Matsui’s equation A
S5| 6/64 17 8,14,25,3 [17] = [8, 14, 25, 3] gets better
S5(58/64 [17] = [8, 14, 25, 3]
S5| 8/64 17 8,14,25,3 [16,17,20] * [8]
S5| 8/64 | 16,20 | 8,14,25 [16,20] * [8, 14, 25]
S5|61/64| 16,20 |8,14,25,3 [16,17,20] * [3] the best in DES
S5|47/64 8,14,25 17 %3
S5(17/64 8,14,25,3 17%3
S5|47/64 17 %3
S55|49/64 3 17 %3
S5(49/64 17 17%3
S5|17/64 17 3 17 %3
S51|30/64 3 17 Matsui’s equation C
S1|15/64 3 17 3% 17 gets better
S51|47/64 17 317
S51|47/64 3 3% 17
S51(49/64 3x17
|S2[8/64] 5  [13,28,18] 8 %2 | |
|54]56/64 | | | [12,14,16,17] % [26,1] [(there are many similar)|
|56]38/64 ] | 11,19 | 21 % 29 | |
[S7[11/64] 25,28 | 32,12,7 | 28 % 12,27 % 22 [ |

|58[40/64] | 5,27,15 | 29 x 21 | |




B Improved Bi-Linear Attacks for DES

The goal of this section is to find or construct examples where bi-linear crypt-
analysis gives strictly better bias on DES than the best Matsui’s result.

We look at the best Matsui’s characteristic on 3 rounds given at the last
page of [25]. By itself, it can be considered as very good, even compared to
other Matsui’s characteristics: it uses twice the best element (A) of Matsui, and
nothing between them. Moreover, this element (A) is in itself the best linear
characteristic that exist in DES, first described by Shamir in [30]:

(A) J[17)® O[8,14,25,3] =0 for S5 with probability 12/64

From this we get immediately, using Matsui’s Piling-Up Lemma from [25],
that for 3 rounds, and for any key, the following equation is biased:
Lo[8,14, 25, 3] & Ro[17]® } 1 56.9-3
L3[8,14,25,3] @ Ra[17) = K[sth] [ 2
We call Matsui-3 this equation.

B.1 Improving on Matsui-3

We will show that with bi-linear characteristics, there are strictly better equa-
tions than Matsui-3. Our simulations looking for the best bi-linear characteristics
for DES S-boxes (cf. Appendix A), showed that the best one is the following;:

J[16,20]®0[8,14,25,3]® J[16,17,20]-0O[3] = 0 for S5 with probability 61/64
Remark: It is clearly related to, and can be seen as “causing” the existence
of the Matsui’s equation (A): their difference is naturally biased.

We will use this characteristic. Let KS5 denote the combination of the S-box
S5 and the key bits XORed to its inputs. It is easy to see that for KS5, if we
denote by K|[sth] some constant linear combination of key bits, for any key, one
of the following equations is always strongly biased:

(al) I[16,20] @ O[8,14,25,3] & I[16,17,20] - O[3] = K|[sth]

or |bias| = 1/2—3/64

(a2) I[16,20] @ O[8,14,25] @ I[16,17,20] - O[3] = K|[sth]
In our construction, we will use one of the above, and we will also use another,

naturally biased equation, which will be one of the following:

(b) O[16,17,20] & I[3] - O[16,17,20] = 0
and |bias| =1/2—-1/4
(c) I[3] @ O[16,17,20] & I[3] - O[16,17,20] - O[3] = 0

Now we are ready to construct characteristics for 3 rounds of DES.



Lo[8,14,25,3] | Lo[3]Ro[16,17,20] | Rol[17]

Y KS5
(s,14,25,3]  [16,20] |4 3/64
[3]%[16,17,20]

L1[8,14,25,3] | L1[3]R1[16,17,20] | R4[16,17,20]

(natural) 3

y
> [] [16,17,20]-P 3/4
3]+[16,17,20]
L2[8,14,25,3] | L2[3]Ro[16,17,20] | Ra[16,17,20]
KS5
- (8,14,25,3]  [16,20] {4 3/64
[3]+[16,17,20]

L4[8,14,25,3] | Ls[3] « Rs[16,17,20] | Rs[17)

Fig. 5. Combining al-b-al to get a characteristic for 3 rounds of DES

Lo[8,14,25] | Lo[3]Ro[16,17,20] | Ro[17]

v KS5
- 8,14,25] [16,20] [« 3/64
[3]%[16,17,20]

L4[8,14,25] | Ly[3]R4[16,17,20] | Ry[16,17,20]

(natural) v
> [3] [16,17,20]-P 1/4
[3]%[16,17,20]
L2[8,14,25,3] | L2[3]Ra[16,17,20] | Ra[16,17,20]
KS5
s,14,25,3]  [16,20] | 3/64
[3]%[16,17,20]

Ls[8,14,25,3] | Ls[3] * Rs[16,17,20] | Rs[17]

Fig. 6. Combining a2-c-al to get a characteristic for 3 rounds of DES



As one should expect, our construction goes as follows:

In round 1 and 3, depending on the key either al or a2 is strongly biased.

To connect al to al, or a2 with a2, we can use b, as in Figure 5.

To connect al with a2 and the reverse, we use c, as in Figure 6.

For 3 rounds and for any key, we always have a strong bias on one of the

four possibilities: al-b-al, al-c-a2, a2-c-al, a2-b-a2.

o From Matsui’s Piling-Up Lemma, we expect that the whole characteristic
will be true with probability 1 +1.64 - 2~%. Our simulations show that it is
between 3 & 1.65-273 and { +1.67-273,

o Since, the choice of al/a2 depends on a linear combination of key bits, We

can combine all these into one equation and we get the following result:

S 0O O 0

Proposition B.1.1 (Our Best Attack on 3 Rounds of DES). For all keys,
the following equation is biased for 3 rounds of DES: :

Lo[3,8,14,25] @ Lo[3]Ro[16, 17, 20] & Ro[17]®
(%%) Ls3[3,8,14,25] @ Ls[3]R3[16,17,20] & Rs[17] = } - 4+1.66-2°
K[sth] + K[sth']Lo[3] + K][sth"]Rs[3] 2
In comparison, Matsui-3 gives % — 1.56 - 273, Bi-linear cryptanalysis works
better than LC. In the next section we will extend this result (and again beat
Matsui) to 7, 11 and more rounds.
Remark: The equation above can be seen as 4 different equations, each
of them is highly biased for 1/4 of all keys. We observed that each of the 4
equations is also biased for all DES keys, except that for 3/4 of them the bias is
much weaker, we get about % +1.6-277.

B.2 Extending the Result for 7,11 and More Rounds

The idea is to find an element (maybe not very good in itself) that will allow to
connect together our (very good) characteristics on 3 rounds. For example, to
connect Figure 5 with Figure 6 we use the following element:

L3[8,14,25,3] | Ls[3]Rs[16,17,20] | Rs[17]

S1+natural
1 ]3] [17] 1/2+0.8/64
[3]%[16,17,20]

L4[8,14,25] | L4[3]R4[16,17,20] | R4[17
Y

Fig. 7. Connecting the output of al to the input of a2

Simulations show that, for any key, this characteristic is true with probability
about 1/2 £ 0.8/64. The explanation is as follows: the bias is due to to the
combination of Matsui’s equation (C)

(C) JB]®O[17] =0 for S1 with probability 30/64

and of the fact that I[3]- O[16,17,20] is naturally biased. The same element

(Figure 7) does also work to connect a2 to al.



It remains to be seen how the connection between al and al or a2 and a2.
This is done in a very similar way: we combine (C) with I[3] & I[3]- O[16,17,20]
that is also naturally biased.

Summary: In every of 4 possible cases, there is a connecting element based
on (C). This means that, also for 7 rounds and for any key, again one of the
four possibilities is quite biased: al-b-al, al-c-a2, a2-c-al, a2-b-a2. Again we
can recompose it in a single attack:

Proposition B.2.1 (Extension to 7 Rounds of DES). For all keys, the
following equation is biased for 7 rounds of DES:
Lo[3,8, 14, 25] @ Lo[3]Ro[16, 17, 20] & Ro[17]®
L7[3,8,14,25] @ L7[3]R7[16, 17, 20] & Rs[17] = } = + about 27
K[sth] + K[sth|Lo[3] + K[sth"]L[3] 2
This bias is, depending on the key, sometimes better, sometimes worse than
Matsui-7 that gives 3 —1.95-2710.
Finally, it is now obvious, that our construction works also for 11, 15, 19
rounds etc. We verified experimentally that for 11 rounds we have:

Proposition B.2.2 (Our Best Attack on 11 Rounds of DES). For all
keys, the following equation is biased for 11 rounds of DES: :

Lo[3, 8,14, 25] @ Lo[3]Ro[16, 17, 20] & Ro[17]® 1

L11[3,8,14,25] ® L11[3]R11[16,17,20] @ Ri:1[17] = } ~ +around 1.2-271°

K[sth] + K[sth']Lo[3] + K[sth"]L11[3] 2

For a few different keys we have tried (long computation on a PC) the bias
was always strictly better than Matsui-11 that gives £ — 1.91 2716,

Remark: The best characteristics found by Matsui for 3 and 11 rounds [25]
are closely related to those presented here: their difference is a biased Boolean
function. BLC contains LC not only as a subset, but also as an extension allowing
to strictly improve the best linear attacks on DES by adding higher degree
monomials.

B.3 Beyond Bi-Linear Attacks: Using Cubic Equations

We observed that, for 3 rounds, even better results can be achieved using cu-
bic partially bi-linear characteristics, instead of quadratic bi-linear (**) from
Proposition B.1.1. Our simulations show that, for an important fraction of keys:

Lo[3,8, 14, 25] @ Lo[3]Ro[16, 17, 20 Ro[17, 18, 19, 20]& 1
(s % %) L3[3,8,14,25] ® L3[3]Rs[16,17, 20| Rs[17,18,19,20]® » = —1.82.273
Ro[17] ® Rs[17] = K|[sth]

The explanation why this works is quite similar. Though the non-linear part
of this equation is not bi-linear, it is well correlated with a truly bi-linear func-
tion:

L[3]R[16,17,20|R[17,18,19,20] = L[3]R[16,17,20] with probability 7/8

Unfortunately, the bias of (x x %) is worse for other keys. On average, the
best bias we know for 3 rounds remains (*x) from Proposition B.1.1. We also
observed that that (x x x) works for any number of DES rounds and for any key,
but again the results are not as good as with (xx).



