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Abstract. In this paper, we show that a key encapsulation mechanism
(KEM) does not have to be IND-CCA secure in the construction of hy-
brid encryption schemes, as was previously believed. That is, we present a
more efficient hybrid encryption scheme than Shoup [12] by using a KEM
which is not necessarily IND-CCA secure. Nevertheless, our scheme is
secure in the sense of IND-CCA under the DDH assumption in the stan-
dard model. This result is further generalized to universal2 projective
hash families.
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1 Introduction

1.1 Background

Cramer and Shoup showed the first provably secure practical public-key encryp-
tion scheme in the standard model [3, 6]. It is secure against adaptive chosen
ciphertext attack (IND-CCA) under the Decisional Diffie-Hellman (DDH) as-
sumption. They further generalized their scheme to projective hash families [4].
(In the random oracle model [1], many practical schemes have been proven to
be IND-CCA, for example, OAEP+ [13], SAEP [2] , RSA-OAEP [8], etc. [7].
However, while the random oracle model is a useful tool, it does not rule out all
possible attacks.)

On the other hand, a hybrid encryption scheme uses public-key encryption
techniques to derive a shared key that is then used to encrypt the actual messages
using symmetric-key techniques.

For hybrid encryption schemes, Shoup formalized the notion of a key en-
capsulation mechanism (KEM), and an appropriate notion of security against
adaptive chosen ciphertext attack [12, 6]. A KEM works just like a public key
encryption scheme, except that the encryption algorithm takes no input other
than the recipient’s public key. The encryption algorithm can only be used to
generate and encrypt a key for a symmetric-key encryption scheme. (One can
always use a public-key encryption scheme for this purpose. However, one can
construct a KEM in other ways as well.) A secure KEM, combined with an ap-
propriately secure symmetric-key encryption scheme, yields a hybrid encryption
scheme which is secure in the sense of IND-CCA [12].



Shoup presented a secure KEM under the DDH assumption [12]. As a result,
his hybrid encryption scheme is secure in the sense of IND-CCA under the DDH
assumption in the standard model [12].

1.2 Our Contribution

In order to prove the security of hybrid encryption schemes, one has believed
that it is essential for KEM to be secure in the sense of IND-CCA, as stated in
[6, Remark 7.2, page 207].

In this paper, however, we disprove this belief. That is, it is shown that
KEM does not have to be CCA secure, as was previously believed. On a more
concrete level, we present a more efficient hybrid encryption scheme than Shoup
[12] by using a KEM which is not necessarily secure in the sense of IND-CCA.
Nevertheless, we prove that the proposed scheme is secure in the sense of IND-
CCA under the DDH assumption in the standard model.

In a typical implementation, the underlying Abelian group may be a subgroup
of Z∗p , where p is a large prime. In this case, the size of our ciphertexts is |p| bits
shorter than that of Shoup [12]. The number of exponentiations per encryption
and that of per decryption are also smaller. (Further, our scheme is more efficient
than the basic Cramer-Shoup scheme [3, 6].)

This shows that one can start with a weak KEM and repair it with a hy-
brid construction. Eventually, more efficient hybrid encryption schemes could be
obtained.

Our KEM is essentially a universal2 projective hash family [4]. We present a
generalization of our scheme to universal2 projective hash families also.

The only (conceptual) cost one pays is that one needs to assume a simple
condition on the symmetric encryption scheme. Namely, any fixed ciphertext is
rejected with overwhelming probability, where the probability is taken over keys
K. This property is already satisfied by the symmetric encryption scheme SKE
which is used in the hybrid construction of Shoup [12]. Hence the SKE can be
used in our hybrid construction too.

Our result gives new light to Cramer-Shoup encryption schemes [3, 4, 6] and
opens a door to design more efficient hybrid encryption schemes.

2 Preliminaries

We denote by λ a security parameter. PPT denotes probabilistic polynomial
time.

2.1 Notation and Definitions

|S| denotes the cardinality of S if S is a set. |m| denotes the bit length of m
if m is a string or a number. If A(·, ·, · · ·) is a probabilistic algorithm, then
x
R← A(x1, x2, · · ·) denotes the experiment of running A on input x1, x2, · · · and

letting x be the outcome. If S is a set, x R← S denotes the experiment of choosing
x ∈ S at random.



2.2 Public-Key Encryption Scheme (PKE)

A public-key encryption scheme is a three tuple of algorithms PKE = (Kp, Ep,Dp).
The key generation algorithm Kp generates a pair (pk, sk) R← Kp(1λ), where pk
is a public key and sk is a secret key. The encryption algorithm Ep takes a public

key pk and a plaintext m, and returns a ciphertext c R← Ep(pk,m). The decryp-
tion algorithm Dp takes a secret key sk and a ciphertext c, and returns m or
reject.

The chosen plaintext attack (IND-CPA) game is defined as follows. We imag-
ine a PPT adversary A that runs in two stages. In the “find” stage, A takes a
public key pk and queries a pair of equal length messages m0 and m1 to an
encryption oracle. The encryption oracle chooses b R← {0, 1} and computes a
challenge ciphertext c∗ of mb randomly. In the “guess” stage, given c∗, A out-
puts a bit b̃ and halts.

The adaptive chosen ciphertext attack (IND-CCA) game is defined similarly.
The difference is that the adversary A is given access to a decryption oracle,
where A cannot query the challenge ciphertext c∗ itself in the guess stage.

Definition 1. We say that PKE is secure in the sense of IND-CCA if |Pr(b̃ =
b)− 1/2| is negligible in the IND-CCA game for any PPT adversary A.

In particular, we define the IND-CCA advantage of A as follows:

AdvccaPKE(A) = |Pr(b̃ = b)− 1/2|. (1)

For any t and qd, define AdvccaPKE(t, qd) = maxA AdvccaPKE(A), where the maxi-
mum is taken over all A which runs in time t and makes at most qd queries to
the decryption oracle.

2.3 Diffie-Hellman Assumptions

Let G be an Abelian group of order Q, where Q is a large prime. Let g1 be a
generator of G. Let

DH = {(g1, g2, g
r
1, g

r
2) | r ∈ ZQ, g2 = gw1 , w ∈ ZQ}

Random = {(g1, g2, g
r1
1 , g

r2
2 ) | r1 ∈ ZQ, r2 ∈ ZQ, g2 = gw1 , w ∈ ZQ}

The decisional Diffie-Hellman (DDH) assumption claims that DH and Random
are indistinguishable.

For a distinguisher D, consider the following two experiments. In experiment
0, let (g1, g2, u1, u2) R← DH. In experiment 1, let (g1, g2, u1, u2) R← Random.
Define

AdvddhG (D)
4
= |p0 − p1|,

where

p0
4
= Pr(D = 1 in experiment 0), p1

4
= Pr(D = 1 in experiment 1)

For any t, define AdvddhG (t)
4
= maxA AdvddhG (D), where the maximum is taken

over all D which runs in time t.



2.4 Target Collision Resistant Hash Function

The notion of target collision resistant TCR family of hash functions was shown
by Cramer and Shoup [6]. It is a special case of universal one-way hash function
UOWH family introduced by Naor and Yung [10], where a UOWH family can be
built from arbitrary one-way functions [10, 11].

In a TCR family, given a randomly chosen tuple of group elements x (∈ Gn for
some n) and a randomly chosen hash function H, it is infeasible for an adversary
A to find y 6= x such that H(x) = H(y). (In a UOWH family, x is chosen by the
adversary.) In practice, one can use a dedicated cryptographic hash function,
like SHA-1. Define

AdvhashTCR (A)
4
= Pr(A succeeds).

For any t, define AdvhashTCR (t)
4
= maxA AdvhashTCR (A), where the maximum is taken

over all A which runs in time t.

3 Previous Results on KEM

It is known that by combining a KEM and a one-time symmetric encryption
scheme which are both secure in the sense of IND-CCA, we can obtain a hybrid
encryption scheme which is secure in the sense of IND-CCA.

3.1 KEM [12][6, Sec.7.1]

A key encapsulation mechanism KEM consists of the following algorithms.

– A key generation algorithm KEM.Gen that on input 1λ outputs a pub-
lic/secret key pair (pk, sk).

– An encryption algorithm KEM.Enc that on input 1λ and a public key pk,
outputs a pair (K,ψ), where K is a key and ψ is a ciphertext.
A key K is a bit string of length KEM.Len(λ), where KEM.Len(λ) is another
parameter of KEM.

– A decryption algorithm KEM.Dec that on input 1λ, a secret key sk, a string
(in particular a ciphertext) ψ, outputs either a key K or the special symbol
reject.

KEM.Gen and KEM.Enc are PPT algorithms and KEM.Dec is a deterministic
polynomial time algorithm.

In the chosen ciphertext attack (IND-CCA) game, we imagine a PPT adver-
sary A that runs in two stages. In the find stage, A takes a public key pk and
queries an encryption oracle. The encryption oracle computes:

(K∗, ψ∗) R← KEM.Enc(1λ);K+ R← {0, 1}k; τ R← {0, 1};

if τ = 0 then K† ← K∗ else K† ← K+

where k = KEM.Len(λ), and responds with the pair (K†, ψ∗). In the guess stage,
given (K†, ψ∗), the adversary A outputs a bit τ̃ and halts.



The adversary A is also given access to a decryption oracle. For each decryp-
tion oracle query, the adversary A submits a ciphertext ψ, and the decryption
oracle responds with KEM.Dec(1λ, sk, ψ), where A cannot query the challenge
ciphertext ψ∗ itself in the guess stage.

Definition 2. We say that KEM is secure in the sense of IND-CCA if |Pr(τ̃ =
τ)− 1/2| is negligible in the above game for any PPT adversary A.

3.2 One-Time Symmetric-Key Encryption [6, Sec.7.2]

A one-time symmetric-key encryption scheme SKE consists of two algorithms:

– A deterministic polynomial time encryption algorithm SKE.Enc that takes
as input 1λ, a key K and a message m, and outputs a ciphertext χ.

– A deterministic polynomial time decryption algorithm SKE.Dec that takes
as input 1λ, a key K and a ciphertext χ, and outputs a message m or the
special symbol reject.

The key K is a bit string of length SKE.Len(λ), where SKE.Len(λ) is a parameter
of the encryption scheme.

In the passive attack game, we imagine a PPT adversary A that runs in two
stages. In the “find” stage, A takes 1λ, and queries a pair of equal length messages
m0 and m1 to an encryption oracle. The encryption oracle generates a random
key K of length SKE.Len(λ), along with random σ

R← {0, 1}, and encrypts mσ

using the key K. In the “guess” stage, given the resulting ciphertext χ∗, A
outputs a bit σ̃ and halts.

In the chosen ciphertext attack (IND-CCA) model, the adversary A is also
given access to a decryption oracle in the guess stage. In each decryption oracle
query, A submits a ciphertext χ 6= χ∗, and obtains the decryption of χ under
the key K.

Definition 3. We say that SKE is secure in the sense of IND-CCA if |Pr(σ̃ =
σ)− 1/2| is negligible in the IND-CCA game for any PPT adversary A.

In particular, we define the IND-CCA advantage of A as follows.

AdvccaSKE(A) = |Pr(σ̃ = σ)− 1/2|. (2)

For any t and qd, define AdvccaSKE(t, qd) = maxA AdvccaSKE(A), where the maximum
is taken over all A which runs in time t and makes at most qd queries to the
decryption oracle.

3.3 Construction of SKE

Shoup showed a construction of a one-time symmetric-key encryption scheme
as follows [12, page 281]. Let PRBG be a pseudo-random bit generator which
stretches l-bit strings to strings of arbitrary (polynomial) length. We assume



that 1/2l is a negligible quantity. In a practical implementation, it is perfectly
reasonable to stretch the key K0 by using it as the key to a dedicated block
cipher, and then evaluate the block cipher at successive points (so called ”counter
mode”) to obtain a sequence of pseudo-random bits [6, Sec.7.2.2].

Let AXUH be a hash function which is suitable for message authentication,
i.e., an almost XOR-universal hash function [9]. We assume that AXUH is keyed
by an l′-bit string and hashes arbitrary bit string to l-bit strings. Many efficient
constructions for AXUH exist that do not require any intractability assumptions.

To encrypt a message m by using a key K = (K0,K1,K2), we apply PRBG
to K0 to obtain an |m|-bit string f . Then we compute

e = f ⊕m, (3)
a = AXUH(K1, e)⊕K2. (4)

The ciphertext is χ = (e, a), where a is called a tag. (We can generate K by
applying PRBG to a shorter key.)

To decrypt χ = (e, a) using a key K = (K0,K1,K2), we first test if eq.(4)
holds. If it does not hold, then we reject. Otherwise, we output m = e⊕ f .

3.4 A Hybrid Construction

Let KEM be a key encapsulation mechanism and let SKE be a one-time symmetric
key encryption scheme such that KEM.Len(λ) = SKE.Len(λ) for all λ. Let HPKE
be the hybrid public-key encryption scheme obtained from KEM and SKE.

Proposition 1. [6, Theorem 7.2] If KEM and SKE are secure in the sense of
IND-CCA, then so is HPKE.

4 Proposed Hybrid Encryption Scheme

In this section, we show a more efficient hybrid encryption scheme than before
[12, 6] by using a KEM which is not necessarily secure in the sense of IND-
CCA. Nevertheless, we prove that the proposed scheme is secure in the sense of
IND-CCA under the DDH assumption in the standard model.

4.1 Overview

A KEM works just like a public key encryption scheme, except that the encryp-
tion algorithm takes no input other than the recipient’s public key. Instead, the
encryption algorithm generates a pair (K,ψ), where K is a key of SKE and ψ
is an encryption of K. The decryption algorithm applied to ψ yields K. In our
hybrid encryption scheme, ψ = (u1, u2) = (gr1, g

r
2).

The notion of IND-CCA is adapted to KEM as follows. The adversary does
not give two messages to the encryption oracle. Rather, the encryption oracle
runs the KEM encryption algorithm to obtain a pair (K,ψ). The encryption



oracle then gives the adversary either (K,ψ) or (K+, ψ), where K+ is an inde-
pendent random bit string; the choice of K versus K+ depends on the value of
the random bit b chosen by the encryption oracle.

Up to now, in order to prove the security of the hybrid encryption scheme, it
has been believed to be essential for KEM to be secure in the sense of IND-CCA,
as stated in [6, Remark 7.2, page 207].

However, we know of no way to prove that our KEM is secure in the sense of
IND-CCA. Nevertheless, we prove that the proposed hybrid encryption scheme
is secure in the sense of IND-CCA. This shows that one can start with a weak
KEM and repair it with a hybrid construction. Eventually, more efficient hybrid
encryption schemes could be obtained.

A generalization of our scheme to universal2 projective hash families [4] will
be given in Sec.8.

4.2 ε-Rejection Secure

We require that a one-time symmetric-key encryption scheme SKE satisfies the
following property: any bit string χ is rejected by the decryption algorithm with
overwhelming probability. Formally, we say that SKE is ε-rejection secure if for
any bit string χ,

Pr(SKE.Dec(1λ,K, χ) = reject) ≥ 1− ε,

where the probability is taken over K.
This property is already satisfied by the one-time symmetric-key encryption

scheme shown in Sec.3.3. Indeed, for any fixed χ = (e, a), eq.(4) holds with
probability 1/2l because K2 is random. Therefore, this encryption scheme is
ε-rejection secure for ε = 1/2l.

4.3 Proposed Scheme

The proposed hybrid encryption scheme is based on the basic Cramer-Shoup
scheme [3, 6]. However, it does not use v as the validity check as in [3, 6], but
rather it is used to derive the encapsulated key K. This saves the value h which
was previously used to encapsulate the key, and one exponentiation encryp-
tion/decryption. It also makes the public key and the secret key one element
shorter.

Let G be an Abelian group of order Q, where Q is a large prime. Let SKE
be a one-time symmetric-key encryption scheme.

Let H : G→ {0, 1}k be a hash function, where k = SKE.Len(λ). We assume
that H(v) is uniformly distributed over {0, 1}k if v is uniformly distributed over
G. This is a very weak requirement on H, and we can use SHA-1, for example.

Key Generation. Generate two distinct generators g1, g2 of G at random.
Choose (x1, x2, y1, y2) ∈ Z4

Q at random. Compute

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 .



Finally, a random κ indexing a target collision resistant hash function TCR (see
Sec.2.4) is chosen. The public-key is pk = (g1, g2, c, d, κ) and the secret key is
sk = (x1, x2, y1, y2).

Encryption. To encrypt a message m, choose r ∈ ZQ at random and compute

u1 = gr1, u2 = gr2, α = TCR(κ;u1, u2),

v = crdrα, K = H(v), χ = SKE.Enc(1λ,K,m).

The ciphertext is (u1, u2, χ). (In the ciphertext, the KEM part is ψ = (u1, u2).)

Decryption. For a ciphertext C = (u1, u2, χ), compute

α = TCR(κ;u1, u2), v = ux1+y1α
1 ux2+y2α

2 , K = H(v).

Then decrypt χ under K using SKE.Dec, and output the resulting decryption z.
(z may be reject.)

4.4 Security

Theorem 1. The proposed hybrid encryption scheme Hybrid is secure in the
sense of IND-CCA under the DDH assumption if SKE is secure in the sense of
IND-CCA and it is ε-rejection secure for negligible ε. In particular,

AdvccaHybrid(t, qd) ≤ AdvddhG (t1) + AdvhashTCR (t2) + AdvccaSKE(t3, qd) + qd(ε+
1
Q

) +
4
Q
.

where t1, t2, t3 are essentially the same as t.

A proof will be given in the next section.

4.5 Efficiency Comparison

In the hybrid encryption scheme of Shoup [12] and in the Cramer-Shoup scheme
[3],

– v ∈ G is included in the ciphertext C to check the validity of C.
– h ∈ G is included in a public-key to generate a key K of SKE.

In our scheme, on the other hand,

– v is not included in the ciphertext, but it is used to derive a key K of SKE.
– h is not necessary at all.

In a typical implementation, the underlying Abelian group G may be a sub-
group of Z∗p , where p is a large prime. Table 1 shows an efficiency comparison
among the proposed hybrid encryption scheme, the hybrid encryption scheme of
Shoup [12] and the basic Cramer-Shoup scheme [3]. (In the table, a denotes the
tag of SKE as shown in Sec.3.3.)

We can see that



– the size of our ciphertext is |p| bits shorter than that of Shoup [12].
– the size of our public-key is |p| bits shorter than that of Shoup [12].
– The number of exponentiations per encryption and that of per decryption

of our scheme are also smaller.

Further, our scheme is more efficient than the Cramer-Shoup scheme [3] for
|m| < 2|p| − |a|. Moreover, in Cramer-Shoup [3] m must belong to G (so |m| ≤
|q|), while in ours and Shoup’s [12] m ∈ {0, 1}∗ (polynomial length).

Table 1. Efficiency Comparison

ciphertext public-key exp/enc exp/dec

Cramer-Shoup [3] 4 · |p| 5|p|+ |κ| 5 3

Shoup [12] 3 · |p|+ |m|+ |a| 5|p|+ |κ| 5 3

Proposed 2 · |p|+ |m|+ |a| 4|p|+ |κ| 4 2

5 Proof of Theorem 1

5.1 Outline

The following lemma is simple but useful.

Lemma 1. [6, Lemma 6.2] Let S1, S2 and F be events defined on some proba-
bility space. Suppose that the event S1∨¬F occurs if and only if S2∨¬F occurs.
Then

|Pr(S1)− Pr(S2)| ≤ Pr(F ).

Let A be an adversary who breaks the proposed scheme in the sense of
IND-CCA. The attack game is as described in Sec.2.2. Suppose that the public
key is (g1, g2, c, d, κ) and the secret key is (x1, x2, y1, y2). The target ciphertext
is denoted by C∗ = (u∗1, u

∗
2, χ
∗). We also denote by r∗, α∗, v∗,K∗ the values

corresponding with r, α, v,K related to C∗.
Suppose that A queries at most q1 times to the decryption oracle in the find

stage, and at most q2 times to the decryption oracle in the guess stage, where
qd = q1 + q2. We say that a ciphertext C = (u1, u2, χ) is valid if u1 = gr1 and
u2 = gr2 for some r. Otherwise, we say that C is invalid.

Let log(·) denote logg1
(·) and let w = log g2. Then

log c = x1 + wx2 (5)
log d = y1 + wy2 (6)

Let G0 be the original attack game, let b̃ ∈ {0, 1} denote the output of A,
and let T0 be the event that b = b̃ in G0. Therefore,

AdvccaHybrid(A) = |Pr[T0]− 1/2|.



We shall define a sequence G1, · · · ,G` of modified attack games. For any
1 ≤ i ≤ `, we let Ti be the event that b = b̃ in game Gi.

In game G1, we modify the encryption oracle as follows: v∗ = cr
∗
dr
∗α∗ is

replaced by
v∗ = (u∗1)x1+y1α

∗
(u∗2)x2+y2α

∗
.

This change is purely conceptual, and Pr[T1] = Pr[T0].
In game G2, we modify the encryption oracle again, so that (u∗1, u

∗
2) is re-

placed by a random pair (gr
∗
1

1 , g
r∗2
2 ) with r∗1 6= r∗2 . Under the DDH assumption,

A will hardly notice, and |Pr[T2]−Pr[T1]| is negligible. More precisely, we have

Lemma 2. There exists a PPT algorithm A1, whose running time is essentially
the same as that of A, such that

|Pr[T2]− Pr[T1]| ≤ AdvddhG (A1) + 3/Q.

The proof is the same as that of [6, Lemma 6.3].
In game G3, we modify the decryption oracle, so that it applies the following

special rejection rule: In the guess stage, if the adversary submits a ciphertext
(u1, u2) 6= (u∗1, u

∗
2) but α = α∗, then the decryption oracle immediately outputs

reject and halts. Let R3 be the event that the decryption oracle in game G3

rejects a ciphertext using the special rejection rule. It is clear that games G2

and G3 proceed identically until the event R3 occurs. In particular, the event
T2 ∧ ¬R3 and T3 ∧ ¬R3 are identical. So by Lemma 1, we have

|Pr[T3]− Pr[T2]| ≤ Pr[R3].

Lemma 3. There exists a PPT algorithm A2, whose running time is essentially
the same as that of A, such that

Pr[R3] ≤ AdvhashTCR (A2) + 1/Q.

The proof is the same as that of [6, Lemma 6.5].
In game G4, we modify the decryption oracle, so that it rejects all invalid

ciphertexts C in the find stage. Let R4 be the event that a ciphertext is rejected
in G4 that would not have been rejected under the rules of game G3. It is
clear that games G3 and G4 proceed identically until the event R4 occurs. In
particular, the event T3 ∧ ¬R4 and T4 ∧ ¬R4 are identical. So by Lemma 1, we
have

|Pr[T4]− Pr[T3]| ≤ Pr[R4].

Lemma 4. Pr[R4] ≤ q1 · ε. (For the proof, see Section 5.2.)

In game G5, we modify the encryption oracle as follows. (u∗1, u
∗
2) = (gr

∗
1

1 , g
r∗2
2 )

is randomly chosen in such a way that an event R5 does not occur, where R5 is
the event that (u∗1, u

∗
2) = (u1, u2) for some invalid ciphertext (u1, u2, χ) which A

queries in the find stage. It is clear that the event T4 ∧ ¬R5 and T5 ∧ ¬R5 are
identical. So by Lemma 1, we have

|Pr[T5]− Pr[T4]| ≤ Pr[R5].



Lemma 5. Pr[R5] ≤ q1/Q. (For the proof, see Section 5.3.)

In game G6, we modify the decryption oracle, so that it rejects all invalid
ciphertexts C in the guess stage. Let R6 be the event that a ciphertext is rejected
in G6 that would not have been rejected under the rules of game G5. It is
clear that games G5 and G6 proceed identically until the event R6 occurs. In
particular, the event T5 ∧ ¬R6 and T6 ∧ ¬R6 are identical. So by Lemma 1, we
have

|Pr[T6]− Pr[T5]| ≤ Pr[R6].

Lemma 6. Pr[R6] ≤ q2 · ε. (For the proof, see Section 5.4.)

In game G7, we modify the encryption oracle and the decryption oracle, so
that K∗ is replaced by a random key K+.

Lemma 7. Pr[T6] = Pr[T7]. (For the proof, see Section 5.5.)

Lemma 8. There exists a PPT algorithm A3, whose running time is essentially
the same as that of A, such that

AdvccaSKE(A3) = |Pr[T7]− 1/2|.

For the proof, see Section 5.6.
From the above results, we immediately obtain that

AdvccaHybrid(A3) ≤ AdvddhG (A1) + AdvhashTCR (A2) + AdvccaSKE(A3) + qd(ε+
1
Q

) +
4
Q
.

5.2 Proof of Lemma 4

From the A’s view, (x1, x2, y1, y2) is a random point satisfying eq.(5) and eq.(6).
Suppose that A queries an invalid ciphertext (u1, u2, χ) to the decryption oracle,
where logg1

(u1) = r1 and logg2
(u2) = r2 with r1 6= r2. Let v = ux1+y1α

1 ux2+y2α
2 ,

where α = TCR(κ;u1, u2). Then

log v = r1(x1 + αy1) + r2w(x2 + αy2). (7)

It is clear that eq.(5),(6) and (7) are linearly independent. This means that v
can take any value. In other words, v is uniformly distributed over G. Hence
K = H(v) is uniformly distributed over {0, 1}k. Now since SKE is ε-rejection
secure, the decryption oracle accepts (u1, u2, χ) with probability at most ε. Con-
sequently, we obtain this lemma.

5.3 Proof of Lemma 5

For any fixed (u1, u2),

Pr[(u∗1, u
∗
2) = (u1, u2)] =

1
Q(Q− 1)

≤ 1/Q

because (r∗1 , r
∗
2) ∈ Z2

Q is randomly chosen in such a way that r∗1 6= r∗2 .



5.4 Proof of Lemma 6

As the worst case, we assume that A knows v∗. Then from the A’s view,
(x1, x2, y1, y2) is a random point satisfying eq.(5), (6) and

log v∗ = r∗1(x1 + α∗y1) + r∗2w(x2 + α∗y2). (8)

In the guess stage, suppose that A queries an invalid ciphertext (u1, u2, χ)
to the decryption oracle, where log u1 = r1 and log u2 = r2 with r1 6= r2. Let
v = ux1+y1α

1 ux2+y2α
2 , where α = TCR(κ;u1, u2). Then

log v = r1(x1 + αy1) + r2w(x2 + αy2). (9)

Now ∣∣∣∣∣∣∣∣
1 0 w 0
0 1 0 w
r∗1 α

∗r∗1 wr
∗
2 α
∗wr∗2

r1 αr1 wr2 αwr2

∣∣∣∣∣∣∣∣ = w2(r∗2 − r∗1)(r2 − r1)(α− α∗) 6= 0

Therefore, eq.(5), (6), (8) and (9) are linearly independent. This means that
v is uniformly distributed over G. Hence K = H(v) is uniformly distributed
over {0, 1}k. Now since SKE is ε-rejection secure, the decryption oracle accepts
(u1, u2, χ) with probability at most ε.

Consequently, we obtain this lemma.

5.5 Proof of Lemma 7

In game G6, from the A’s view, (x1, x2, y1, y2) is a random point satisfying eq.(5)
and eq.(6). Further, it is clear that eq.(5),(6) and (8) are linearly independent.
This means that v∗ can take any value. In other words, v∗ is uniformly distributed
over G. Hence K∗ = H(v∗) is uniformly distributed over {0, 1}k. Consequently,
we obtain this lemma.

5.6 Proof of Lemma 8

We describe Algorithm A3. Algorithm A3 provides an environment for A as
follows. First, A3 runs the key generation algorithm of Hybrid to generate a
public-key pk = (g1, g2, c, d, κ) and the secret-key sk = (x1, x2, y1, y2). In partic-
ular, A3 chooses w ∈ ZQ randomly and computes g2 = gw1 . It then gives pk to
A.

In the find stage, whenever A submits a ciphertext C to the decryption oracle,
A3 applies the decryption rule of game G7, using the secret-key sk and w.

When A submits (m0,m1) to the encryption oracle, A3 submits (m0,m1) to
her encryption oracle.

The encryption oracle of A3 chooses a random key K+ ∈ {0, 1}k along with
a random bit σ, and encrypts mσ using the key K+. It then returns the resulting
ciphertext χ∗ to A3.



A3 generates (u∗1, u
∗
2) according to the encryption rule of game G7. It then

returns the target ciphertext C∗ = (u∗1, u
∗
2, χ
∗) to A.

In the guess stage, suppose that A submits a ciphertext C = (u1, u2, χ) to
the decryption oracle. If (u1, u2) 6= (u∗1, u

∗
2), then A3 applies the decryption rule

of game G7, using the secret-key sk and w. Otherwise, A3 queries χ to her
decryption oracle, where the decryption oracle decrypts χ by using K+. A3 then
returns the answer to A.

When A outputs σ̃, A3 outputs σ̃ and halts. That completes the description
of A3.

It is clear that A3 perfectly simulates the environment of A. Therefore,

Pr[T7] = Pr(σ = σ̃).

On the other hand,

AdvccaSKE(A3) = |Pr(σ = σ̃)− 1/2|.

Consequently, we obtain this lemma.

6 Discussion

We have argued that a KEM does not have to be CCA-secure in the construction
of hybrid encryption schemes, as was previously believed.

In the IND-CCA definition of hybrid encryption schemes, the decryption
oracle returns the message m for a queried ciphertext C = (ψ, χ), where ψ
is the KEM part and χ is the symmetric encryption ciphertext. On the other
hand, in the IND-CCA definition of KEM, the decryption oracle returns the
symmetric key K for a queried ψ. Hence, the IND-CCA definition of KEM is
too demanding because the decryption oracle reveals much more information
than the decryption oracle of the hybrid encryption scheme does.

Then one may consider to define a weaker condition on KEM such that
when coupled with CCA-secure symmetric encryption (with the extra condition
of Section 3.4), it would yield a CCA-secure hybrid encryption scheme. However,
it seems to be impossible because the security of KEM and that of the symmetric
encryption scheme are intertwined (as in our scheme).

7 Hash Proof System

Cramer and Shoup introduced a notion of Hash Proof System (HPS) [4, 5] in or-
der to generalize their encryption scheme based on the DDH assumption [3]. By
using HPS, they showed new CCA-secure encryption schemes under Quadratic
Residuosity assumption and Paillier’s Decision Composite Residuosity assump-
tion, respectively.

In this section, we give the definition of a slight variant of HPS, where ε-
universal2 is replaced by strongly universal2.



7.1 Subset Membership Problem [4, 5]

A subset membership problem Mem specifies a collection {Instancen}n∈N such
that for every n, Instancen is a probability distribution over problem instances
Λ. Each Λ specifies the following:

– Define, non-empty sets, X,L and W such that L ⊂ X.
– A binary relation R ⊂ X×W such that x ∈ L iff (x,w) ∈ R for some witness
w ∈W .

We require that the following PPT algorithms exist.

1. Instance sampling: samples an instance Λ according to Instancen on 1n.
2. Subset sampling: outputs a random x ∈ L together with a witness w ∈ W

for x on input 1n and Λ[X,L,W,R].
3. Element sampling: outputs a random x ∈ X.

We say that Mem is hard if (Λ, x0) and (Λ, x1) are indistinguishable for a
random x0 ∈ L and a random x1 ∈ X \ L.

7.2 Projective Hash Family

Let X and Π be finite, non-empty sets. Let F = {fi : X → Π}i∈I be a set of
functions indexed by I. We call (F, I,X,Π) a universal hash family [4, 5].

Let L ⊂ X. Let S be a finite, non-empty set, and let α : I → S be a function.
Set Project = (F, I,X,L,Π, S, α).

Definition 4. [4, 5] Project = (F, I,X,L,Π, S, α) is called a projective hash
family if for all i ∈ I, the action of fi on L is determined3 by α(i).

In other words, the value fi(x) is determined by α(i) if x ∈ L. We next define
the notion of strongly universal2 projective hash, a variant of Cramer-Shoup’s
ε-universal2 projective hash.

Definition 5. Let Project = (F, I,X,L,Π, S, α) be a projective hash family.
Consider the probability space defined by choosing i ∈ I at random. We say
that Project is strongly universal2 if

– for all s ∈ S, x ∈ X \ L, and π ∈ Π,

Pr[fi(x) = π | α(i) = s] = 1/|Π|,

– and for all s ∈ S, x, x∗ ∈ X \ L with x 6= x∗, and π, π∗ ∈ Π,

Pr[fi(x) = π | fi(x∗) = π∗ ∧ α(i) = s] = 1/|Π|.

Project is strongly universal2 means that for any x 6∈ L, the value of fi(x) is
uniformly distributed over Π conditioned on a fixed value of α(i), and it is also
uniformly distributed over Π conditioned on fixed values of α(i) and fi(x∗) for
x∗ 6∈ L with x∗ 6= x.
3 For a further clarification, see Section 7.3.



7.3 Hash Proof System [4, 5]

Let Mem be a subset membership problem. A hash proof system (HPS) P for
Mem associates with each instance Λ[X,L,W,R] of Mem a projective hash family
Project = (F, I,X,L,Π, S, α).

P provides several algorithms to carry out basic operations: i R← I and com-
puting α(i) ∈ S given i ∈ I. The private evaluation algorithm for P computes
fi(x) ∈ Π given i ∈ I and x ∈ X. The public evaluation algorithm for P com-
putes fi(x) ∈ Π given α(i) ∈ S, x ∈ X and w ∈ W , where w is a witness for
x.

8 Proposed Hybrid Construction Based on HPS

In this section, we generalize our hybrid encryption scheme of Sec.4.3 by using
the variant of HPS shown above. Then efficient hybrid encryption schemes are
obtained which are secure in the sense of IND-CCA under Quadratic Resid-
uosity assumption and Paillier’s Decision Composite Residuosity assumption,
respectively, in the standard model.

8.1 Hybrid Construction

Let Mem be a subset membership problem and P be a hash proof system for
Mem. Let SKE be a one-time symmetric-key encryption scheme.

Key Generation. Generate an instance Λ[X,L,W,R] using the instance sampling
algorithm of Mem. Suppose that P associates with Λ[X,L,W,R] a projective
hash family Project = (F, I,X,L,Π, S, α). Choose i ∈ I at random and compute
s = α(i).

The public key is s and the secret key is i. Let H : Π → {0, 1}k be a hash
function, where k = SKE.Len(λ). We assume that H(v) is uniformly distributed
over {0, 1}k if v is uniformly distributed over Π. This is a very weak requirement
on H, and we can use SHA-1, for example.

Encryption. To encrypt a message m, generate x ∈ L at random together with
a witness w ∈ W for x using the subset sampling algorithm of Mem. Compute
π = fi(x) using the public evaluation algorithm for P on inputs s, x and w.
Compute K = H(π) and χ = SKE.Enc(1λ,K,m). The ciphertext is (x, χ).

Decryption. To decrypt a ciphertext (x, χ), compute π = fi(x) using the private
evaluation algorithm for P on inputs i and x. Then decrypt χ under K using
SKE.Dec, and outputs the resulting decryption z. (z may be reject.)

8.2 Security

Theorem 2. In the above construction, suppose that Mem is hard, and the asso-
ciated projective hash family Project = (F, I,X,L,Π, S, α) is strongly universal2
for each instance Λ[X,L,W,R] of Mem. Moreover, suppose that the one-time



symmetric-key encryption scheme SKE is secure in the sense of IND-CCA and it
is ε-rejection secure for negligible ε. Then the proposed hybrid encryption scheme
is secure in the sense of IND-CCA.

A proof is a generalization of that of Theorem 1. Roughly speaking, in the
proof, if the challenge ciphertext is based upon application of the projective
universal hash function fi to an element x∗ ∈ L, then the attack works as in the
real case.

If x∗ 6∈ L, then the following happens: At the beginning of the CCA attack,
π∗ = fi(x∗) (which is used as the symmetric key by K∗ = H(π∗)) is totally
uniform and secret from the point of view of the adversary. This is due to the
strongly universal2 property of the projective hash family Project. This informa-
tion theoretic property of the symmetric key K∗ remains as the attack progresses
due to the fact that invalid queries are not decrypted due to the ε-rejection prop-
erty of the SKE, where a ciphertext C = (x, χ) is invalid if x 6∈ L.

8.3 Examples

From [4, 5]. Let G be an Abelian group of order Q, where Q is a large prime.
Let X = G2,W = ZQ, L = {(gr0, gr1) | r ∈ ZQ}, where g0, g1 are two distinct
generators of G. Then it is clear that the related membership problem Mem is
hard if and only if the DDH assumption holds.

Let Γ : G2 → ZnQ be an injective function for some n. Let Π = S = G and

I = Z
2(n+1)
Q . Define

α(i0, i1, · · · , in, j0, j1, · · · , jn) = (s0, s1, · · · , sn),

where su = giu0 g
ju
1 for 0 ≤ u ≤ n. For (x0, x1) ∈ X, let Γ (x0, x1) = (a0, · · · , an)

and define

f(i0,i1,···,in,j0,j1,···,jn)(x0, x1) = xi0+a1i1···+anin
0 xj0+a1j1···+anjn

1 .

(1) Project = (F, I,X,L,Π, S, α) is a projective hash family because if (x0, x1) =
(gr0, g

r
1), then

π = f(i0,i1,···,in,j0,j1···,jn)(x0, x1) = (s0s
a1
1 · · · sann )r. (10)

(2) Consider the probability space defined by choosing (i0, i1, · · · , in, j0, j1, · · · ,
jn) ∈ Z2(n+1)

Q at random. For the example of [4, 5] we now have:

– For any (x0, x1) ∈ X \ L, f(i0,···,in,j0,···,jn)(x0, x1) is uniformly distributed
over G conditioned on fixed values of (s0, s1, · · · , sn).

– For any (x0, x1), (x∗0, x
∗
1) ∈ X \L with (x0, x1) 6= (x∗0, x

∗
1), we easily see that:

f(i0,···,in,j0,···,jn)(x0, x1) is uniformly distributed over G conditioned on fixed
values of (s0, s1, · · · , sn) and π∗ = f(i0,···,in,j0,···,jn)(x∗0, x

∗
1).



Hence Project is strongly universal2.
Now from Sec.8.1, a concrete hybrid encryption scheme is obtained such that

the ciphertext is (gr0, g
r
1,SKE.Enc(1λ,K,m)), where K = H(π) and π is given by

eq.(10). From Theorem 2, it is secure in the sense of IND-CCA if SKE satisfies
the condition of the theorem. (This scheme is a TCR-free variant of Sec.4.3.)

Similarly, we can obtain efficient hybrid encryption schemes which are secure
in the sense of IND-CCA under Quadratic Residuosity assumption and Paillier’s
Decision Composite Residuosity assumption, respectively.
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