
Privacy-Preserving Datamining
on Vertically Partitioned Databases

Cynthia Dwork and Kobbi Nissim

Microsoft Research, SVC, 1065 La Avenida, Mountain View CA 94043
{dwork, kobbi}@microsoft.com

Abstract. In a recent paper Dinur and Nissim considered a statistical
database in which a trusted database administrator monitors queries
and introduces noise to the responses with the goal of maintaining data
privacy [5]. Under a rigorous definition of breach of privacy, Dinur and
Nissim proved that unless the total number of queries is sub-linear in the
size of the database, a substantial amount of noise is required to avoid a
breach, rendering the database almost useless.
As databases grow increasingly large, the possibility of being able to
query only a sub-linear number of times becomes realistic. We further
investigate this situation, generalizing the previous work in two impor-
tant directions: multi-attribute databases (previous work dealt only with
single-attribute databases) and vertically partitioned databases, in which
different subsets of attributes are stored in different databases. In addi-
tion, we show how to use our techniques for datamining on published
noisy statistics.

Keywords: Data Privacy, Statistical Databases, Data Mining, Vertically Parti-
tioned Databases.

1 Introduction

In a recent paper Dinur and Nissim considered a statistical database in which
a trusted database administrator monitors queries and introduces noise to the
responses with the goal of maintaining data privacy [5]. Under a rigorous defini-
tion of breach of privacy, Dinur and Nissim proved that unless the total number
of queries is sub-linear in the size of the database, a substantial amount of noise
is required to avoid a breach, rendering the database almost useless1. However,
when the number of queries is limited, it is possible to simultaneously preserve
privacy and obtain some functionality by adding an amount of noise that is a
function of the number of queries. Intuitively, the amount of noise is sufficiently
large that nothing specific about an individual can be learned from a relatively
small number of queries, but not so large that information about sufficiently
strong statistical trends is obliterated.
1 For unbounded adversaries, the amount of noise (per query) must be linear in the

size of the database; for polynomially bounded adversaries, Ω(
√

n) noise is required.

As databases grow increasingly massive, the notion that the database will be
queried only a sub-linear number of times becomes realistic. We further inves-
tigate this situation, significantly broadening the results in [5], as we describe
below.

Methodology. We follow a cryptography-flavored methodology, where we con-
sider a database access mechanism private only if it provably withstands any
adversarial attack. For such a database access mechanism any computation over
query answers clearly preserves privacy (otherwise it would serve as a privacy
breaching adversary). We present a database access mechanism and prove its
security under a strong privacy definition. Then we show that this mechanism
provides utility by demonstrating a datamining algorithm.

Statistical Databases. A statistical database is a collection of samples that are
somehow representative of an underlying population distribution. We model
a database as a matrix, in which rows correspond to individual records and
columns correspond to attributes. A query to the database is a set of indices
(specifying rows), and a Boolean property. The response is a noisy version of the
number of records in the specified set for which the property holds. (Dinur and
Nissim consider one-column databases containing a single binary attribute.) The
model captures the situation of a traditional, multiple-attribute, database, in
which an adversary knows enough partial information about records to “name”
some records or select among them. Such an adversary can target a selected
record in order to try to learn the value of one of its unknown sensitive at-
tributes. Thus, the mapping of individuals to their indices (record numbers) is
not assumed to be secret. For example, we do not assume the records have been
randomly permuted.

We assume each row is independently sampled from some underlying distri-
bution. An analyst would usually assume the existence of a single underlying
row distribution D, and try to learn its properties.

Privacy. Our notion of privacy is a relative one. We assume the adversary knows
the underlying distribution D on the data, and, furthermore, may have some a
priori information about specific records, e.g., “p – the a priori probability that
at least one of the attributes in record 400 has value 1 – is .38”. We anlyze
privacy with respect to any possible underlying (row) distributions {Di}, where
the ith row is chosen according to Di. This partially models a priori knowledge
an attacker has about individual rows (i.e. Di is D conditioned on the attacker’s
knowledge of the ith record). Continuing with our informal example, privacy is
breached if the a posteriori probability (after the sequence of queries have been
issued and responded to) that “at least one of the attributes in record 400 has
value 1” differs from the a priori probability p “too much”.

Multi-Attribute Sub-Linear Queries (SuLQ) Databases. The setting studied in [5],
in which an adversary issues only a sublinear number of queries (SuLQ) to a
single attribute database, can be generalized to multiple attributes in several

natural ways. The simplest scenario is of a single k-attribute SuLQ database,
queried by specifying a set of indices and a k-ary Boolean function. The re-
sponse is a noisy version of the number of records in the specified set for which
the function, applied to the attributes in the record, evaluates to 1. A more
involved scenario is of multiple single-attribute SuLQ databases, one for each
attribute, administered independently. In other words, our k-attribute database
is vertically partitioned into k single-attribute databases. In this case, the chal-
lenge will be datamining: learning the statistics of Boolean functions of the at-
tributes, using the single-attribute query and response mechanisms as primitives.
A third possibility is a combination of the first two: a k-attribute database that
is vertically partitioned into two (or more) databases with k1 and k2 (possibly
overlapping) attributes, respectively, where k1 +k2 ≥ k. Database i, i = 1, 2, can
handle ki-ary functional queries, and the goal is to learn relationships between
the functional outputs, eg, “If f1(α1,1, . . . , α1,k1) holds, does this increase the
likelihood that f2(α2,1 . . . , α2,k2) holds?”, where fi is a function on the attribute
values for records in the ith database.

1.1 Our Results

We obtain positive datamining results in the extensions to the model of [5]
described above, while maintaining the strengthened privacy requirement:

1. Multi-attribute SuLQ databases: The statistics for every k-ary Boolean func-
tion can be learned2. Since the queries here are powerful (any function), it is
not surprising that statistics for any function can be learned. The strength
of the result is that statistics are learned while maintaining privacy.

2. Multiple single-attribute SuLQ databases: We show how to learn the statis-
tics of any 2-ary Boolean function. For example, we can learn the fraction of
records having neither attribute 1 nor attribute 2, or the conditional proba-
bility of having attribute 2 given that one has attribute 1. The key innovation
is a procedure for testing the extent to which one attribute, say, α, implies
another attribute, β, in probability, meaning that Pr[β|α] = Pr[β]+∆, where
∆ can be estimated by the procedure.

3. Vertically Partitioned k-attribute SuLQ Databases: The constructions here
are a combination of the results for the first two cases: the k attributes are
partitioned into (possibly overlapping) sets of size k1 and k2, respectively,
where k1 + k2 ≥ k; each of the two sets of attributes is managed by a multi-
attribute SuLQ database. We can learn all 2-ary Boolean functions of the
outputs of the results from the two databases.

We note that a single-attribute database can be simulated in all of the above
settings; hence, in order to preserve privacy, the sub-linear upper bound on
queries must be enforced. How this bound is enforced is beyond the scope of this
work.
2 Note that because of the noise, statistics cannot be learned exactly. An additive error

on the order of n1/2−ε is incurred, where n is the number of records in the database.
The same is true for single-attribute databases.

Datamining on Published Statistics. Our technique for testing implication in
probability yields surprising results in the real-life model in which confidential
information is gathered by a trusted party, such as the census bureau, who pub-
lishes aggregate statistics. Describing our results by example, suppose the bureau
publishes the results of a large (but sublinear) number of queries. Specifically, for
every, say, triple of attributes (α1, α2, α3), and for each of the eight conjunctions
of literals over three attributes (ᾱ1ᾱ2ᾱ3, ᾱ1ᾱ2α3, . . . , αk−2αk−1αk), the bureau
publishes the result of several queries on these conjunctions. We show how to
construct approximate statistics for any binary function of six attributes. (In
general, using data published for `-tuples, it is possible to approximately learn
statistics for any 2`-ary function.) Since the published data are the results of
SuLQ database queries, the total number of published statistics must be sub-
linear in n, the size of the database. Also, in order to keep the error down,
several queries must be made for each conjunction of literals. These two facts
constrain the values of ` and the total number k of attributes for which the result
is meaningful.

1.2 Related Work

There is a rich literature on confidentiality in statistical databases. An excellent
survey of work prior to the late 1980’s was made by Adam and Wortmann [2].
Using their taxonomy, our work falls under the category of output perturbation.
However, to our knowledge, the only work that has exploited the opportunities
for privacy inherent in the fact that with massive of databases the actual number
of queries will be sublinear is Sect. 4 of [5] (joint work with Dwork). That work
only considered single-attribute SuLQ databases.

Fanconi and Merola give a more recent survey, with a focus on aggregated
data released via web access [10]. Evfimievski, Gehrke, and Srikant, in the Intro-
duction to [7], give a very nice discussion of work in randomization of data, in
which data contributors (e.g., respondents to a survey) independently add noise
to their own responses. A special issue (Vol.14, No. 4, 1998) of the Journal of Of-
ficial Statistics is dedicated to disclosure control in statistical data. A discussion
of some of the trends in the statistical research, accessible to the non-statistician,
can be found in [8].

Many papers in the statistics literature deal with generating simulated data
while maintaining certain quantities, such as marginals [9]. Other widely-studied
techniques include cell suppression, adding simulated data, releasing only a sub-
set of observations, releasing only a subset of attributes, releasing synthetic
or partially synthetic data [13,12], data-swapping, and post-randomization. See
Duncan (2001) [6].

R. Agrawal and Srikant began to address privacy in datamining in 2000 [3].
That work attempted to formalize privacy in terms of confidence intervals (in-
tuitively, a small interval of confidence corresponds to a privacy breach), and
also showed how to reconstruct an original distribution from noisy samples (i.e.,
each sample is the sum of an underlying data distribution sample and a noise
sample), where the noise is drawn from a certain simple known distribution.

This work was revisited by D. Agrawal and C. Aggarwal [1], who noted that it
is possible to use the outcome of the distribution reconstruction procedure to
significantly diminish the interval of confidence, and hence breach privacy. They
formulated privacy (loss) in terms of mutual information, taking into account
(unlike [3]) that the adversary may know the underlying distribution on the data
and “facts of life” (for example, that ages cannot be negative). Intuitively, if the
mutual information between the sensitive data and its noisy version is high, then
a privacy breach occurs. They also considered reconstruction from noisy sam-
ples, using the EM (expectation maximization) technique. Evfimievsky, Gehrke,
and Srikant [7] criticized the usage of mutual information for measuring privacy,
noting that low mutual information allows complete privacy breaches that hap-
pen with low but significant frequency. Concurrently with and independently of
Dinur and Nissim [5] they presented a privacy definition that related the a priori
and a posteriori knowledge of sensitive data. We note below how our definition
of privacy breach relates to that of [7,5].

A different and appealing definition has been proposed by Chawla, Dwork,
McSherry, Smith, and Wee [4], formalizing the intuition that one’s privacy is
guaranteed to the extent that one is not brought to the attention of others. We
do not yet understand the relationship between the definition in [4] and the one
presented here.

There is also a very large literature in secure multi-party computation. In
secure multi-party computation, functionality is paramount, and privacy is only
preserved to the extent that the function outcome itself does not reveal infor-
mation about the individual inputs. In privacy-preserving statistical databases,
privacy is paramount. Functions of the data that cannot be learned while pro-
tecting privacy will simply not be learned.

2 Preliminaries

Notation. We denote by neg(n) (read: negligible) a function that is asymptoti-
cally smaller than any inverse polynomial. That is, for all c > 0, for all sufficiently
large n, we have neg(n) < 1/nc. We write Õ(T (n)) for T (n) · polylog(n).

2.1 The Database Model

In the following discussion, we do not distinguish between the case of a verti-
cally partitioned database (in which the columns are distributed among several
servers) and a “whole” database (in which all the information is in one place).

We model a database as an n × k binary matrix d = {di,j}. Intuitively, the
columns in d correspond to Boolean attributes α1, . . . , αk, and the rows in d
correspond to individuals where di,j = 1 iff attribute αj holds for individual i.
We sometimes refer to a row as a record.

Let D be a distribution on {0, 1}k. We say that a database d = {di,j} is
chosen according to distribution D if every row in d is chosen according to D,
independently of the other rows (in other words, d is chosen according to Dn).

In our privacy analysis we relax this requirement and allow each row i to be
chosen from a (possibly) different distribution Di. In that case we say that the
database is chosen according to D1 × · · · × Dn.

Statistical Queries. A statistical query is a pair (q, g), where q ⊆ [n] indicates a
set of rows in d and g : {0, 1}k → {0, 1} denotes a function on attribute values.
The exact answer to (q, g) is the number of rows of d in the set q for which g
holds (evaluates to 1):

aq,g =
∑

i∈q

g(di,1, . . . , di,k) = |{i : i ∈ q and g(di,1, . . . , di,k) holds}|.

We write (q, j) when the function g is a projection onto the jth element:
g(x1, . . . , xk) = xj . In that case (q, j) is a query on a subset of the entries in
the jth column: aq,j =

∑
i∈q di,j . When we look at vertically partitioned single-

attribute databases, the queries will all be of this form.

Perturbation. We allow the database algorithm to give perturbed (or ”noisy”)
answers to queries. We say that an answer âq,j is within perturbation E if |âq,j−
aq,j | ≤ E . Similarly, a database algorithm A is within perturbation E if for every
query (q, g)

Pr[|A(q, g)− aq,g| ≤ E] = 1− neg(n).

The probability is taken over the randomness of the database algorithm A.

2.2 Probability Tool

Proposition 1. Let s1, . . . , st be random variables so that |E[si]| ≤ α and |si| ≤
β then

Pr[|
T∑

i=1

st| > λ(α + β)
√

t + tβ] < 2e−λ2/2.

Proof. Let z′i = si − E[si], hence |z′i| ≤ α + β. Using Azuma’s inequality3 we
get that Pr[

∑T
i=1 z′ ≥ λ(α + β)

√
t] ≤ 2e−λ2/2. As |∑T

i=1 st| = |∑T
i=1 z′ +∑T

i=1 E[si]| ≤ |∑T
i=1 z′|+ tβ the proposition follows.

3 Privacy Definition

We give a privacy definition that extends the definitions in [5,7]. Our definition
is inspired by the notion of semantic security of Goldwasser and Micali [11]. We
first state the formal definition and then show some of its consequences.

Let pi,j
0 be the a priori probability that di,j = 1 (taking into account that

we assume the adversary knows the underlying distribution Di on row i. In
3 Let X0, . . . , Xm be a martingale with |Xi+1 −Xi| ≤ 1 for all 0 ≤ i < m. Let λ > 0

be arbitrary. Azuma’s inequality says that then Pr[Xm > λ
√

m] < eλ2/2.

general, for a Boolean function f : {0, 1}k → {0, 1} we let pi,f
0 be the a priori

probability that f(di,1, . . . , di,k) = 1. We analyze the a posteriori probability
that f(di,1, . . . , di,k) = 1 given the answers to T queries, as well as all the values
in all the rows of d other than i: di′,j for all i′ 6= i. We denote this a posteriori
probability pi,f

T .

Confidence. To simplify our calculations we follow [5] and define a monotonically-
increasing 1-1 mapping conf : (0, 1) → IR as follows:

conf(p) = log
p

1− p
.

Note that a small additive change in conf implies a small additive change in p.4

Let confi,f
0 = log pi,f

0

1−pi,f
0

and confi,f
T = log pi,f

T

1−pi,f
T

. We write our privacy require-

ments in terms of the random variables ∆confi,f defined as:5

∆confi,f = |confi,f
T − confi,f

0 |.

Definition 1 ((δ, T)-Privacy). A database access mechanism is (δ, T)-private
if for every distribution D on {0, 1}k, for every row index i, for every function
f : {0, 1}k → {0, 1}, and for every adversary A making at most T queries it
holds that

Pr[∆confi,f > δ] ≤ neg(n).

The probability is taken over the choice of each row in d according to D, and the
randomness of the adversary as well as the database access mechanism.

A target set F is a set of k-ary Boolean functions (one can think of the
functions in F as being selected by an adversary; these represent information it
will try to learn about someone). A target set F is δ-safe if ∆confi,f ≤ δ for
all i ∈ [n] and f ∈ F . Let F be a target set. Definition 1 implies that under a
(δ, T)-private database mechanism, F is δ-safe with probability 1− neg(n).

Proposition 2. Consider a (δ, T)-private database with k = O(log n) attributes.
Let F be the target set containing all the 22k

Boolean functions over the k at-
tributes. Then, Pr[F is 2δ-safe] = 1− neg(n).

Proof. Let F ′ be a target set containing all 2k conjuncts of k attributes. We
have that |F ′| = poly(n) and hence F ′ is δ-safe with probability 1− neg(n).

To prove the proposition we show that F is safe whenever F ′ is. Let f ∈ F
be a Boolean function. Express f as a disjunction of conjuncts of k attributes:
4 The converse does not hold – conf grows logarithmically in p for p ≈ 0 and logarith-

mically in 1/(1− p) for p ≈ 1.
5 Our choice of defining privacy in terms of ∆confi,f is somewhat arbitrary, one could

rewrite our definitions (and analysis) in terms of the a priori and a posteriori proba-
bilities. Note however that limiting ∆confi,f in Definition 1 is a stronger requirement
than just limiting |pi,f

T − pi,f
0 |.

f = c1 ∨ . . .∨ c`. Similarly, express ¬f as the disjunction of the remaining 2k− `
conjuncts: ¬f = d1 ∨ . . . ∨ d2k−`. (So {c1, . . . , c`, d1, . . . , d2k−`} = F .)

We have:

∆confi,f =

∣∣∣∣∣log

(
pi,f

T

pi,f
0

· pi,¬f
0

pi,¬f
T

)∣∣∣∣∣ =

∣∣∣∣∣log

(∑
p

i,cj

T∑
p

i,cj

0

·
∑

p
i,dj

0∑
p

i,dj

T

)∣∣∣∣∣ .

Let k maximize | log(pi,ck

T /pi,ck

0)| and k′ maximize | log(pi,dk′
0 /p

i,dk′
T)|. Us-

ing | log(
∑

ai/
∑

bi)| ≤ maxi | log(ai/bi)| we get that ∆confi,f ≤ |∆confi,ck | +
|∆confi,dk′ | ≤ 2δ, where the last inequality holds as ck, dk′ ∈ F ′.

(δ, T)-Privacy vs. Finding Very Heavy Sets. Let f be a target function and
δ = ω(

√
n). Our privacy requirement implies δ′ = δ′(δ,Pr[f(α1, . . . , αk]) such

that it is infeasible to find a “very” heavy set q ⊆ [n], that is, a set for which
aq,f ≥ |q| (δ′ + Pr[f(α1, . . . , αk)]). Such a δ′-heavy set would violate our privacy
requirement as it would allow guessing f(α1, . . . , αk) for a random record in q.

Relationship to the privacy definition of [7] Our privacy definition extends the
definition of p0-to-p1 privacy breaches of [7]. Their definition is introduced with
respect to a scenario in which several users send their sensitive data to a center.
Each user randomizes his data prior to sending it. A p0-to-p1 privacy breach
occurs if, with respect to some property f , the a priori probability that f holds
for a user is at most p0 whereas the a posteriori probability may grow beyond
p1 (i.e. in a worst case scenario with respect to the coins of the randomization
operator).

4 Privacy of Multi-Attribute SuLQ databases

We first describe our SuLQ Database algorithm, and then prove that it preserves
privacy.

Let T (n) = O(nc), c < 1, and define R =
(
T (n)/δ2

) · logµ n for some µ > 0
(taking µ = 6 will work). To simplify notation, we write di for (di,1, . . . , di,k),
g(i) for g(di) = g(di,1, . . . , di,k) (and later f(i) for f(di)).

SuLQ Database Algorithm A
Input: a query (q, g).

1. Let aq,g =
∑

i∈q g(i)
(
=

∑
i∈q g(di,1, . . . , di,k)

)
.

2. Generate a perturbation value: Let (e1, . . . , eR) ∈R {0, 1}R and E ←∑R
i=1 ei −R/2.

3. Return âq,g = aq,g + E .

Note that E is a binomial random variable with E[E] = 0 and standard devi-
ation

√
R. In our analysis we will neglect the case where E largely deviates from

zero, as the probability of such an event is extremely small: Pr[|E| > √
R log2 n] =

neg(n). In particular, this implies that our SuLQ database algorithm A is within
Õ(

√
T (n)) perturbation.

We will use the following proposition.

Proposition 3. Let B be a binomially distributed random variable with expec-
tation 0 and standard deviation

√
R. Let L be the random variable that takes the

value log
(

Pr[B]
Pr[B+1]

)
. Then

1. log
(

Pr[B]
Pr[B+1]

)
= log

(
Pr[−B]

Pr[−B−1]

)
. For 0 ≤ B ≤ √

R log2 n this value is

bounded by O(log2 n/
√

R)).
2. E[L] = O(1/R), where the expectation is taken over the random choice of B.

Proof. 1. The equality follows from the symmetry of the Binomial distribution
(i.e. Pr[B] = Pr[−B]).
To prove the bound consider log(Pr[B]/ Pr[B+1]) = log(

(
R

R/2+B

)
/
(

R
R/2+B+1

)
=

log R/2+B+1
R/2−B−1 . Using the limits on B and the definition of R we get that this

value is bounded by log(1 + O(log2 n/
√

R)) = O(log2 n/
√

R).
2. Using the symmetry of the Binomial distribution we get:

E[L] =
∑

0≤B≤R/2

(
R

R/2 + B

)
2−R

[
log

R/2 + B + 1
R/2−B

+ log
R/2−B + 1

R/2 + B

]

=
∑

0≤B≤log2 n
√

R

(
R

R/2 + B

)
2−R log

(
1 +

R + 1
R2/4−B2

)
+ neg(n) = O(1/R)

Our proof of privacy is modeled on the proof in Section 4 of [5] (for single
attribute databases). We extend their proof (i) to queries of the form (q, g) where
g is any k-ary Boolean function, and (ii) to privacy of k-ary Boolean functions
f .

Theorem 1. Let T (n) = O(nc) and δ = 1/O(nc′) for 0 < c < 1 and 0 ≤
c′ < c/2. Then the SuLQ algorithm A is (δ, T (n))-private within Õ(

√
T (n)/δ)

perturbation.

Note that whenever
√

T (n)/δ <
√

n bounding the adversary’s number of
queries to T (n) allows privacy with perturbation magnitude less than

√
n.

Proof. Let T (n) be as in the theorem and recall R =
(
T (n)/δ2

) · logµ n for some
µ > 0.

Let the T = T (n) queries issued by the adversary be denoted (q1, g1), . . . , (qT , gT).
Let â1 = A(q1, g1), . . . , ât = A(qT , gT) be the perturbed answers to these queries.
Let i ∈ [n] and f : {0, 1}k → {0, 1}.

We analyze the a posteriori probability p` that f(i) = 1 given the answers to
the first ` queries (â1, . . . , â`) and d{−i} (where d{−i} denotes the entire database

except for the ith row). Let conf` = log2 p`/(1− p`). Note that confT = confi,f
T

(of Section 3), and (due to the independence of rows in d) conf0 = confi,f
0 .

By the definition of conditional probability 6 we get

p`

1− p`
=

Pr[f(i) = 1|â1, . . . , â`, d
{−i}]

Pr[f(i) = 0|â1, . . . , â`, d{−i}]
=

Pr[â1, . . . , â` ∧ f(i) = 1|d{−i}]
Pr[â1, . . . , â` ∧ f(i) = 0|d{−i}]

=
Num

Denom
.

Note that the probabilities are taken over the coin flips of the SuLQ algorithm
and the choice of d. In the following we analyze the numerator (the denominator
is analyzed similarly).

Num =
∑

σ∈{0,1}k,f(σ)=1

Pr[â1, . . . , â` ∧ di = σ|d{−i}]

=
∑

σ∈{0,1}k,f(σ)=1

Pr[â1, . . . , â`|di = σ, d{−i}] Pr[di = σ]

The last equality follows as the rows in d are chosen independently of each
other. Note that given both di and d{−i} the random variable â` is independent
of â1, . . . , â`−1. Hence, we get:

Num =
∑

σ∈{0,1}k,f(σ)=1

Pr[â1, . . . , â`−1|di = σ, d{−i}] Pr[â`|di = σ, d{−i}] Pr[di = σ].

Next, we observe that although â` depends on di, the dependence is weak.
More formally, let σ0, σ1 ∈ {0, 1}k be such that f(σ0) = 0 and f(σ1) = 1. Note
that whenever g`(σ) = g`(σ1) we have that Pr[â`|di = σ, d{−i}] = Pr[â`|di =
σ1, d

{−i}]. When, instead, g`(σ) 6= g`(σ1), we can relate Pr[â`|di = σ, d{−i}] and
Pr[â`|di = σ1, d

{−i}] via Proposition 3:

Lemma 1. Let σ, σ1 be such that g`(σ) 6= g`(σ1). Then Pr[â`|di = σ, d{−i}] =
2ε Pr[â`|di = σ1, d

{−i}] where |E[ε]| = O(1/R) and

ε =
{−(−1)g`(σ1)O(log2 n/

√
R) if E ≤ 0

(−1)g`(σ1)O(log2 n/
√

R) if E > 0

and E is noise that yields â` when di = σ.

Proof. Consider the case g`(σ1) = 0 (g`(σ) = 1). Writing Pr[â`|di = σ, d{−i}] =
Pr[E = k] and Pr[â`|di = σ1, d

{−i}] = Pr[E = k − 1] the proof follows from
Proposition 3. Similarly for g`(σ1) = 1.

Note that the value of ε does not depend on σ.
Taking into account both cases (g`(σ) = g`(σ1) and g`(σ) 6= g`(σ1)) we get

Num =
∑

σ∈{0,1}k,f(σ)=1

Pr[â1, . . . , â`−1|di = σ, d{−i}]2ε Pr[â`|di = σ1, d
{−i}] Pr[di = σ].

6 I.e. Pr[E1|E2] · Pr[E2] = Pr[E1 ∧ E2] = Pr[E2|E1] · Pr[E1].

Let γ̂ be the probability, over di, that g(σ) 6= g(σ1). Letting γ ≥ 1 be such that
21/γ = γ̂, we have

Num = 2ε/γ Pr[â`|di = σ1, d
{−i}]

∑

σ∈{0,1}k,f(σ)=1

Pr[â1, . . . , â`−1|di = σ, d{−i}] Pr[di = σ]

= 2ε/γ Pr[â`|di = σ1, d
{−i}]

∑

σ∈{0,1}k,f(σ)=1

Pr[â1, . . . , â`−1 ∧ di = σ|d{−i}]

= 2ε/γ Pr[â`|di = σ1, d
{−i}] Pr[â1, . . . , â`−1 ∧ f(i) = 1|d{−i}]

= 2ε/γ Pr[â`|di = σ1, d
{−i}] Pr[f(i) = 1|â1, . . . , â`−1, d

{−i}] Pr[â1, . . . , â`−1|d{−i}]
= 2ε/γ Pr[â`|di = σ1, d

{−i}]p`−1 Pr[â1, . . . , â`−1|d{−i}]

and similarly

Denom = 2ε′/γ′ Pr[â`|di = σ0, d
{−i}](1− p`−1) Pr[â1, . . . , â`−1|d{−i}].

Putting the pieces together we get that

conf` = log2

Num
Denom

= conf`−1 + (ε/γ − ε′/γ′) + log2

Pr[â`|di = σ1, d
{−i}]

Pr[â`|di = σ0, d{−i}]
.

Define a random walk on the real line with step` = conf` − conf`−1. To
conclude the proof we show that (with high probability) T steps of the random
walk do not suffice to reach distance δ. From Proposition 3 and Lemma 1 we get
that

|E[step`]| = O(1/R) = O

(
δ2

T logµ n

)

and

|step`| = O(log2 n/
√

R) = O

(
δ√

T logµ/2−2 n

)
.

Using Proposition 1 with λ = log n we get that for all t ≤ T ,

Pr[|conft − conf0| > δ] = Pr[|
∑

`≤t

step`| > δ] ≤ neg(n).

5 Datamining on Vertically Partitioned Databases

In this section we assume that the database is chosen according to Dn for some
underlying distribution D on rows, where D is independent of n, the size of the
database. We also assume that n, is sufficiently large that the true database
statistics are representative of D. Hence, in the sequel, when we write things like
“Pr[α]” we mean the probability, over the entries in the database, that α holds.

Let α and β be attributes. We say that α implies β in probability if the
conditional probability of β given α exceeds the unconditional probability of β.
The ability to measure implication in probability is crucial to datamining. Note
that since Pr[β] is simple to estimate well, the problem reduces to obtaining a

good estimate of Pr[β|α]. Moreover, once we can estimate the Pr[β|α], we can use
Bayes’ Rule and de Morgan’s Laws to determine the statistics for any Boolean
function of attribute values.

Our key result for vertically partitioned databases is a method, given two
single-attribute SuLQ databases with attributes α and β respectively, to measure
Pr[β|α].

For more general cases of vertically partitioned data, assume a k-attribute
database is partitioned into 2 ≤ j ≤ k databases, with k1, . . . , kj (possibly
overlapping) attributes, respectively, where

∑
i ki ≥ k. We can use functional

queries to learn the statistics on ki-ary Boolean functions of the attributes in the
ith database, and then use the results for two single-attribute SuLQ databases
to learn binary Boolean functions of any two functions fi1 (on attributes in
database i1) and fi2 (on attributes in database i2), where 1 ≤ i1, i2 ≤ j.

5.1 Probabilistic Implication

In this section we construct our basic building block for mining vertically parti-
tioned databases.

We assume two SuLQ databases d1, d2 of size n, with attributes α, β respec-
tively. When α implies β in probability with a gap of ∆, we write α

∆→ β, meaning
that Pr[β|α] = Pr[β] + ∆. We note that Pr[α] and Pr[β] are easily computed
within error O(1/

√
n), simply by querying the two databases on large subsets.

Our goal is to determine ∆, or equivalently, Pr[β|α]−Pr[β]; the method will be
to determine if, for a given ∆1, Pr[β|α] ≥ Pr[β] + ∆1, and then to estimate ∆
by binary search on ∆1.

Notation. We let pα = Pr[α], pβ = Pr[β], pβ|α = Pr[β|α] and pβ|ᾱ = Pr[β|¬α].
Let X be a random variable counting the number of times α holds when we

take N samples from D. Then E[X] = Npa and Var[X] = Npa(1− pa).
Let

pβ|α = pβ + ∆. (1)

Note that pβ = pαpβ|α + (1− pα)pβ|ᾱ. Substituting pβ + ∆ for pβ|α we get

pβ|ᾱ = pβ −∆
pα

1− pα
, (2)

and hence (by another application of Eq. (1))

pβ|α − pβ|ᾱ =
∆

1− pα
. (3)

We define the following testing procedure to determine, given ∆1, if ∆ ≥ ∆1.
Step 1 finds a heavy (but not very heavy) set for attribute α, that is, a set q for
which the number of records satisfying α exceeds the expected number by more
than a standard deviation. Note that since T (n) = o(n), the noise |âq,1 − aq,1|

is o(
√

n), so the heavy set really has Npα + Ω(
√

N) records for which α holds.
Step 2 queries d2 on this heavy set. If the incidence of β on this set sufficiently
(as a function of ∆1) exceeds the expected incidence of β, then the test returns
“1” (ie, success). Otherwise it returns 0.

Test Procedure T
Input: pα, pβ ,∆1 > 0.

1. Find q ∈R [n] such that aq,1 ≥ Npα + σα where N = |q| and σα =√
Npα(1− pα).

Let biasα = aq,1 −Npα.
2. If aq,2 ≥ Npβ + biasα

∆1
1−pα

return 1, otherwise return 0.

Theorem 2. For the test procedure T :

1. If ∆ ≥ ∆1, then Pr[T outputs 1] ≥ 1/2.
2. If ∆ ≤ ∆1 − ε, then Pr[T outputs 1] ≤ 1/2− γ,

where for ε = Θ(1) the advantage γ = γ(pα, pβ , ε) is constant, and for ε = o(1)
the advantage γ = c · ε with constant c = c(pα, pβ).

In the following analysis we neglect the difference between aq,i and âq,i, since,
as noted above, the perturbation contributes only low order terms (we neglect
some other low order terms). Note that it is possible to compute all the required
constants for Theorem 2 explicitly, in polynomial time, without neglecting these
low-order terms. Our analysis does not attempt to optimize constants.

Proof. Consider the random variable corresponding to aq,2 =
∑

i∈q di,2, given
that q is biased according to Step 1 of T . By linearity of expectation, together
with the fact that the two cases below are disjoint, we get that

E[aq,2|biasα] = (Npα + biasα)pβ|α + (N(1− pα)− biasα)pβ|ᾱ
= Npαpβ|α + N(1− pα)pβ|ᾱ + biasα(pβ|α − pβ|ᾱ)

= Npβ + biasα
∆

1− pα
.

The last step uses Eq. (3). Since the distribution of aq,2 is symmetric around
E[aq,2|biasα] we get that the first part of the claim, i.e. if ∆ ≥ ∆1 then

Pr[T outputs 1] = Pr[aq,2 > Npβ + biasα
∆1

1− pα
|biasα] ≥ 1/2.

To get the second part of the claim we use the de Moivre-Laplace theorem
and approximate the binomial distribution with the normal distribution so that
we can approximate the variance of the sum of two distributions (when α holds

and when α does not hold) in order to obtain the variance of aq,2 conditioned
on biasα. We get:

Var[aq,2|biasα] ≈ (Npα+biasα)pβ|α(1−pβ|α)+(N(1−pα)−biasα)pβ|ᾱ(1−pβ|ᾱ).

Assuming N is large enough, we can neglect the terms involving biasα. Hence,

Var[aq,2|biasα] ≈ N [pαpβ|α + (1− pα)pβ|ᾱ]−N [pαp2
β|α + (1− pα)p2

β|ᾱ]

≈ Npβ −N [pαp2
β|α + (1− pα)p2

β|ᾱ]

= N [pβ − p2
β]−N∆2 pα

1− pα
< N [pβ − p2

β] = Varβ .

The transition from the second to third lines follows from [pαp2
β|α+(1−pα)p2

β|ᾱ]−
p2

β = ∆2 pα

1−pα
. 7

We have that the probability distribution on aq,2 is a Gaussian with mean
and variance at most Npβ + biasα(∆1 − ε)/(1 − pα) and Varβ respectively.
To conclude the proof, we note that the conditional probability mass of aq,2

exceeding its own mean by ε · biasα/(1− pα) > εσα/(1− pα) is at most

1
2
− γ = Φ

(
−εσα/(1− pα)√

Varβ

)

where Φ is the cumulative distribution function for the normal distribution.
For constant ε this yields a constant advantage γ. For ε = o(1), we get that
γ ≥ ε

2
σα/(1−pα)√
Varβ

√
2π

.

By taking ε = ω(1/
√

n) we can run the Test procedure enough times to
determine with sufficiently high confidence which “side” of the interval [∆1 −
ε,∆1] ∆ is on (if it is not inside the interval). We proceed by binary search to
narrow in on ∆. We get:

Theorem 3. There exists an algorithm that invokes the test T

Opα,pβ
(log(1/ε)

log(1/δ) + log log(1/ε)
ε2

)

times and outputs ∆̂ such that Pr[|∆̂−∆| < ε] ≥ 1− δ.

6 Datamining on Published Statistics

In this section we apply our basic technique for measuring implication in prob-
ability to the real-life model in which confidential information is gathered by
7 In more detail: [pαp2

β|α + (1 − pα)p2
β|ᾱ] − p2

β = p2
β|αpα(1 − pα) + p2

β|ᾱ(1 − pα)pα −
2pα(1−pα)pβ|αpβ|ᾱ = pα(1−pα)[p2

β|α+p2
β|ᾱ−2pβ|αpβ|ᾱ] = pα(1−pα)(pβ|α−pβ|ᾱ)2 =

∆2 pα
1−pα

.

a trusted party, such as the census bureau, who publishes aggregate statistics.
The published statistics are the results of queries to a SuLQ database. That is,
the census bureau generates queries and their noisy responses, and publishes the
results.

Let k denote the number of attributes (columns). Let ` ≤ k/2 be fixed (typi-
cally, ` will be small; see below). For every `-tuple of attributes (α1, α2, . . . , α`),
and for each of the 2` conjunctions of literals over these ` attributes, (ᾱ1ᾱ2 . . . ᾱ`,
ᾱ1ᾱ2 . . . α`, and so on), the bureau publishes the result of some number t of
queries on these conjunctions. More precisely, a query set q ⊆ [n] is selected,
and noisy statistics for all

(
k
`

)
2` conjunctions of literals are published for the

query. This is repeated t times.

To see how this might be used, suppose ` = 3 and we wish to learn if α1α2α3

implies ᾱ4ᾱ5α6 in probability. We know from the results in Section 4 that we
need to find a heavy set q for α1α2α3, and then to query the database on the
set q with the function ᾱ4ᾱ5α6. Moreover, we need to do this several times
(for the binary search). If t is sufficiently large, then with high probability such
query sets q are among the t queries. Since we query all triples (generally, `-
tuples) of literals for each query set q, all the necessary information is published.
The analyst need only follow the instructions for learning the strength ∆ of
the implication in probability α1α2α3

∆→ ᾱ4ᾱ5α6, looking up the results of the
queries (rather than randomly selecting the sets q and submitting the queries to
the database).

As in Section 4, once we can determine implication in probability, it is easy
to determine (via Bayes’ rule) the statistics for the conjunction α1α2α3ᾱ4ᾱ5α6.
In other words, we can determine the approximate statistics for any conjunction
of 2` literals of attribute values. Now the procedure for arbitrary 2`-ary func-
tions is conceptually simple. Consider a function of attribute values β1 . . . β2`.
The analyst first represents the function as a truth table: for each possible 2`-
tuple of literals over β1 . . . β2` the function has value either zero or one. Since
these conjunctions of literals are mutually exclusive, the probability (overall)
that the function has value 1 is simply the sum of the probabilities that each of
the positive (one-valued) conjunctions occurs. Since we can approximate each of
these statistics, we obtain an approximation for their sum. Thus, we can approx-
imate the statistics for each of the

(
k
2`

)
222`

Boolean functions of 2` attributes. It
remains to analyze the quality of the approximations.

Let T = o(n) be an upper bound on the number of queries permitted by the
SuLQ database algorithm, e.g., T = O(nc), c < 1. Let k and ` be as above: k
is the total number of attributes, and statistics for `-tuples will be published.
Let ε be the (combined) additive error achieved for all

(
k
2`

)
22` conjuncts with

probability 1− δ.

Input: a database d = {di,j} of dimensions n× k.
Repeat t times:

1. Let q ∈R [n]. Output q.
2. For all selections of ` indices 1 ≤ j1 < j2 < . . . < j` ≤ k, output âq,g for all

the 2` conjuncts g over the literals αj1 , . . . , αj`
.

Privacy is preserved as long as t ·(k
2`

)
22` ≤ T (Theorem 1). To determine util-

ity, we need to understand the error introduced by the summation of estimates.
Let ε′ = ε/22`. If our test results in a ε′ additive error for each possible conjunct
of 2` literals, the truth table method described above allows us to compute the
frequency of every function of 2` literals within additive error ε (a lot better in
many cases). We require that our estimate be within error ε′ with probability
1 − δ′ where δ′ = δ/

(
k
2`

)
22`. Hence, the probability that a ‘bad’ conjunct exists

(for which the estimation error is not within ε′) is bounded by δ.
Plugging δ′ and ε′ into Theorem 3, we get that for each conjunction of `

literals, the number of subsets q on which we need to make queries is

t = O
(
24`(log(1/ε) + `)(log(1/δ) + ` log k + log log(1/ε))/ε2

)
.

For each subset q we query each of the
(
k
`

)
2` conjuncts of ` attributes. Hence,

the total number of queries we make is

t ·
(

k

`

)
2` = O

(
k`25`(log(1/ε) + `)(log(1/δ) + ` log k + log log(1/ε))/ε2

)
.

For constant ε, δ we get that the total number of queries is O(25`k``2 log k). To
see our gain, compare this with the naive publishing of statistics for all conjuncts
of 2` attributes, resulting in

(
k
2`

)
22` = O(k2`22`) queries.

7 Open Problems

Datamining of 3-ary Boolean Functions. Section 5.1 shows how to use two SuLQ
databases to learn that Pr[β|α] = Pr[β] + ∆. As noted, this allows estimating
Pr[f(α, β)] for any Boolean function f . Consider the case where there exist
three SuLQ databases for attributes α, β, γ. In order to use our test procedure
to compute Pr[f(α, β, γ)], one has to either to find heavy sets for α ∧ β (having
bias of order Ω(

√
n)), or, given a heavy set for γ, to decide whether it is also

heavy w.r.t. α∧β. It is not clear how to extend the test procedure of Section 5.1
in this direction.

Maintaining Privacy for all Possible Functions. Our privacy definition (Defini-
tion 1) requires for every function f(α1, . . . , αk) that with high probability the
confidence gain is limited by some value δ. If k is small (less than log log n), then,

via the union bound, we get that with high probability the confidence gain is
kept small for all the 22k

possible functions.
For large k the union bound does not guarantee simultaneous privacy for all

the 22k

possible functions. However, the privacy of a randomly selected function
is (with high probability) preserved. It is conceivable that (e.g. using crypto-
graphic measures) it is possible to render infeasible the task of finding a function
f whose privacy was breached.

Dependency Between Database Records. We explicitly assume that the database
records are chosen independently from each other, according to some underlying
distribution D. We are not aware of any work that does not make this assumption
(implicitly or explicitly). An important research direction is to come up with
definition and analysis that work in a more realistic model of weak dependency
between database entries.

References

1. D. Agrawal and C. Aggarwal, On the Design and Quantification of Privacy Preserving Data
Mining Algorithms, Proceedings of the 20th Symposium on Principles of Database Systems,
2001.

2. N. R. Adam and J. C. Wortmann, Security-Control Methods for Statistical Databases: A
Comparative Study, ACM Computing Surveys 21(4): 515-556 (1989).

3. R. Agrawal and R. Srikant, Privacy-preserving data mining, Proc. of the ACM SIGMOD
Conference on Management of Data, pp. 439–450, 2000.

4. S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee, Toward Privacy in Public Databases,
submitted for publication, 2004.

5. I. Dinur and K. Nissim, Revealing information while preserving privacy, Proceedings of the
Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems, pp. 202-210, 2003.

6. G. Duncan, Confidentiality and statistical disclosure limitation. In N. Smelser & P. Baltes
(Eds.), International Encyclopedia of the Social and Behavioral Sciences. New York: Elsevier.
2001

7. A. V. Evfimievski, J. Gehrke and R. Srikant, Limiting privacy breaches in privacy preserving
data mining, Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pp. 211-222, 2003.

8. S. Fienberg, Confidentiality and Data Protection Through Disclosure Lim-
itation: Evolving Principles and Technical Advances, IAOS Conference on
Statistics, Development and Human Rights September, 2000, available at
http://www.statistik.admin.ch/about/international/fienberg_final_paper.doc

9. S. Fienberg, U. Makov, and R. Steele, Disclosure Limitation and Related Methods for Cate-
gorical Data, Journal of Official Statistics, 14, pp. 485–502, 1998.

10. L. Franconi and G. Merola, Implementing Statistical Disclosure Control for Ag-
gregated Data Released Via Remote Access, Working Paper No. 30, United Na-
tions Statistical Commission and European Commission, joint ECE/EUROSTAT
work session on statistical data confidentiality, April, 2003, available at
http://www.unece.org/stats/documents/2003/04/confidentiality/wp.30.e.pdf

11. S. Goldwasser and S. Micali, Probabilistic Encryption and How to Play Mental Poker Keeping
Secret All Partial Information, STOC 1982: 365-377

12. T.E. Raghunathan, J.P. Reiter, and D.B. Rubin, Multiple Imputation for Statistical Disclosure
Limitation, Journal of Official Statistics 19(1), pp. 1 – 16, 2003

13. D.B. Rubin, Discussion: Statistical Disclosure Limitation, Journal of Official Statistics 9(2), pp.
461 – 469, 1993.

14. A. Shoshani, Statistical databases: Characteristics, problems and some solutions, Proceedings
of the 8th International Conference on Very Large Data Bases (VLDB’82), pages 208–222, 1982.

