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Abstract. Non-interactive zero-knowledge (NIZK) proofs have been in-
vestigated in two models: the Public Parameter model and the Secret
Parameter model. In the former, a public string is “ideally” chosen ac-
cording to some efficiently samplable distribution and made available to
both the Prover and Verifier. In the latter, the parties instead obtain
correlated (possibly different) private strings. To add further choice, the
definition of zero-knowledge in these settings can either be non-adaptive
or adaptive.
In this paper, we obtain several unconditional characterizations of com-
putational, statistical and perfect NIZK for all combinations of these
settings. Specifically, we show:

In the secret parameter model, NIZK =NISZK =NIPZK =AM.
In the public parameter model,
. for the non-adaptive definition, NISZK ⊆ AM ∩ coAM,
. for the adaptive one, it also holds that NISZK ⊂ BPP/1,
. for computational NIZK for “hard” languages, one-way functions are
both necessary and sufficient.

From our last result, we arrive at the following unconditional character-
ization of computational NIZK in the public parameter model (which
complements well-known results for interactive zero-knowledge):

Either NIZK proofs exist only for “easy” languages (i.e., languages
that are not hard-on-average), or they exist for all of AM (i.e., all
languages which admit non-interactive proofs).

1 Introduction

A zero-knowledge proof system is a protocol between two parties, a Prover, and
a Verifier, which guarantees two properties: a malicious Prover cannot convince
the Verifier of a false theorem; a malicious Verifier cannot learn anything from
an interaction beyond the validity of the theorem.

Non-interactive zero-knowledge (NIZK) was proposed by Blum, Feldman,
and Micali [BFM88] to investigate the minimal interaction necessary for zero-
knowledge proofs. To achieve the absolute minimal amount of interaction —that
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is, a single message from the Prover to the Verifier— some setup assumptions
are provably necessary [GO94]. These setup assumptions can be divided into two
groups:

1. Public Parameter Setup. The originally proposed setup is the Common
Random String Model in which a uniformly random string is made available
to both the Prover and Verifier. Many NIZK schemes have been implemented
in this model [SMP87, BFM88, FLS90, DMP88, BDMP91, KP98, DCO+01].
A slight relaxation of this model is the Public Parameter model, also known
as the Common Reference String Model, in which a string is “ideally” cho-
sen according to some polynomial-time samplable distribution and made
available to both the Prover and Verifier. Such a setup can be used to se-
lect —say— safe primes, group parameters, or public keys for encryption
schemes, etc. See for example [Dam00, CLOS02].

2. Secret Parameter Setup. Cramer and Damg̊ard [CD04] explicitly intro-
duce the Secret Parameter setup model in which the Prover and Verifier
obtain correlated (possibly different) private information.
More generally, the secret parameter model encompasses the Pre-processing
Model in which the Prover and Verifier engage in an arbitrary interactive
protocol, at the end of which, both Prover and Verifier receive a private
output. (This follows because any arbitrary protocol for pre-processing can
be viewed as a polynomial-time sampler from a well-defined distribution.)
Such a setup model is studied in [KMO89, DMP88, Dam93].

The above setup models can be implemented in a variety of ways, which may
or may not require their own independent assumptions (For example, secure
two-party computations protocols can be used to pick a random string.) In this
paper we defer the discussion of how trusted setups are implemented, and choose
instead to focus on the relative power of the models.

We restrict our study to the simplest setting in which only a single theorem
is proven. Also, we consider security against unbounded provers. (That is, we
consider proof systems as opposed to argument systems.) Following similar stud-
ies in the interactive setting —see for example [Vad99, SV03, Vad04]— we allow
the honest prover algorithm to be inefficient (although some of our constructions
have efficient prover algorithm for languages in NP).

Our investigation also considers both adaptive and non-adaptive definitions of
zero-knowledge for non-interactive proofs. Briefly, the difference between these
two is that the adaptive variant guarantees that the zero-knowledge property
holds even if the theorem statement is chosen after the trusted setup has finished,
whereas the non-adaptive variant does not provide this guarantee.

1.1 Our Results

Secret Parameter Model One suspects that the secret-parameter setup is
more powerful than its public-parameter counterpart. Indeed, in game theory, a
well-known result due to Aumann [Aum74] states that players having access to



correlated secret strings can achieve a larger class of equilibria, and in particular,
better payoffs, than if they only share a common public string. As we shall see,
this intuition carries over in a strong way to the cryptographic setting. But first,
we show that,

Informal Theorem [Upper bound] In the secret parameter model, non-
interactive perfect zero-knowledge proofs exist unconditionally for all lan-
guages in AM.

This result is obtained by combining the work of [FLS90] with an adaptation of
Kilian’s work on implementing commitments using oblivious transfer [Kil88].

Previously, for general NP languages, only computational NIZK proof sys-
tems were known in the secret-parameter setup model [DMP88, FLS90, KMO89,
DFN05]. Furthermore, these systems relied on various computational assump-
tions, such as the existence of one-way permutations. Recently, Cramer and
Damg̊ard [CD04] constructed statistical NIZK proofs in this model for specific
languages related to discrete logarithms. (On the other hand, their results apply
to an unbounded number of proofs, whereas ours do not.)

As a corollary of our result, we obtain a complete characterization of com-
putational, statistical and perfect NIZK in the secret parameter model. Namely,
we show that NIP = NIZK = NISZK = NIPZK = AM, where NIP denotes
the class of languages having non-interactive proofs, and NIZK, NISZK and
NIPZK denotes the classes of languages having non-interactive computational,
statistical and perfect zero-knowledge proofs.

Public Parameter Model: Statistical NIZK We next turn our attention
to the public parameter model, and show that, in contrast to the Secret Param-
eter model, statistical NIZK proofs for NP-complete languages are unlikely to
exist.3

Informal Theorem [Lower bound] In the public parameter model, non-
interactive statistical (non-adaptive) zero-knowledge proof systems only exist
for languages in AM ∩ coAM.

Previously, Aiello and H̊astad [AH91] showed a similar type of lower bound for
interactive zero-knowledge proofs. Although their results extend to the case of
NIZK in the common random string model, they do not extend to the general
public parameter model.4 Indeed, our proof relies on different (and considerably
simpler) techniques.
In the case of statistical adaptive NIZK, we present a stronger result.

3 This follows because unless the polynomial hierarchy collapses, NP is not contained
in AM ∩ coAM [BHZ87].

4 This follows because the definition of zero-knowledge requires the simulator to output
the random coins of the Verifier, and this is essential to the result in [AH91]. In
contrast, the definition of NIZK in the Public Parameter model does not require
the Simulator to output the random coins used by the trusted-party to generate the
public parameter.



Informal Theorem [Lower bound] Non-interactive statistical adaptive zero-
knowledge proof systems only exist for languages in BPP/1 (i.e., the class of
languages decidable in probabilistic polynomial time with one bit of advice,
which depends only on the length of the instance).

By an argument of Adleman, this in particular means that all languages which
have statistical adaptive NIZK in the public-parameter model can be decided by
polynomial-sized circuits.

We note that a similar strengthening for the non-adaptive case is unlikely,
as statistical non-interactive zero-knowledge proof systems for languages which
are conjectured to be “hard” are known (e.g., see [GMR98]).

Public Parameter Model: Computational NIZK Due to the severe lower
bounds for statistical NIZK, we continue our investigation by considering com-
putational NIZK in the public parameter model. We first show that one-way
functions are both necessary and sufficient in the public parameter model.

Informal Theorem [Upper bound] If (non-uniform) one-way functions ex-
ist, then computational NIZK proof systems in the public parameter model
exist for every language in AM.

Informal Theorem [Lower bound] The existence of computational NIZK
systems in the public parameter model for a hard-on-average language im-
plies the existence of (non-uniform) one-way functions.

Our upper bound, which applies to the stronger adaptive definition, improves
on the construction of Feige, Lapidot, and Shamir [FLS90] which uses one-way
permutations (albeit in the common random string model, whereas our con-
struction requires a public parameter). Our lower bound, which applies to the
weaker non-adaptive definition, was only known for interactive zero-knowledge
proofs [OW93]. We therefore present a (quite) different and relatively simple
direct proof for the case of NIZK in the public parameter model.

As a final point, by combining our last two theorems, we obtain the follow-
ing unconditional characterization of computational NIZK proofs in the public
parameter model:

Either NIZK proofs exist only for “easy” languages (i.e., languages that are
not hard-on-average), or NIZK proofs exist unconditionally for every lan-
guage in AM (i.e., for every language which admits a non-interactive proof).

This type of “all-or-nothing” property was known for interactive zero-knowledge
proofs, but not for NIZK since prior constructions of NIZK relied on one-way
permutations.

Additional Contributions As already mentioned, some proofs in this pa-
per extend previously known results for interactive zero-knowledge proofs to the
non-interactive setting. We emphasize that our proofs are not mere adaptations
of prior results — indeed the results of Aiello and H̊astad and of Ostrovsky and



Wigderson are complicated and technically challenging. In contrast, in the non-
interactive setting, we obtain equivalent results in a much simpler way. This sug-
gests the use of non-interactive zero-knowledge as a “test-bed” for understanding
the (seemingly) more complicated setting of interactive zero-knowledge.

1.2 Other Related Work

In terms of understanding NIZK, two prior works, [DCPY98] and [GSV99], offer
complete problems for non-interactive statistical zero-knowledge. Both of these
works apply to the non-adaptive definition and only the common random string
model. We emphasize that these results do not directly extend to the more
general public parameter model. In particular, complete problems for NISZK in
the public parameter model are not known (see the remarks following Thm. 4).

As mentioned earlier, many prior works, e.g. [AH91, Oka96, SV03, GV98,
Vad99], address the problem of obtaining unconditional characterizations of sta-
tistical zero-knowledge in the interactive setting. More recently, Vadhan [Vad04]
also obtains unconditional characterizations of computational zero-knowledge.

Open Questions While our NIZK proof system in the secret parameter model
has an efficient prover strategy, our proof system in the public parameter model
does not. Indeed, resolving whether one-way functions suffice for efficient-prover
NIZK systems is a long-standing open question with many important implica-
tions. A positive answer to this question would, for example, lead to the con-
struction of CCA2-secure encryption schemes from any semantically-secure en-
cryption scheme.

2 Definitions

We use standard notation for probabilistic experiments introduced in [GMR85],
and abbreviate probabilistic polynomial time as p.p.t.

2.1 Non-interactive Proofs in the Trusted Setup model

In the trusted setup model, every non-interactive proof system has an associated
distribution D over binary strings of the form (sV , sP ). During a setup phase,
a trusted party samples from D and privately hands the Prover sP and the
Verifier sV . The Prover and Verifier then use their respective values during the
proof phase. We emphasize that our definition only models single-theorem proof
systems (i.e., after setup, only one theorem of a fixed size can be proven).5

Definition 1 (Non-Interactive Proofs in the Secret/Public Parameter
Model). A triple of algorithms, (D, P, V ), is called a non-interactive proof system
in the secret parameter model for a language L if the algorithm D is probabilistic
polynomial-time, the algorithm V is a deterministic polynomial-time and there
exists a negligible function µ such that the following two conditions hold:

5 While our definition only considers single-theorem proof systems, all of our results
extend also to proof systems for an a priori bounded number of fixed-size statements.



– Completeness: For every x ∈ L

Pr
[

(sV , sP )← D(1
x); π ← P (x, sP ) : V (x, sV , π) = 1

]

≥ 1− µ(|x|)

– Soundness: For every x /∈ L, every algorithm B

Pr
[

(sV , sP )← D(1
x); π′ ← B(x, sP ) : V (x, sV , π

′) = 1
]

≤ µ(|x|)

If D is such that sV is always equal to sP then we say that (D, P, V ) is in the
public parameter model.

Remark 1. In our definition, as with the original one in [BFM88], the Verifier is
modeled by a deterministic polynomial time machine. By a standard argument
due to Babai and Moran [BM88], this choice is without loss of generality since
a probabilistic Verifier can be made to run deterministically through repetition
and the embedding of the Verifier’s random coins in the setup information.

Let NIP denote the class of languages having non-interactive proof systems. For
the rest of this paper, we distinguish the secret parameter model from the public
parameter model using the superscripts sec and pub respectively. We start by
observing that NIPpub and NIPsec are equivalent. The proof appears in the
full version.

Lemma 1. AM =NIPpub =NIPsec

2.2 Zero Knowledge

We next introduce non-interactive zero-knowledge proofs. In the original non-
adaptive definition of zero-knowledge from [BFM88], there is one simulator,
which, after seeing the statement to be proven, generates both the public string
and the proof at the same time. In a later adaptive definition from [FLS90],
there are two simulators— the first of which must output a string before seeing
any theorems. The stronger adaptive definition guarantees zero-knowledge even
when the statements are chosen after the trusted setup has finished.6 Here, we
choose to present a weaker (and simpler) adaptive definition similar to the one
used in [CD04]. The main reasons for this choice are that (a) a weaker definition
only strengthens our lower bounds and (b) our definition is meaningful also for
languages outside of NP, whereas the definitions of [FLS90, Gol04] only apply
to languages in NP. Nevertheless, we mention that for languages in NP, our up-
per bounds (and of course the lower bounds) also hold for the stricter adaptive
definitions of [FLS90, Gol04].

Definition 2 (Non-Interactive Zero-Knowledge in the Secret/Public
Parameter Model). Let (D, P, V ) be an non-interactive proof system in the
secret (public) parameter model for the language L. We say that (D, P, V ) is non-
adaptively zero-knowledge in the secret (public) parameter model if there exists

6 One might also study an adaptive notion of soundness for non-interactive proofs. We
do not pursue this line since every sound non-interactive proof system can be made
adaptively sound via parallel repetition.



a p.p.t. simulator S such that the following two ensembles are computationally
indistinguishable by polynomial-sized circuits (when the distinguishing gap is a
function of |x|)

{(sV , sP )← D(1
n); π ← P (sP , x) : (sV , π) }x∈L

{((s′V , π
′)← S(x) : (s′V , π

′) }
x∈L

We say that (D, P, V ) is adaptively zero-knowledge in the secret (public) param-
eter model if there exists two p.p.t. simulators S1, S2 such that the following two
ensembles are computationally indistinguishable by polynomial-sized circuits.

{(sV , sP )← D(1
n); π ← P (sP , x) : (sV , π) }x∈L

{(s′V , aux)← S1(1
n); π′ ← S2(x, aux) : (s

′
V , π

′) }
x∈L

We furthermore say that (D, P, V ) is perfect (statistical) zero-knowledge if the
above ensembles are identically distributed (statistically close).

For notation purposes, we will use NIZK, NISZK, and NIPZK to denote the
class of languages having computational, statistical, and perfect non-interactive
zero-knowledge proof systems respectively.

3 The Hidden Bits Model

In order to prove our main theorems, we first review the “hidden bits” model
described in [FLS90]. In this model, the Prover and Verifier share a hidden string
R, which only the Prover can access. Additionally, the Prover can selectively
reveal to the Verifier any portion of the string R. Informally, a proof in the
hidden bits model consists of a triplet (π,RI , I) where I is a sequence of indicies,
I ⊆ {1, 2, ..., |R|} representing the portion of R that the prover wishes to reveal
to the verifier, RI is the substring of R indexed by I, and π is a proof string. For
a formal definition of this model, see Goldreich [Gol01] from which we borrow
notation.

The following theorem is shown by Feige, Lapidot and Shamir.

Theorem 1 ([FLS90]). There exists a non-interactive perfect zero-knowledge
proof system in the hidden bits model for any language in NP.

We extend their result to any language in AM by using the standard tech-
nique of transforming an AM proof into the NP statement that “there exists a
short Prover message which convinces the polynomial-time Verifier.”

Theorem 2. There exists a non-interactive perfect zero-knowledge proof system
in the hidden bits model for any language in AM.

Looking ahead, in Sect. 4 we extend Thm. 2 to show that the class of non-
interactive perfect zero-knowledge proofs in the hidden bits model is in fact
equivalent to AM.



4 The Secret Parameter Model

Feige, Lapidot and Shamir show how to implement the hidden-bits model with
a one-way permutation in the public parameter model. Their implementation,
however, degrades the quality of zero-knowledge — in particular, the resulting
protocol is only computational zero-knowledge. Below, we show how to avoid
this degradation in the secret parameter model.

Lemma 2. Let (P, V ) be a non-interactive perfect zero-knowledge proof system
for the language L in the hidden bits model. Then, there exists a non-interactive
perfect adaptive zero-knowledge proof system (P ′, V ′) for the language L in the
secret parameter model. Furthermore if, (P, V ) has an efficient prover, then
(P ′, V ′) has one as well.

Proof Sketch.We implement the hidden bits model by providing the Prover and
Verifier correlated information about each bit of the hidden string. In particular,
each bit is split into shares using a simple secret sharing scheme. The Prover
is given all of the shares, while the Verifier is only given a random subset of
them (which is unknown to the Prover). This is done in such a way that the
Verifier has no information about the bit, but nonetheless, the Prover cannot
reveal the bit in two different ways except with exponentially small probability.
We note that this technique is reminiscent to the one used in [Kil88] to obtain
commitments from oblivious transfer and to the one in [KMO89] to obtain NIZK
with pre-processing (we remark that their resulting NIZK still requires additional
computational assumptions, even when ignoring the assumptions necessary for
their pre-processing). Our protocol is described in Fig. 1 and a complete proof
is given in the full version. ut

Armed with this Lemma, we can now prove our main theorem concerning
non-interactive zero-knowledge in the secret parameter model.

Theorem 3. NIPsec =NIZKsec =NISZKsec =NIPZKsec =AM

Proof. NIPZKsec ⊆ NISZKsec ⊆ NIZKsec ⊆ NIPsec follows by definition.
Lemma 1 shows that NIPsec =AM, therefore, it suffices to show that AM ⊆
NIPZKsec. This follows by combining Lemma 2 and Thm. 2. ut

Related Characterizations We note that Lemma 2 also gives an upper
bound on the class of perfect zero-knowledge proofs in the hidden bits model.
As a corollary, we obtain the following characterization.

Corollary 1. The class of perfect zero-knowledge proofs in the hidden bits model
equals AM.

5 The Public Parameter Model - Statistical NIZK

In this section we present severe lower bounds for the class of statistical NIZK
in the public parameter model. (This stands in stark contrast to the secret



Proof System (D, P ′, V ′) – NIZK in the Secret Parameter model

Common Input: an instance x of a language L with witness relation RL and 1
n:

security parameter.
Private-output set-up: D(1n)→ (sP , sV ) proceeds as follows on input 1

n:
1. (Pick a random string) Sample m random bits, σ = σ1, . . . , σm.
2. (Generate XOR shares) For i ∈ [1,m] and j ∈ [1, n], sample a random
bit τ

j
i . Let τ

j
i = σi ⊕ τ

j
i . (Notice that the n pairs (τ j

i , τ
j
i ) for j ∈ [1, n] are

n random “XOR shares” of the bit σi.)
3. (Select half of each share) For i ∈ [1,m] and j ∈ [1, n], sample a random
bit bj

n. Let ρ
j
i as follows:

ρ
j
i =

{

τ
j
i , if bj

i = 0

τ
j
i otherwise

(In other words, the values {ρj
i} are randomly selected “halves” from each

of the n XOR shares for σi.)
4. The private output sP is the set of nm pairs (τ j

i , τ
j
i ) for i, j ∈ [1,m]× [1, n].

Note that the string σ is easily derived from sP .
5. The private output sV is the set of nm pairs {(ρj

i , b
j
i )} for i, j ∈ [1,m]×[1, n].

Prover algorithm: On input (x, sP ),
1. Compute R = σ1, . . . , σm by setting σi = τ1

i ⊕ τ1
i .

2. Run the algorithm (π,RI , I)← P (x,R). Recall that the set RI consists of
bits {ri | i ∈ I} and I consists of indices in [1,m].

3. Output (π,RI , I, {oi | i ∈ I}) where oi denotes the opening of bit σi. That
is, for all i ∈ I, oi consists of all n shares ((τ

1
i , τ

1
i ), . . . , (τ

n
i , τn

i )) of σi.
Verifier algorithm: On input (x, sV , π, RI , I, {oi|i ∈ I}),

1. Verify that each opening in RI is consistent with oi and with sV . That is,
for i ∈ I, inspect the n pairs, (τ 1

i , τ
1
i ), . . . , (τ

n
i , τn

i ) in oi, and check that for
all j ∈ [1, n], ρj

i is equal to either τ
j
i or τ

j
i (depending on whether b

j
i = 0

or 1 respectively). If any single check fails, then reject the proof. Finally,
check that ri = τ1

i ⊕ τ1
n.

2. Verify the proof by running V (x,RI , I, π) and accept if and only if V ac-
cepts.

Fig. 1. NIZK in the Secret Parameter model

parameter model, where statistical NIZK can be obtained for all of AM.) We
first present a lower bound for statistical NIZK under the non-adaptive definition
of zero-knowledge. We thereafter sharpen the bound under the more restrictive
adaptive definition.

5.1 The Non-Adaptive Case

In analogy with the result by [AH91] for interactive zero-knowledge, we show
that only languages in the intersection of AM and coAM have statistical NIZK
proof systems in the public parameter model.



Theorem 4. If L has a statistical non-adaptive NIZK proof system in the public
parameter model, then L ⊆ AM ∩ coAM.

Proof Sketch. Let (D, P, V ) be a statistical NIZK proof system in the public
parameter for the language L with simulator S. We show that L ∈ AM and that
L ∈ coAM. The former statement follows directly from Lemma 1. To prove the
latter one, we present a two-round proof system for proving x /∈ L. (Note that
by the results of [GS86, BM88] it is sufficient to present a two-round private coin
proof system.)

Verifier Challenge:
1. Run the simulator (σ0, π

′) ← S(x) and the sampling algorithm σ1 ← D(1|x|)
to generate public parameter strings σ0 and σ1.

2. Run V on input (σ0, π
′) to check if the honest verifier accepts the simulated

proof. If V rejects, then output “accept” and halt.
3. Otherwise, flip a coin b ∈ 0, 1 and send α = σb to the prover.

The Prover response:
1. Upon receiving an input string α, check if there exists a proof π which the
honest verifier V accepts (i.e., V (x, α, π) = 1).

2. If so, output β = 0; otherwise, output β = 1.
The Verifier acceptance condition:

1. Upon receiving string β, output “accept” if β = b, and reject otherwise.

Completeness We show that if x /∈ L, then the Prover (almost) always con-
vinces the Verifier. If the Verifier sent the string σ0, the Prover always responds
with β = 0, which makes the Verifier always accept. This follows since the Veri-
fier only sends σ0 if the simulated proof was accepting, which implies that there
is at least one accepting proof of x ∈ L for (P, V ). If the Verifier sent the string
σ1, then by the soundness of (P, V ), the probability (over the coins of the Ver-
ifier) that there exists a proof for x ∈ L is negligible. Therefore, except with
negligible probability, the Prover responds with β = 1 and the Verifier accepts.

Soundness Intuitively, this protocol relies on the same logic as the graph non-
isomorphism protocol. If x ∈ L, then the (exponential time) Prover cannot
distinguish whether α was generated by the simulator or by the sampler D,
and therefore can only convince the Verifier with probability 1/2. This follows
from the statistical zero-knowledge property of (P, V ). It only remains to show
that the probability (over the random coins of the Verifier) that the Verifier
accepts statements x ∈ L in step (2), without further interaction, is negligible.
This follows from the zero-knowledge (and completeness) property of (P, V ).
Otherwise, V would distinguish between simulated proofs and real ones (since
by completeness, the honest prover P succeeds with high probability.) ut

Remark 2. Using techniques from the proof of Thm. 4, one can show that the
class NISZKpub reduces to the problem of Statistical Difference, which is com-
plete for SZK [SV03]7. Thus, an alternative way to prove this theorem would be
to present such a reduction and then invoke the results of [AH91].

7 This should be contrasted with Statistical Difference from Random and Image Density,
which are the complete problems forNISZK in the Common Random String model.
These problems are not known to be reducible to Statistical Difference



5.2 The Adaptive Case

In this section we sharpen our results from the previous section when instead
considering the adaptive variant of zero-knowledge.

Theorem 5. If L has a non-interactive adaptive statistical zero-knowledge proof
in the public parameter model, then L ⊂ BPP/1.

Proof Sketch. Let (D, P, V ) be a non-interactive adaptive statistical zero-
knowledge proof system for L with simulators S1 and S2.

We first observe that by the statistical zero-knowledge property, for every
n for which L contains an instance of length n, the output of S1(1

n) must be
statistically close to the output of D(1n). This follows because the output of
S1(1

n) is independent of the theorem statement.
This observation suggests the following probabilistic polynomial time decision

procedure D(x) for L, which obtains a one-bit non-uniform advice indicating
whether L contains any instances of length |x|.

On input an instance x,
1. If the non-uniform advice indicates that L contains no instances of length
|x|, directly reject.

2. Otherwise, run (σ′, aux)← S1(1
|x|) to generate a public parameter.

3. Run π′ ← S2(x, aux) to produce a putative proof.
4. Run V (x, σ′, π′) and accept iff V accepts.

Note that when x ∈ L, then D accepts with overwhelming probability due to
the completeness and zero-knowledge property of (D, P, V ). If x /∈ L and there
are no instances of length |x| in L, then D always rejects due to the non-uniform
advice. It remains to show that when x /∈ L, and there exists instances of length
|x| in L, then D rejects with high probability.

Assume, for sake of reaching contradiction, that there exists a polynomial
p(·) such that for infinitely many lengths n, L contains instances of length n yet
there exists an instance x /∈ L of length n, such that

Pr
[

(σ′, aux)← S1(1
|x|); π′ ← S2(x, aux) : V (x, σ

′, π′) = 1
]

≥
1

p(n)
(1)

We show how this contradicts the fact that the output of S1 and D are statisti-
cally close (when L contains instances of length n). By the soundness of (D, P, V ),
there exists a negligible function µ such that for any unbounded prover P ∗,

Pr
[

σ ← D(1|x|); π′ ← P ∗(x, σ) : V (x, σ, π′) = 1
]

≤ µ(|x|) (2)

Consider an exponential time non-uniform distinguisher C, which on input σ′′

(and advice x), enumerates all proof strings π′ to determine if any of them
convince V to accept x. If so, C outputs 0, and otherwise outputs 1.

If σ′′ is generated by S1, then by (1), such a proof string π′ exists with
noticeable probability. On the other hand, if σ′′ comes from D, then by (2),
such a proof string only exists with negligible probability. We conclude that C
distinguishes the output of S1 from that of D with a non-negligible advantage.
ut



6 The Public Parameter Model - Computational NIZK

In this section we show that one-way functions are sufficient and necessary
for computational NIZK for languages that are hard-on-average. Combining
these two results, we obtain the following unconditional characterization : Either
NIZKpub only contains “easy” languages (i.e., languages that are not hard-on-
average), or it “hits the roof”, (i.e., contains all of AM).

Preliminaries Let us first define one-way functions and hard-on-average lan-
guages. As is standard in the context of zero-knowledge proofs, we define hard-
ness in terms of infeasability for non-uniform p.p.t.

Definition 3 (One-way function). A function f : {0, 1}∗ → {0, 1}∗ is called
one-way if the following two conditions hold:

– Easy to compute: There exists a (deterministic) polynomial-time algorithm
E such that on input x, E outputs f(x).

– Hard to invert: For every non-uniform p.p.t. algorithm A, every sufficiently
large integer n, and every polynomial p(·),

Pr [x← {0, 1}n; y ← A(f(x)) : f(y) = f(x)] <
1

p(n)

Definition 4 (Hard-on-average language). A language L is hard-on-average
if there exists a p.p.t. sampling algorithm G such that for every non-uniform
p.p.t. algorithm A, every polynomial p(·), and every sufficiently large n,

Pr [x← G(1n) : A(x) correctly decides whether x ∈ L] <
1

2
+

1

p(n)

6.1 OWFs are Sufficient

We show how to implement the hidden bits model in the public-parameter model
based on a one-way function. Recall that [FLS90] implements the hidden bits
model using a one-way permutation and a hard-core predicate. The reason for
using a one-way permutation is to give the Prover a short certificate for opening
each bit in only one way (the certificate being the pre-image of the one-way
permutation). A similar technique fails with one-way functions since a string
may have either zero or many pre-images, and therefore a malicious Prover may
be able to open some hidden bits as either zero or one.

Another approach would be to use a one-way function in order to construct a
pseudo-random generator [HILL99], and then to represent a 0 value as a pseudo-
random string and a 1 as a truly random string (in some sense, this technique is
reminiscent of the one used by Naor for bit commitment schemes from pseudo-
random generators [Nao91]). The Prover can thus open a 0 value by revealing
a seed to the pseudo-random string. However, there is no way for the Prover to
convince a Verifier that a string is truly random.



We overcome this problem by forming a reference string consisting of pairs
of 2k-bit strings, (α, β) in which exactly one of the two strings is pseudo-random
while the other is truly random. More precisely, the 0-value is encoded as a pair
in which α is generated pseudo-randomly by expanding a k bit seed into a 2k
bit string, while β is chosen uniformly at random from {0, 1}2k. The 1-value is
encoded the opposite way: α is chosen randomly, while β is generated pseudo-
randomly. The Prover can now reveal a 0 or a 1 by revealing the seed for either
α or β.

Lemma 3. Assume the existence of one-way functions. Let (P, V ) be a non-
interactive (adaptive) zero-knowledge proof system for the language L ∈ NP

in the hidden bits model. If P is an efficient prover, then, there exists a non-
interactive (adaptive) zero-knowledge proof system (P ′, V ′) for the language L
in the public parameter model.

Proof Sketch. Let (P, V ) be an NIZK proof system in the hidden bits model,
let G : {0, 1}k → {0, 1}2k be a pseudo-random generator and let L ∈ NP be
a language with witness relation RL. Consider protocol (P

′, V ′) described in
Fig. 2.

Completeness Completeness follows from the corresponding completeness of
(P, V ) and the fact that P ′ aborts only with negligible probability.

Soundness Assume for the moment that a cheating prover P ′∗ is only able
to open R in one manner. In this case, the soundness of (P, V ) carries over to
(P ′, V ′) in the same way as in Lemma 2. All that remains is to show that R
can only be opened in one way. Below, we argue that this happens with high
probability.

Note that there are a maximum of 2n pseudo-random strings in G’s support.
On the other hand, there are 22n strings of length 2n. Therefore, a randomly
sampled length-2n string will be pseudo-random with probability at most 2−n.
Thus, for any pair (ai, bi), the probability that both values are pseudo-random
is at most 2−n. By the union bound, the probability that there is one such pair
in s is upper-bounded by n2−n.

Zero-knowledgeWe present a simulator S ′ = S′
1, S

′
2 for (D, P

′, V ′) which uses
the simulator S for (P, V ) as a subroutine. First, (s, aux)← S ′

1(1
n) generates s

as a sequence of pairs (α′i, β
′
i) in which both α

′
i and β′i are pseudo-random. The

aux value contains all of the seeds, ui, wi, for the pseudo-random values α′
i and

β′i respectively. The simulator S
′
2 works by running simulator S(x) to generate

(π′, R′
I , I) ← S(x) and then outputting (π′, R′

I , I, {v
′
i | i ∈ I}) where v′i equals

ui if ri = 0 and wi otherwise. In order to show the validity of the simulation,
consider the following four hybrid distributions.

– Let H1 denote the ensemble (s, π) in which the honest Prover runs on a
string s generated according to D.

– Let H2 denote the output of the above experiment with the exception that D
provides all pre-images {vi} to an efficient prover algorithm Peff, which also



Proof System (D, P ′, V ′) – NIZK in the Public Parameter model

Common Input: an instance x ∈ L and a security parameter 1n

Public Parameter set-up: D(1n)→ s, where D proceeds as follows :
1. Select m random bits σ = σ1, . . . , σm.
2. For each i ∈ [1,m], generate two strings αi and βi as follows:

αi ← G(vi) where vi is a uniformly chosen string of length k.
βi ←r {0, 1}

2k

3. Let τi =

{

(αi, βi) if σi = 1
(βi, αi) otherwise

4. Output s = τ1, . . . , τm.
Prover’s algorithm: On input x, s,

1. Compute R = σ1, . . . , σm from s by the following procedure. Parse s into m

pairs (a1, b1), . . . , (am, bm). For each pair (ai, bi), determine (in exponential
time) which of either ai or bi are pseudo-random (i.e, in the range of G). In
the former case, set σi = 0, and in the latter, σi = 1, and let vi denote the
seed used to generate the pseudo-random value. If both ai and bi are in the
range of G, then output abort.

2. Compute the lexographically first witness w satisfying RL(x,w).
3. Run the Prover algorithm (π,RI , I) ← P (x,w,R). Recall that the set RI

consists of bits {ri | i ∈ I} and I consists of indices in [1,m].
4. Output (π,RI , I, {vi | i ∈ I}).

Verifier’s algorithm: On input (x, π,RI , I, {vi | i ∈ I})
1. Verify each opening in RI is consistent with s and vi. Parse s into m pairs
(a1, b1), . . . , (am, bm). For each i ∈ I, run t← G(vi) and if t = ai, set σi = 1,
if t = bi, then set σi = 0 (if neither or both conditions are met, then reject
the proof). Finally, verify that ri = σi.

2. Run the Verifier algorithm V (x, π,RI , I) and accept iff V accepts.

Fig. 2. NIZK in the Public Parameter model

receives the lexographically first witness w for x and then only runs Step 3
and 4 of P ′’s algorithm.

– Let H3 denote the output of the second experiment with the exception that
s is generated by S′

1(1
n), and that furthermore, S′

1(1
n) gives either ui or wi

(randomly chosen) to Peff for all i ∈ [1,m].

– Let H4 denote the output of the third experiment with the exception that
π is generated by S′

2(x, aux) and ui, wi in aux is given to Peff. Notice that
this distribution corresponds exactly to the output of S ′.

In the full version we show that the above hybrid distributions are all indis-
tinguishable, which concludes the proof. ut

Remark 3. Note that we explicitly require two properties from the NIZK proof
system (P, V ) in the hidden bits model: first, that P is an efficient Prover, and
secondly, that the zero-knowledge property is defined for non-uniform distin-



guishers. Both of these requirements stem from the fact that the Prover in our
new protocol is unbounded, which creates complications in the hybrid arguments.

Theorem 6. If (non-uniform) one-way functions exist, then for both adaptive
and non-adaptive definitions of zero-knowledge, NIZKpub =NIPpub =AM.

Proof. By Thm. 1 and Lemma 3, NP ⊆ NIZKpub. Using techniques from the
proof of Thm. 2, we can extend this result to show that AM ⊆ NIZKpub. By
definition, NIZKpub ⊆ NIPpub. Finally, by Lemma 1, NIPpub =AM. ut

6.2 OWFs are Necessary

We proceed to show that (non-uniform) one-way functions are necessary for non-
interactive zero-knowledge for “hard” languages. This stands in contrast to the
secret parameter model where unconditional results are possible.

Theorem 7. If there exists a non-adaptive NIZK proof system for a hard-on-
average language L, then (non-uniform) one-way functions exist.

Proof Sketch. Let (D, P, V ) be a non-adaptive NIZK system for L in the public
parameter model and let S be the simulator for (P, V ). Furthermore, suppose
that L is hard-on-average for the polynomial-time samplable distribution G.
Now, consider the following two distributions:

{(sV , sP )← D(1
n), x← G(1n) : x, sV } (3)

{(s′V , π)← S(x, 1n), x← G(1n) : x, s′V } (4)

We show that the above distributions are (non-uniformly) computationally
indistinguishable, but statistically “far”. By a result of Goldreich [Gol90] (relying
on [HILL99]) the existence of such distributions implies the existence of (non-
uniform) one-way functions.

Claim. The distributions (3) and (4) are computationally indistinguishable.

Proof Sketch. We start by noting that conditioned on x being a member of
language L, the above distributions are computationally indistinguishable by
the zero-knowledge property of (P, V ). It then follows from the hardness of L
that the above distributions must be computationally indistinguishable, even
without this restriction. ut

Claim. The distributions (3) and (4) are not statistically indistinguishable.

Proof Sketch. We show that the distributions (3) and (4) are statistically “far”
conditioned on instances x /∈ L. It then follows from the fact that L is roughly
balanced over G (due the hard-on-average property of L over G) that (3) and
(4) are statistically “far” apart.

Note that on instances x /∈ L, the soundness property of (P, V ) guarantees
that very few strings generated by D have proofs which are accepted by the



Verifier (otherwise, a cheating prover can, in exponential time, find such proofs
and thereby violate the soundness condition). On the other hand, since L is
hard-on-average, and since S runs in polynomial time, most of the strings sV

generated by S have proofs which are accepted by V (otherwise, S can be used
to decide L). Therefore, the distributions (3) and (4) are statistically far apart,
conditioned on instances x /∈ L. ut ut
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