
Analysis of Random Oracle Instantiation
Scenarios for OAEP and other Practical Schemes

Alexandra Boldyreva1 and Marc Fischlin2 ?

1 College of Computing, Georgia Institute of Technology,
801 Atlantic Drive, Atlanta, GA 30332, USA

aboldyre@cc.gatech.edu www.cc.gatech.edu/~aboldyre
2 Institute for Theoretical Computer Science, ETH Zürich, Switzerland

marc.fischlin@inf.ethz.ch www.fischlin.de

Abstract. We investigate several previously suggested scenarios of in-
stantiating random oracles (ROs) with “realizable” primitives in cryp-
tographic schemes. As candidates for such “instantiating” primitives we
pick perfectly one-way hash functions (POWHFs) and verifiable pseu-
dorandom functions (VPRFs). Our analysis focuses on the most prac-
tical encryption schemes such as OAEP and its variant PSS-E and the
Fujisaki-Okamoto hybrid encryption scheme. We also consider the RSA
Full Domain Hash (FDH) signature scheme. We first show that some
previous beliefs about instantiations for some of these schemes are not
true. Namely we show that, contrary to Canetti’s conjecture, in general
one cannot instantiate either one of the two ROs in the OAEP encryption
scheme by POWHFs without losing security. We also confirm through
the FDH signature scheme that the straightforward instantiation of ROs
with VPRFs may result in insecure schemes, in contrast to regular pseu-
dorandom functions which can provably replace ROs (in a well-defined
way). But unlike a growing number of papers on negative results about
ROs, we bring some good news. We show that one can realize one of the
two ROs in a variant of the PSS-E encryption scheme and either one of
the two ROs in the Fujisaki-Okamoto hybrid encryption scheme through
POWHFs, while preserving the IND-CCA security in both cases (still
in the RO model). Although this partial instantiation in form of sub-
stituting only one RO does not help to break out of the random oracle
model, it yet gives a better understanding of the necessary properties of
the primitives and also constitutes a better security heuristic.

1 Introduction

The random oracle (RO) model, introduced by Fiat and Shamir [15] and refined
by Bellare and Rogaway [4], has been suggested as a trade-off between provable
security and practical requirements for efficiency. Schemes and proofs in this

? Part of the work done while both authors were at the University of California, San
Diego. The second author was supported by the Emmy Noether Programme Fi
940/1-1 of the German Research Foundation (DFG).

nowadays well-established model make the idealized assumption that all parties
have oracle access to a truly random function. Availability of such a random
oracle often allows to find more efficient solutions than in the standard model.
In practice, it is then assumed that the idealized random function is instantiated
through a “good” cryptographic hash function, like SHA-1 or a variation thereof.

The random oracle methodology has gained considerable attention as a design
method. Numerous cryptographic schemes proven secure in the RO model have
been proposed and some of them are implemented and standardized. The best
known example is presumably the OAEP encryption scheme [5, 18]. However,
even though a RO-based scheme instantiated with a “good” hash function is
usually believed to remain secure in the standard model, proofs in the RO model
do not technically guarantee this, but merely provide some evidence of security.

Moreover, several recent works [10, 21, 23, 2, 19] raised concerns by proving
that the random oracle model is not sound. Here lack of soundness refers to the
situation when a scheme allows a security proof in the random oracle model but
any instantiation of the scheme with any real function family is insecure in the
standard model. Such schemes are called “uninstantiable” in [2]. While these re-
sults are certainly good reminders about the gap between the RO model and the
standard model, the defenders of the RO model and practitioners are assured by
the fact that most uninstantiable schemes involve somewhat esoteric examples,
in terms of either a construction or sometimes with respect to a security goal.

Towards Instantiating Random Oracles for Practical Schemes. In
this work we continue to study security of instantiated schemes designed in the
RO model. But unlike the aforementioned works we turn our attention to the
most practical cryptographic schemes such as OAEP encryption, the full domain
hash (FDH) signature scheme, hybrid encryption schemes obtained via Fujisaki-
Okamoto transform [17] and the PSS-E encryption scheme, an OAEP variant due
to Coron et al. [12]. Our goal is different, too. We do not show that these schemes
are uninstantiable (this would be really bad news). It also seems unrealistic to
instantiate these schemes such that they are still efficient and provably secure in
the standard model (though this would be great news). Rather, we investigate
several possible instantiation scenarios for to these practical schemes somewhere
in between.

As candidates for substituting random oracles we consider two primitives
with known constructions whose security definitions capture various strong prop-
erties of the ideal random oracles, and which have actually been suggested as
possible instantiations of random oracles [9, 13]. These are the perfectly one-
way hash functions (POWHFs) [9, 24] and verifiable pseudorandom functions
(VPRFs) [22].

The notion of perfectly one-way hash functions has been suggested by Canetti
[9] (and was originally named “oracle hashing”) to identify and realize use-
ful properties of random oracles. POWHFs are special randomized collision-
resistant one-way functions which hide all information about preimages. Canetti
[9], and subsequently [24, 16], gave several constructions of such POWHFs, based
on specific number-theoretic and on more general assumptions. Usually, these

POWHFs satisfy another property that requires the output look random, even
to an adversary who knows “a little” about the inputs. We will refer to such
POWHFs as pseudorandom. In [9] it is proved that a hybrid encryption scheme
of Bellare and Rogaway [4] secure against chosen-plaintext attacks (IND-CPA
secure) can be securely instantiated with a pseudorandom POWHF, and Canetti
conjectured that one could also replace one of the two random oracles in OAEP
by a POWHF without sacrificing security against chosen-ciphertext attacks
(IND-CCA security) in the RO model.

Verifiable pseudorandom functions have been proposed by Micali et al. in
[22]. They resemble pseudorandom functions in that their outputs look random.
But their outputs also include proofs that allow verifying the correctness of
the outputs with respect to a previously announced public key. In contrast to
POWHFs, which are publicly computable given the inputs, VPRFs involve a
secret key and therefore their global usage requires the participation of a third
party or a device with a tamper-proof key. It is folklore that a secure RO scheme
instantiated with a PRF implemented by a third party, will remain secure in
the standard model. As suggested in [13] an application scenario for VPRFs,
that lowers the amount of trust put on the third party, is a trusted third party
implementing a VPRF, say, through a web interface. Now the correctness of
the given image can be verified with the consistency proof, and this can be
done locally, without further interactions with the third party. We note that this
scenario is suitable mostly for digital signatures and not encryption schemes, as
the third party has to know the inputs.

Negative Results. In this work we show that the above intuition about se-
curely replacing random oracles by the aforementioned primitives may be incor-
rect. We first disprove Canetti’s [9] conjecture for the OAEP encryption scheme
[5] saying that one can instantiate one of the two RO in the OAEP scheme with-
out losing security (still in the RO model). Recall that, in the OAEP scheme
with a (partial one-way) trapdoor permutation f , a ciphertext is of the form
C = f(s||t) for s = G(r)⊕M ||0k and t = r ⊕H(s) for random r. For the secu-
rity proof of OAEP it is assumed that both G and H are modeled as random
oracles.

We prove that, with respect to general (partial one-way) trapdoor permuta-
tions f , one cannot replace either of the two random oracles G,H in OAEP by ar-
bitrary pseudorandom POWHFs without sacrificing chosen-ciphertext security.
Our negative result follows Shoup’s idea to identify weaknesses in the original
OAEP security proof [26], and holds relative to a malleable trapdoor function
oracle from which a specific function f is derived. Yet, unlike [26], we consider
partial one-way functions f which suffice to prove OAEP to be IND-CCA in
the random oracle model [18]. Our construction also requires to come up with a
malleable yet pseudorandom POWHF. We note that our impossibility result is
not known to hold for the special case of the RSA function f : x 7→ xe mod N ,
yet indicates that further assumptions about the RSA function may be necessary
to replace one of the random oracles by a POWHF.

The idea for OAEP can be also applied to the Full Domain Hash (FDH)
signature scheme, where signatures are of the form S = f−1(H(M)). Transfer-
ring our OAEP result shows that for a specific class of trapdoor permutations
f the instantiation of the RO H through a POWHF can result in an insecure
implementation. But here we also show that FDH becomes insecure when H is
instantiated the obvious way with a VPRF, even for any trapdoor permutation
f such as RSA. By obvious we mean that the pseudorandom value H(M) and
its correctness proof π is concatenated with the signature S, such that one can
verify the signature’s validity by verifying π and checking that f(S) = H(M).
Note that VPRFs already provide secure signatures directly, so substituting the
random oracle by a VPRF in a signature scheme seems to be moot. However, our
goal is to see if VPRFs are a good instantiation in general. Second, one might
want additional properties of the signature scheme which FDH gives but not the
VPRF, e.g., if used as a sub-protocol in Chaum’s blind signature scheme [11]. We
note that, independently of our work, [14] obtained a related result about FDH
signatures, showing that any instantiation of H fails relative to a specific trap-
door function oracle f (whereas our result holds for arbitrary trapdoor functions
such as RSA but for a specific instantiation candidate).

Positive Results. Our results show that the RO model is very demanding and
even functions with extremely strong properties often cannot securely replace
random oracles. However this does not mean that no real function family can be
securely used in place of any random oracle. As mentioned, Canetti [9] for ex-
ample shows how to instantiate an IND-CPA secure encryption scheme through
POWHFs. Accordingly, we look beyond our negative results and present some
positive results, but this time for IND-CCA secure encryption schemes.

We first show the following positive results for a variation of the PSS-E
encryption scheme introduced by Coron et al. [12]. In the original PSS-E en-
cryption scheme ciphertexts are given by C = f(ω||s) for ω = H(M ||r) and
s = G(ω)⊕M ||r. The PSS transform has been originally proposed by Bellare
and Rogaway in the RSA-based signature scheme with message recovery [6].
Coron et al. showed that PSS is a universal transform in that it can also be used
for RSA-based encryption for random oracles G,H, achieving chosen-ciphertext
security as an alternative to OAEP.

Here we consider a variation PSS-I, where ciphertexts have the form (f(ω), s)
for ω = H(M ||r) and s = G(ω)⊕M ||r, i.e., where the s-part is moved outside of
the trapdoor permutation. We prove that for any trapdoor function f the random
oracle G can be instantiated (hence the name PSS-I) with a pseudorandom
POWHF such that the scheme remains IND-CCA secure (in the RO model).
Interestingly, this also comes with a weaker assumption about the function f .
While the original PSS-E scheme has been proven secure for partial one-way
trapdoor permutations, our scheme PSS-I (with the G-instantiation through a
POWHF) works for any trapdoor permutation f . A similar observation was
made in [20] for OAEP. Concerning the substitution of the H-oracle (even if G
is assumed to be a random oracle) we were neither able to prove or disprove that
this oracle can be instantiated by some primitive with known construction. We

remark that this result about PSS-I is in sharp contrast to OAEP where neither
oracle can be replaced by such a POWHF.
As an example where we can replace two random oracles (individually)

we discuss the Fujisaki-Okamoto transformation [17] for combining asymmet-
ric and symmetric encryption schemes, where a ciphertext is given by C =
(Easym(pk, σ;H(σ,M)), Esym(G(σ),M)) for random σ. It provides an IND-CCA
secure hybrid encryption under weak security properties of the two encryption
schemes (for random oracles G,H). We show that the scheme remains IND-CCA
secure in the RO model if the oracle G is instantiated with a pseudorandom
POWHF. We also show that one can instantiate oracle H through a POWHF
(for random oracle G) but this requires a strong assumption about the joint
security of the POWHF and the asymmetric encryption scheme. Hence, for the
Fujisaki-Okamoto transformation both random oracles can be instantiated sep-
arately (albeit under a very strong assumption in case of the H oracle).
Our technical results do not mean that one scheme is “more” or “less” se-

cure than the other one, just because one can substitute one random oracle by a
primitive like POWHFs. In our positive examples there are usually two random
oracles and, replacing one, the resulting scheme is still cast in the random oracle
model. Yet, we believe that attenuating the assumption is beneficial, as substi-
tuting even one oracle by more “down-to-earth” cryptographic primitives gives
a better understanding of the required properties, and it also provides a bet-
ter heuristic than merely assuming that the hash function behaves as a random
oracle.

Organization. We give the basic definitions of the two primitives, POWHFs
and VPRFs, in Section 2. In Section 3 we show our negative result about instan-
tiating one of the random oracles in OAEP through a POWHF. We then show
that in Section 4 that PSS-I admits such an instantiation for one oracle. Sec-
tion 5 presents the Fujisaki-Okamoto transformation as an example of a scheme
where we can replace both random oracles by POWHFs. The FDH scheme and
its instantiation through VPRFs are discussed in Section 6.

2 Preliminaries

If x is a binary string, then |x| denotes its length, and if n ≥ 1 is an integer, then
|n| denotes the length of its binary encoding, meaning the unique integer ` such
that 2`−1 ≤ n < 2`. The string-concatenation operator is denoted “‖”. If S is a

set then x
$
← S means that the value x is chosen uniformly at random from S.

More generally, if D is a probability distribution on S then x
D
← S means that

the value x is chosen from set S according to D. If A is a randomized algorithm

with a single output then x
$
← A(y, z, . . .) means that the value x is assigned

the output of A for input (y, z, . . .). We let [A(y, z, . . .)] denote the set of all
points having positive probability of being output by A on inputs y, z, etc. A
(possibly probabilistic) algorithm is called efficient if it runs in polynomial time
in the input length (which, in our case, usually refers to polynomial time in the
security parameter).

In the full version of the paper [8] we recall the definitions of asymmetric
encryption schemes, their security against chosen-plaintext attacks (IND-CPA
security) and chosen-ciphertext attacks (IND-CCA security), of deterministic
symmetric encryption schemes, also known as data encapsulation mechanisms
or one-time symmetric encryption schemes, and their IND-CPA security (that
is a weaker notion than the standard IND-CPA security), and of digital signa-
ture schemes and their security against existential unforgeability under chosen-
message attacks. For simplicity we give all definitions in the standard model. To
extend these definitions to the random oracle model, all algorithms including the
adversary get oracle access to one or more random functions G,H, . . . , drawn
from the set of all mappings from domain Ak to some range Bk (possibly distinct
for different oracles). Here, the parameter k and therefore the domain and the
range are usually determined by the cryptographic scheme in question.

2.1 Perfectly One-Way Hash Functions

Perfectly one-way hash functions describe (probabilistic) collision-resistant hash
functions with perfect one-wayness. The latter refers to the strong secrecy of a
preimage x, even if some additional information about x besides the hash value
are known. For this purpose [9] introduces the notion of a function hint which
captures these side information. One assumes, though, that it is infeasible to
recover the entire value x from hint(x), else the notion becomes trivial. More
formally, a (possibly randomized) function hint : {0, 1}m(k) → {0, 1}n(k), where
m,n are polynomials, is uninvertible with respect to a probability distribution
X = (Xk)k∈N if for any probabilistic polynomial-time adversary I and x taken
from Xk, the probability Pr

[

I(1k, hint(x)) = x
]

is negligible in k.
In the sequel we usually restrict ourselves to efficient and sufficiently smooth

distributions. That is, a probability distribution X = (Xk)k∈N is efficient if it
can be computed in polynomial time in k; it is well-spread if the min-entropy of
X is superlogarithmic in k.

Definition 1. [Perfectly One-Way Hash Function] Let K be an efficient
key generation algorithm that takes input 1k for k ∈ N and outputs a function key
K of length l(k); let H be an efficient evaluation algorithm that takes a function
key K, input x ∈ {0, 1}m(k) and randomness r ∈ Coins(K) for some fixed poly-
nomial m(k) and returns a hash value y ∈ {0, 1}n(k); let V be an efficient verifi-
cation algorithm that takes a function key K, an input x ∈ {0, 1}m(k) and a hash
value y ∈ {0, 1}n(k) and outputs a decision bit. The tuple POWHF = (K,H,V) is
called a perfectly one-way hash function (with respect to the well-spread, efficient
distribution X = (Xk)k∈N and the uninvertible function hint) if the following
holds:

1. Completeness: For any k ∈ N, any key K ∈ [K(1k)], any r ∈ Coins(K), any
x ∈ {0, 1}m(k) we have V(K,x,H(K,x, r)) = 1.

2. Collision-resistance: For every efficient adversary C the following holds. For

k ∈ N pick K
$
← K(1k) and let (x, x′, y)

$
← C(K). Then Pr [V(K,x, y) = 1

∧ V(K,x′, y) = 1 ∧ x 6= x′] is negligible in k.

3. Perfect one-wayness (with respect to X , hint): For any efficient adversary
A with binary output the following random variables are computationally
indistinguishable:

– Let K
$
← K(1k), r

$
← Coins(K), x

Xk← {0, 1}m(k).
Output (K,x,A(K, hint(x), H(K,x, r))).

– Let K
$
← K(1k), r

$
← Coins(K), x, x′

Xk← {0, 1}m(k).
Output (K,x,A(K, hint(x), H(K,x′, r))).

The perfectly one-way hash function may have the following additional proper-
ties:

4. Public randomness: H can be written as H(K,x, r) = (r,Hpr(K,x, r)) for
another function Hpr : {0, 1}l(k)×{0, 1}m(k)×Coins(K)→ {0, 1}n(k)−|r| for
any k ∈ N, any K ∈ [K(1k)], any x ∈ {0, 1}m(k) and any r ∈ Coins(K).

5. Pseudorandomess (with respect to X , hint): The function acts a pseudoran-
dom generator such that the following random variables are computationally
indistinguishable:

– Let K
$
← K(1k), r

$
← Coins(K), x

Xk← {0, 1}m(k).
Output (K, hint(x),H(K, x, r)).

– Let K
$
← K(1k), x

Xk← {0, 1}m(k), and U
$
← {0, 1}n(k).

Output (K, hint(x), U).

As pointed out in [9] the notion of an uninvertible function is weaker than
the one of a one-way function. For example, hint(·) = 0, which reveals no infor-
mation about x, is uninvertible but not one-way. We call this function the trivial
uninvertible function. In fact, several constructions of POWHF based on the
Decisional Diffie-Hellman assumption [9] and on more general assumptions like
one-way permutations and regular hash functions [9, 24, 16] have been suggested
in the literature. They are provably pseudorandom POWHFs with respect to
trivial uninvertible function hint. For other uninvertible functions hint they are
conjectured to remain secure, yet a formal proof is missing.

In this paper we will mostly consider perfectly one way function families with
public randomness as this is a way to ensure correct function re-computation
on the same input by different parties, needed for some encryption schemes
functionality. All previous constructions [9, 24, 16] have been designed to meet
this notion. For simplicity we will often use the notation y ← HK(x, r) for

y ← H(K,x, r) and y
$
← HK(x) for r

$
← Coins(K), y ← H(K,x, r), and we often

define a hash function with public randomness by just specifying Hpr.

2.2 Verifiable Pseudorandom Functions

A verifiable pseudorandom function, defined in [22], is a pseudorandom function
with an additional public key allowing to verify consistency of values. Any value
for which one has not seen the proof should still look random:

Definition 2. [Verifiable Pseudorandom Function] Let K be an efficient
key generation algorithm that takes input 1k for k ∈ N and outputs a function
key and a verification key (fk, vk); let H be an efficient evaluation algorithm
that takes the key fk, input x ∈ {0, 1}∗ and returns the output y ∈ {0, 1}n(k)

and a proof π ∈ {0, 1}l(k) for some fixed polynomials l, n; let V be an efficient
verification algorithm that takes vk, x, y and π and returns a bit. The triple
VPRF = (K,H,V) is called a verifiable pseudorandom function if the following
holds:

1. Completeness: For any (vk, fk) ∈ [K(1k)], x ∈ {0, 1}∗ and (y, π) ∈ [H(fk, x)],
V(vk, x, y, π) = 1.

2. Uniqueness: There exists a negligible function ν(·) such that for any (vk, fk) ∈
[K(1k)], any x ∈ {0, 1}∗, y0 6= y1 ∈ {0, 1}

n(k), π0, π1 ∈ {0, 1}
l(k) we have

Pr [V(vk, x, yb, πb) = 1] ≤ ν(k) for either b = 0 or b = 1.
3. Pseudorandomness: For any efficient algorithm A that has access to an
oracle and the following experiment

Experiment Expvprf-ind
VPRF,A (1

k)

b
$
← {0, 1}

(fk, vk)
$
← K(1k)

(x, state)
$
← AH(fk,·) where x has never been submitted to oracle H(fk, ·)

If b = 0 then (y, π)
$
← H(fk, x) else y

$
← {0, 1}n(k) EndIf

d
$
← AH(fk,·)(y, state) where x has never been submitted to oracle H(fk, ·)

the difference Pr
[

Expvprf-ind
VPRF,A (1

k) = b
]

− 1/2 is negligible in k.

3 (In)Security of OAEP Instantiations

Here we show that, for general trapdoor permutations, instantiating any of the
two random oracles in OAEP with a pseudorandom POWHF does not yield a
secure scheme.

3.1 OAEP Encryption Scheme

We first recall the OAEP encryption scheme [5]. It is parameterized by inte-
gers k, k0 and k1 (where k0, k1 are linear in k) and makes use of a trapdoor
permutation family F with domain and range {0, 1}k and two random oracles

G : {0, 1}k0 → {0, 1}k−k0 and H : {0, 1}k−k0 → {0, 1}k0

The message space is {0, 1}k−k0−k1 . The scheme OAEPG,H [F] = (EK, E ,D) are
defined as follows:

– EK(1k) : Pick a permutation f from F at random. Let pk specify f and let
sk specify f−1.

– E(pk,M) : Compute r
$
← {0, 1}k0 , s ← (m‖0k1)⊕G(r) and t ← r ⊕H(s).

Output C ← f(s||t).

– D(sk, C) : Compute s‖t ← f−1(C), r ← t⊕H(s) and M ← s⊕G(r). If
the last k1 bits of M are zeros, then return the first k − k0 − k1 bits of M .
Otherwise, return ⊥.

The encryption scheme OAEPG,H [F] is proven to be IND-CCA secure in the
RO model if the underlying permutation family F is partial one-way [18]. Partial
one-wayness is a stronger notion than one-wayness; for the definitions see [18].

3.2 Insecurity of Instantiating the G-Oracle in OAEP with
POWHFs

We first consider the OAEP scheme where the G-oracle is instantiated with a
pseudorandom POWHF. Informally, a key specifying an instance of POWHF
becomes a part of the public key and each invocation of the G-oracle is re-
placed with the function evaluation, such that in the encryption algorithm a
new randomness for the function evaluation is picked and becomes part of the
ciphertext, and in the decryption algorithm the function is re-computed using
the given randomness. More formally:
Let POWHF = (K,G,V), where K : {1k|k ∈ N} → {0, 1}k, G : {0, 1}k ×

{0, 1}k0 × Coins(K) → {0, 1}k−k0 and V : {0, 1}k × {0, 1}k0 × {0, 1}k−k0 →
{0, 1}, be a perfectly one-way pseudorandom hash function with public ran-
domness. An instantiation of the G-oracle in the OAEPG,H [F] encryption
scheme with POWHF = (K,G,V) results in the following encryption scheme
OAEPPOWHF,H [F] = (EK, E ,D)

– EK(1k) : Pick a random permutation f on {0, 1}k and sample a POWHF

key K
$
← K(1k). Let pk specify f and also contain K, and let sk specify f−1

and also contain K.
– E(pk,M) : Pick randomness r

$
← {0, 1}k0 for encryption and rG

$
← Coins(K)

for the POWHF. Compute y ← Gpr
K (r, rG), s ← (M‖0k1)⊕ y and t ←

r ⊕H(s). Let C ← f(s||t) and output (rG , C).
– D(sk, (rG , C)) : Compute s‖t← f−1(C), r ← t⊕H(s),M ← s⊕ Gpr(r, rG).
If the last k1 bits of M are zeros, then return the first k− k0− k1 bits of M .
Otherwise, return ⊥.

We note that for simplicity we assume that rG , the randomness output by
GK , is a public part of the ciphertext. If it was possible to tamper this value
rG into r′G for a given ciphertext, such that this yields the same hash value,
Gpr
K (r, rG) = G

pr
K (r, r

′
G), then it would be obviously easy to mount a successful

chosen-ciphertext attack. To prevent such attacks one can in principle demand
that such collisions for the hash function are infeasible to find —most known
constructions [9, 24, 16] have this additional property— or one can protect rG by
some other means. We do not complicate the instantiation here, as our attack
already succeeds without changing rG , e.g., the attack would even work if rG was
encrypted (separately or inside f) or authenticated.

Intuition. Before we present our results in detail we provide some intu-
ition. First we construct malleable POWHFs, i.e., for which GK(x, r)⊕∆ =

GK(x⊕ δ, r) for some δ,∆. We show how to construct such primitives in [8]. Our
construction assumes that one-way permutations exist and employs the pseu-
dorandom function tribe ensembles of [16] (which are one possibility to build
POWHFs). Assume that either RO in the OAEPG,H [F] encryption scheme is
instantiated with such a POWHF. Here F is a partial one-way trapdoor per-
mutation family. Now given the challenge ciphertext C∗ = f(s∗‖t∗) of some
message Mb where f is an instance of F , an adversary A can find δ,∆ such that
C = f((s∗‖t∗)⊕ δ) is a valid encryption of Mb ⊕∆, and given the decryption of
this ciphertext one can easily compute Mb.
The only problem is that, although flipping bits by penetrating the POWHF

is easy by construction, how can A compute f((s∗‖t∗)⊕ δ) without knowing
s∗‖t∗? Here we use the idea of Shoup [26] about the existence of XOR-malleable
trapdoor permutations which allow such modifications. We note that the attack
is not known to work for OAEP with the RSA trapdoor family, but it nevertheless
shows that security may fail in general if a RO is instantiated with a POWHF.
Our approach is somewhat similar to the attacks Shoup used to show that

for a XOR-malleable one-way trapdoor permutation family F the encryption
scheme OAEPG,H [F] is not IND-CCA secure in the RO model. However, Shoup’s
attack does not work if F is partial one way, and, moreover, for such F the
scheme OAEPG,H [F] has been proven IND-CCA secure in the RO model [18].
Our attacks work even if F is partial one way.

Theorem 1. Let POWHF
′ = (K′,G′,V ′) be a pseudorandom POWHF with pub-

lic randomness (with respect to the uniform distribution and some uninvertible
function hint). Then there exists a pseudorandom POWHF = (K,G,V) with pub-
lic randomness (with respect to the uniform distribution and hint) and an oracle
relative to which there is a partial one-way permutation family F , such that
OAEPPOWHF,H [F], an instantiation of the G-oracle in the OAEPG,H [F] encryp-
tion scheme with POWHF, is not IND-CCA in the RO model.

Recall that we can assume that POWHF is malleable in the sense that Gpr
K (x, r)⊕

1||0n−1 = Gpr
K (x⊕ 1||0

m−1, r) for all k, x, r (we show how to construct such
POWHFs form the given POWHF

′ in [8]). We now define a compliant XOR-
malleable permutation family. We slightly strengthen the original definition of
Shoup [26].

Definition 3. A permutation family F is XOR-malleable if there exists an ef-
ficient algorithm U , such that on inputs a random instance permutation f from
F with domain {0, 1}k and f(t) for random t ∈ {0, 1}k and any δ ∈ {0, 1}k,
algorithm U(f, f(t), δ) outputs f(t⊕ δ) with non-negligible probability (in k).

Even though Shoup uses a weaker definition of XOR-malleability, where U ’s
success probability is also over the random choice of δ ∈ {0, 1}k, his proof in [26]
is also valid for the stronger Definition 3 with fixed δ:

Fact 1 ([26]). There exists an oracle relative to which XOR-malleable one-way
trapdoor permutations exist.

Now we are ready to prove the theorem of the insecure instantiation of the G-
oracle in OAEP. We present the formal proof in [8]. The idea is to construct
the trapdoor permutation family F as f(s‖t) = f ′left(s)‖f

′
right(t) for random

instances f ′left, f
′
right of the malleable family F ′. Then an adversary A gets a

challenge ciphertext (r∗G , C
∗
left‖C

∗
right) of one of two messagesM0,M1, and invokes

U to modify the right part to Cright ← U(f ′right, C
∗
right, 1‖0

k0−1). Submitting the
ciphertext (r∗G , C

∗
left‖Cright) to the decryption oracle is a valid ciphertext for the

message Mb ⊕ 1||0
k−k0−k1−1 because for

(C∗
left||C

∗
right) = (f

′
left(s

∗)||f ′right(t
∗)), s∗ =Mb||0

k0 ⊕ Gpr
K (r

∗, r∗G), t
∗ = r∗ ⊕H(s∗)

we have:

Cright = f ′right

(

t∗ ⊕ 1‖0k0−1
)

= f ′right

(

(r∗ ⊕ 1‖0k0−1)⊕H(s∗)
)

C∗
left = f ′left(s

∗) = f ′left
(

Mb||0
k0 ⊕ Gpr

K (r
∗, r∗G)

)

= f ′left
(

(Mb||0
k0 ⊕ 1||0k−k0−1)⊕ (Gpr

K (r
∗, r∗G)⊕ 1||0

k−k0−1)
)

= f ′left
(

(Mb||0
k0 ⊕ 1||0k−k0−1)⊕ Gpr

K (r
∗ ⊕ 1‖0k0−1, r∗G)

)

The answer of the decryption oracle now allows to determine the bit b easily.

3.3 Insecurity of Instantiating the H-Oracle in OAEP with
POWHFs

For substituting the H-oracle we obtain a similar insecurity result as for the
case of G. However, the proof (presented in [8]) is slightly different as we have
to transform both ciphertext parts.

Theorem 2. Let POWHF
′ = (K′,H′,V ′) be a pseudorandom POWHFs with

public randomness (with respect to the uniform distribution and some uninvert-
ible function hint). Then there exists a pseudorandom POWHF = (K,H,V) with
public randomness (with respect to the uniform distribution and hint), and there
exists an oracle relative to which there is a partial one-way permutation family
F , such that OAEPG,POWHF[F] = (EK, E ,D), an instantiation of the H-oracle
in the OAEPG,H [F] encryption scheme with POWHF, is not IND-CCA in the
RO model.

4 Security of PSS-I Encryption Instantiations

In this section we show a positive result, allowing to replace one of the random
oracles in our PSS-E variation, called PSS-I, by a pseudorandom POWHF. We
were unable to prove or disprove that one can replace the other oracle in PSS-I.

4.1 The PSS-I Encryption Scheme

Coron et al. [12] suggested that the transformation used by the PSS signature
scheme [6] can also be used for encrypting with RSA. Here we consider the

following variation PSS-I. This scheme is parameterized by integers k, k0 and
k1 (where k0, k1 are linear in k) and makes use of an instance of a trapdoor
permutation family with domain and range {0, 1}k (and it can be easily adapted
for other domains like Z∗

N for the RSA permutation). The scheme also uses two
random oracles

G : {0, 1}k1 → {0, 1}k−k1 and H : {0, 1}k−k1 → {0, 1}k1 .

The message space is {0, 1}k−k0−k1 . The scheme PSS-IG,H [F] is given by the
following algorithms:

– EK(1k) : Pick a random permutation f on {0, 1}k1 . Let pk specify f and let
sk specify f−1.

– E(pk,M) : Compute r
$
← {0, 1}k0 , ω ← H(M‖r) and s ← G(ω)⊕ (M‖r).

Compute C ← f(ω) and output (C, s).
– D(sk, (C, s)) : Compute ω ← f−1(C), M‖r ← s⊕G(ω). If ω = H(M‖r)
then return M . Otherwise, return ⊥.

In the original PSS-E scheme [12] one computes f over both ω||s. We remark
that our version here seems to be less secure than the original scheme at first, as
the value s is now given in the clear. However, it nonetheless allows us to securely
replace oracle G by a POWHF which we were unable to do in the original scheme.
Moreover, we can prove security of our instantiation with respect to arbitrary
trapdoor permutations, whereas the original scheme required partial one-way
trapdoor permutations.

4.2 Instantiating the G-Oracle in PSS-I with POWHFs

An instantiation of the G-oracle in the PSS-IG,H [F] encryption scheme
with a pseudorandom perfectly one-way hash function POWHF =
(K,G,V) with public randomness results in the following encryption scheme
PSS-IPOWHF,H [F]=(EK, E ,D)

– EK(1k) : Pick a random permutation f on {0, 1}k1 and sample a POWHF

key K
$
← K(1k) and randomness rG

$
← Coins(K). Let pk specify f and also

contain K, rG , and let sk specify f−1 and also contain K, rG .

– E(pk,M) : Pick randomness r
$
← {0, 1}k0 for the encryption algorithm and

compute ω ← H(M‖r). Compute s ← Gpr
K (ω, rG)⊕ (M‖r) and C ← f(ω).

Output (C, s).
– D(sk, (C, s)) : Compute ω ← f−1(C), M‖r ← s⊕ Gpr

K (ω, rG). If ω =
H(M‖r) then return M . Otherwise, return ⊥.

It is noteworthy that the randomness of the POWHF becomes part of the public
key and is therefore fixed for each ciphertext. While this seems strange at first, it
becomes clear in in light of the role of the randomness in POWHFs. Originally,
POWHFs were designed to meet a stronger security requirement [9, 24], demand-
ing pairs (G(x, r1), G(x, r2)) for a single random x to be indistinguishable from

pairs (G(x, r1),G(x
′, r2)) for independent samples x, x

′. This of course requires
that the randomness r1, r2 is chosen independently for each function evaluation,
else distinguishing would be easy. However, security of PSS-I relies on pseudo-
randomness of the corresponding function family and does not require the above
security property. Accordingly, putting the randomness for the function family
in the public key does not compromise security of the encryption scheme.

Theorem 3. Let F be a trapdoor permutation family and let POWHF =
(K,G,V) be a pseudorandom POWHF with public randomness, where pseudoran-
domness holds with respect to the uniform distribution on and the uninvertible
function hint(x) = (f, f(x)) for random f drawn from F . Then PSS-IPOWHF,H [F]
is IND-CCA secure in the RO model.

The proof is delegated to [8]. We note that our proof does not make use the
collision-resistance of the POWHF. This is because the preimage ω of the
POWHF is uniquely determined by the additional trapdoor function value f(ω)
anyway. Hence, a pseudorandom generator for which distinguishing the output
from random is infeasible, even if given hint(ω), would actually suffice in this
setting. In particular, such a generator G can be built in combination with the
trapdoor permutation f via the Yao-Blum-Micali construction [27, 7]. Namely,
let f be of the form f(x) = gn(x) for a trapdoor permutation g and define
G(x) = (hb(x),hb(g(x)), . . . ,hb(gn−1(x))) through the hardcore bits hb. Then
the output of G is still pseudorandom, even given f(x).

5 Security of Instantiating the Fujisaki-Okamoto
Transformation

Fujisaki and Okamoto [17] suggested a general construction of hybrid encryption
schemes in the random oracle model. It is based on two random oracles, G and
H. Here we show that one can replace G by a pseudorandom POWHF and
still obtain a secure scheme (for a random oracle H). We then prove, under a
somewhat non-standard assumption, that one can also replace H by a POWHF
to obtain a secure scheme for a random oracle G.

5.1 Fujisaki-Okamoto Scheme

The Fujisaki-Okamoto construction is based on an asymmetric encryption
scheme AS = (EKasym, Easym, Dasym) and a deterministic symmetric encryp-
tion scheme SS = (EKsym, Esym,Dsym), as well as two random oracles G,H.
For parameter k ∈ N let Coinsasym(k) and MsgSpasym(k) denote the set of ran-
dom strings and the message space of the asymmetric encryption scheme, and
Keyssym(k) and MsgSpsym(k) denote the key and message space of the symmetric
encryption scheme. Let

G : MsgSpasym(k)→ Keyssym(k) and H : {0, 1}k × {0, 1}∗ → Coinsasym(k)

The message space is MsgSpsym(k). The encryption scheme FO
G,H is given by

the following algorithms:

– EK(1k) : Run EKasym(1
k) to generate a key pair (sk,pk).

– E(pk,M) : Pick σ
$
← MsgSpasym(k), compute

Casym ← Easym(pk, σ;H(σ,M)) and Csym ← Esym(G(σ),M). Output C =
(Casym, Csym).

– D(sk, C) : For C = (Casym, Csym) compute σ ← D(sk, Casym),
M ← Dsym(G(σ), Csym). Recompute c← Easym(pk, σ;H(σ,M)) and output
M if c = Casym, else return ⊥.

Security of this conversion has been shown under the assumption that the sym-
metric encryption scheme is IND-CPA (and that the symmetric encryption al-
gorithm is deterministic), and that the public-key encryption scheme is one-way
and γ-uniform, which roughly means that ciphertexts are almost uniform. Here
we make different, yet “natural” assumptions about the encryption schemes, as
specified below.

5.2 Instantiating the G-Oracle

An instantiation of the G-oracle in the Fujisaki-Okamoto scheme through a
perfectly one-way hash function POWHF = (K,G,V) with public randomness,
denoted by FOPOWHF,H , works as follows:

– EK(1k) : Run EKasym(1
k) to generate a key pair (sk,pk). Pick K

$
← K(1k)

and r
$
← CoinsG(k). Output ((sk,K, r), (pk,K, r)).

– E((pk,K, r),M) : Pick σ
$
← MsgSpasym(k), compute Casym ← Easym(pk, σ,

H(σ, M)) and Csym← Esym(G
pr(K,σ, r),M). Output C = (Casym, Csym).

– D((sk,K, r), C) : For C = (Casym, Csym) compute σ ← Dasym(sk, Casym),
M ← Dsym(G

pr(K,σ, r), Csym). Recompute c ← Easym(pk, σ;H(σ,M)) and
output M if c = Casym, else return ⊥.

We note that we use the same trick as in the PSS-I case before and put the
randomness r of the POWHF into the public key. See the remarks there for
further discussion.

Theorem 4. Let AS and SS be IND-CPA asymmetric and symmetric encryp-
tion schemes, where Esym is deterministic. Let POWHF = (K,G,V) be a pseu-
dorandom POWHF with public randomness (with respect to the uniform distri-
bution on (MsgSpasym(k))k∈N and the trivial uninvertible function hint). Then

the instantiation of the G-oracle in the Fujisaki-Okamoto scheme, FOPOWHF,H ,
is IND-CCA in the random oracle model.

The proof is in [8]. Recall that such POWHF as in the claim can be built from any
one-way permutation. We can thus instantiate the G-oracle under this condition.
In fact, the proof actually shows that regular one-wayness (instead of perfect one-
wayness) is sufficient for the pseudorandom POWHF, where for any efficient
algorithm A the probability that A returns x on input (K, hint(x),H(K,x, r))

for K
$
← K(1k), r

$
← Coins(K), x

Xk← {0, 1}m(k), is negligible. Clearly, perfect
one-wayness implies regular one-wayness.

5.3 Instantiating the H-Oracle

Instantiating the H-oracle is technically more involved and requires a strong
assumption about the combination of the POWHF and the public-key encryption
scheme. Our construction also requires a stronger (yet mild) assumption about
the symmetric encryption scheme.
Before presenting our assumptions we first define the H-instantiation of

the Fujisaki -Okamoto transformation. We call the encryption scheme below
an instantiation of the H-oracle in the Fujisaki-Okamoto scheme, FOG,POWHF,
through a pseudorandom and strongly collision-resistant POWHF = (K,H,V):

– EK(1k) : Run EKasym(1
k) to generate a key pair (sk,pk). Generate K

$
←

K(1k) and r
$
← CoinsH(k) for POWHF. Output (sk,K, r) and (pk,K, r).

– E((pk,K, r),M) : Pick σ
$
← EKsym(1

k), compute ω ← Hpr(K,σ||M, r)
and Casym ← Easym(pk, σ, ω) and Csym ← Esym(G(σ),M). Output C =
(Casym, Csym).

– D((sk,K, r), C) : For C = (Casym, Csym) compute σ ← D(sk, Casym),
M ← Dsym(G(σ), Csym). Recompute c ← Easym(pk, σ;Hpr(K,σ||M, r)) and
output M if c = Casym, else return ⊥.

To show that this instantiation is secure we need the following additional as-
sumption about the symmetric encryption scheme. We assume that the sym-
metric encryption scheme provides integrity of ciphertexts (INT-CTXT) [3], i.e.,

for any efficient adversary B let κ
$
← EKsym(1

k), C
$
← BEsym(κ,·)(1k) and let

M
$
← Dsym(κ,C). Then the probability that M 6= ⊥ and that C has never been

submitted by B to its oracle Esym(κ, ·) is negligible. This INT-CTXT property
can be accomplished for example by the encrypt-then-MAC paradigm [3]. We
remark that this additional property, together with the IND-CPA security of the
asymmetric encryption scheme, does not necessarily imply IND-CCA security of
hybrid schemes; it is easy to construct counterexamples.
For our instantiation we also need a very strong assumption about the combi-

nation of POWHF and the public-key encryption scheme (EKasym, Easym,Dasym).
That is, we assume that the following random variables are indistinguishable for
any efficient message distributionM (which also outputs some information state
about the sampling process):

– Let (sk,pk)
$
← EKasym(1

k), K
$
← K(1k), r

$
← CoinsG(k) and (M, state)

$
←

M(pk,K, r). Pick σ
$
← MsgSpasym (k) and compute ω ← H

pr(K,σ||M, r)
and Casym ← Easym(pk, σ, ω). Output (pk,K, r, state, Casym).

– Let (sk,pk)
$
← EKasym(1

k), K
$
← K(1k), r

$
← CoinsG(k) and (M, state)

$
←

M(pk,K, r). Pick σ
$
← MsgSpasym (k) and ω

$
← Coinsasym and compute

Casym ← Easym(pk, σ, ω). Output (pk,K, r, state, Casym).

We call this the POWHF-encryption assumption for POWHF and AS.
Informally, if one views the POWHFs as a pseudorandom generator, the as-

sumption basically says that encrypting the seed σ of a pseudorandom generator

with the pseudorandom output ω is indistinguishable from an encryption of the
seed with independent randomness. Note that this assumption would be false in
general if one is also given ω in clear (which is either pseudorandom or truly ran-
dom). For example, for ElGamal encryption (gω,pkω ·σ) one could easily recover
σ if given ω (by dividing out pkω in the right part), and try to recompute ω
through the pseudorandom generator applied to σ. However, if one is not given
ω then such generic attacks (in the sense of [25]) fail.
Note also that our POWHF-encryption assumption is certainly not stronger

than assuming that the pseudorandom generator is perfect and given by a ran-
dom oracle. On the contrary, our result shows that seeing the adversary’s queries
to function H is not necessary to simulate attacks and to prove security. This
holds, of course, as long as G is still a random oracle and the simulator learns
the queries to this oracle. The proof of the following theorem is in [8]. Simi-
lar to the G-case the proof shows that regular one-wayness is enough for the
pseudorandom POWHF.

Theorem 5. Let AS and SS be IND-CPA public-key and private-key encryption
schemes where Esym is deterministic. Let POWHF = (K,H,V) be a pseudoran-
dom POWHF with public randomness (with respect to the uniform distribution
and the trivial uninvertible function). Assume further that the symmetric encryp-
tion scheme provides integrity of ciphertexts and that the POWHF-encryption
assumption holds for POWHF and AS. Then the instantiation of the H-oracle in
the Fujisaki-Okamoto transformation, FOG,POWHF, yields an IND-CCA encryp-
tion scheme in the random oracle model.

6 (In)Security of FDH Signature Scheme Instantiations

In this section we consider the Full Domain Hash (FDH) signature scheme which
is provably secure in the random oracle model if the associated permutation is
one-way. We show that replacing the random oracle by a verifiable pseudorandom
function does not necessarily yield a secure instantiation. For sake of concreteness
we explain our negative result for the RSA case. The result can be transferred,
mutatis mutandis, to other trapdoor permutations.
We note that one can easily transfer our negative result about OAEP (The-

orems 1 and 2) to show that the FDH instantiated with a POWHF is insecure
with respect to a specific trapdoor permutation oracle. But our result here for
the VPRFs works for any trapdoor permutation, including RSA for example.

Full Domain Hash Signature Scheme and Instantiation with VPRFs.

Due to lack of space we omit the formal description of the well-known Full-
domain hash (FDH) signature scheme [4] Basically, a signature S for a message
M is given as S = f−1(H(M)) and verification requires checking f(S) = H(M).
An instantiation of the FDH scheme with VPRF = (K,H,V) is the following
signature scheme FDHVPRF[F] = (SK,S,V):

– SK(1k) : pick a random permutation f on Dk from F , pick (fk, vk)
$
← K(1k).

Let pk specify f and contain vk and let sk specify f−1 and contain vk.

– SH(fk,·)(sk,M) : (y, π)
$
← H(fk,M), S ← f−1(y). Output (S, π, y).

– VV(fk,·)(pk,M, (S, π)) : If f(S) = y and V(vk,M, y, π) = 1 then return 1,
else return 0

It is important to note that in the attack the adversary is only given access to
the signature oracle but not to the VPRF oracle. Although the application as
a third-party web interface providing such values indicate that the adversary
can get additional VPRF values, our result even holds in the setting where the
adversary is denied such values.

On the Insecurity of RSA-FDH with VPRFs. A special case is the RSA-
FDH signature scheme (and its instantiation through a VPRF) where f, f−1 are
given by the RSA function x 7→ xe mod N and its inverse y 7→ yd mod N . Here
we consider the case with large prime exponents where the RSA exponent e has
to be a prime of (k+1) bits and therefore larger than the k-bit modulus N . We
denote this function by RSAlarge-exponent. According to the recent result about
deterministic primality testing [1], this prerequisite allows to verify determinis-
tically that a pair (N, e) really constitutes a permutation. We also remark that
this RSA version is not known to be weaker than RSA with other exponents.
For the RSA-FDH scheme we construct a “bad” VPRF such that, when

instantiated with this VPRF, RSA-FDH becomes insecure:

Theorem 6. Suppose VPRFs exist. Then there exists a verifiable pseudorandom
function VPRF = (K,H,V) such that FDHVPRF[RSAlarge-exponent] is subject to
existential forgeries in chosen-message attacks.

The basic idea is that the “bad” VPRF (which exists if any VPRF exists) itself
will reveal signatures for free as part of the correctness proof. Thus, giving the
signature oracle the right message will force the signer to query the VPRF at
the right input which, in turn, allows to forge signatures. We prove this formally
in [8] .

Acknowledgements

We thank Victor Shoup for clarifications on [26] and the anonymous reviewers
of Crypto 2005 for useful comments.

References

1. M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. http://www.cse.iitk.ac.
in/news/primality.html, 2002.

2. M. Bellare, A. Boldyreva, and A. Palacio. An uninstantiable random-oracle-model
scheme for a hybrid-encryption problem. In Eurocrypt 2004, volume 3027 of LNCS.
Springer, 2004.

3. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In ASIACRYPT 2000,
volume 1976 of LNCS. Springer, 2000.

4. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing
efficient protocols. In CCS ’93. ACM, 1993.

5. M. Bellare and P. Rogaway. Optimal asymmetric encryption – how to encrypt
with RSA. In Eurocrypt ’94, volume 950, 1995.

6. M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign
with RSA and Rabin. In Eurocrypt ’96, volume 1070 of LNCS. Springer, 1996.

7. M. Blum and S. Micali. How to generate cryptographically strong sequences of
pseudorandom bits. SIAM Journal of Computing, 13:850–864, 1984.

8. A. Boldyreva and M. Fischlin. Analysis of random-oracle instantiation scenarios
for OAEP and other practical schemes. Full version of this paper. Available at
http://www.cc.gatech.edu/~aboldyre/publications.html.

9. R. Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In CRYPTO ’97, volume 1294 of LNCS. Springer, 1997.

10. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited.
In STOC ’98. ACM, 1998.

11. D. Chaum. Blind signatures for untraceable payments. In CRYPTO ’82, 1983.
12. J.-S. Coron, M. Joye, D. Naccache, and .P. Paillier. Universal padding schemes for

RSA. In CRYPTO 2002, volume 2442. Springer, 2002.
13. Y. Dodis. Efficient construction of (distributed) verifiable random functions. In

PKC 2003, volume 2567 of LNCS. Springer, 2003.
14. Y. Dodis, R. Oliveira, and K. Pietrzak. On the generic insecurity of full-domain

hash. In CRYPTO 2005, LNCS, 2005.
15. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification

and signature schemes. In Crypto ’86, volume 263 of LNCS. Springer, 1986.
16. M. Fischlin. Pseudorandom function tribe ensembles based on one-way permuta-

tions: Improvements and applications. In Eurocrypt ’99, volume 1592 of LNCS.
Springer, 1999.

17. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In CRYPTO ’99, volume 1666 of LNCS, 1999.

18. E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure under
the RSA assumption. In CRYPTO 2001, volume 2139 of LNCS. Springer, 2001.

19. S. Goldwasser and Y. T. Kalai. On the (in)security of the Fiat-Shamir paradigm.
In FOCS 2003. IEEE, 2003.

20. K. Kobara and H. Imai. OAEP++: A very simple way to apply OAEP to deter-
ministic ow-cpa primitives. Cryptology ePrint Archive, Report 2002/130., 2002.

21. U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In TCC 2004,
volume 2951 of LNCS. Springer, 2004.

22. S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In FOCS 1999.
IEEE, 1999.

23. J. Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In CRYPTO 2002, volume 2442 of LNCS.
Springer, 2002.

24. D. Micciancio R. Canetti and O. Reingold. Perfectly one-way probabilistic hash
functions. In STOC ’98. ACM, 1998.

25. V. Shoup. Lower bounds for discrete logarithms and related problems. In Eurocrypt
’97, volume 1233 of LNCS. Springer, 1997.

26. V. Shoup. OAEP reconsidered. In CRYPTO 2001, volume 2139 of LNCS. Springer,
2001.

27. A. Yao. Theory and applications of trapdoor functions. In FOCS 1982, pages
80–91. IEEE, 1982.

