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Abstract. Consider two parties holding correlated random variables W
and W ′, respectively, that are within distance t of each other in some
metric space. These parties wish to agree on a uniformly distributed
secret key R by sending a single message over an insecure channel con-
trolled by an all-powerful adversary. We consider both the keyless case,
where the parties share no additional secret information, and the keyed

case, where the parties share a long-term secret SK that they can use to
generate a sequence of session keys {Rj} using multiple pairs {(Wj ,W

′
j)}.

The former has applications to, e.g., biometric authentication, while the
latter arises in, e.g., the bounded storage model with errors.

Our results improve upon previous work in several respects:
– The best previous solution for the keyless case with no errors (i.e.,
t = 0) requires the min-entropy of W to exceed 2|W |/3. We show
a solution when the min-entropy of W exceeds the minimal thresh-
old |W |/2.

– Previous solutions for the keyless case in the presence of errors (i.e.,
t > 0) required random oracles. We give the first constructions (for
certain metrics) in the standard model.

– Previous solutions for the keyed case were stateful. We give the first
stateless solution.

1 Introduction

A number of works have explored the problem of secret key agreement based
on correlated information by which two parties holding instances of correlated
random variables W and W ′ communicate and thereby generate a shared, se-
cret (uniformly-random) key SK. Early work [Wyn75,BBR88,Mau93,BBCM95]
assumed that the parties could communicate over a public but authenticated
channel or, equivalently, assumed a passive adversary. This assumption was re-
laxed in later work [Mau97,MW97,Wol98,MW03,RW03], which considered an
active adversary who could modify all messages sent between the two parties.
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The motivation of the above works was primarily to explore the possibility
of information-theoretic security; however, this is not the only motivation. The
problem also arises in the context of using noisy data (such as biometric infor-
mation) for cryptographic purposes, even if computational security suffices. The
problem also arises in the context of the bounded storage model (BSM) [Mau92]
in the presence of errors [Din05,DS05]. We discuss each of these in turn.

Authentication using noisy data. In the case of authentication using noisy
data, the random variables W,W ′ are close (with respect to some metric) but
not identical. For simplicity, we assume the noisy data represents biometric in-
formation though the same techniques apply to more general settings. In this
context, two different scenarios have been considered:

“Secure authentication:” Here, a trusted server stores the “actual” biometric
data W of a user; periodically, the user obtains a fresh biometric scan W ′ which
is close, but not identical, to W . The server and user then wish to mutually
authenticate and agree on a key R.

“Key recovery:” Here, a user (on his own) uses his “actual” biometric data W
to generate a random key R along with some public information P , and then
stores P on a (possibly untrusted) server. The key R might then be used, say, to
encrypt some data for long-term storage. At a later point in time, the user obtains
a fresh biometric scan W ′ along with the value P from the server; together, these
values enable recovery of R (and hence enable decryption of the data).

In the second setting the user is, in effect, running a key agreement protocol
with himself at two points in time, with the (untrusted) server acting as the
“communication channel” between these two instances of the user. This second
scenario inherently requires a non-interactive (i.e., one-message) key agreement
protocol since W is no longer available at the later point in time. Note also that
any solution for the second scenario is also a solution for the first.

Solutions for achieving secret key agreement using noisy data and an authen-
ticated channel are known [BBR88,BBCM95,DORS06,JW99,FJ01,LT03]. How-
ever, existing work such as [Mau97,MW97,Wol98,MW03,RW03] does not solve
the above problem when the parties communicate over an unauthenticated chan-
nel. Positive results in the unauthenticated setting were known only for two
special cases: (1) when W = W ′ and (2) when W and W ′ consist of (arbitrarily-
many) independent realizations of the same random experiment; i.e., W =

(W (1),W (2), . . .) and W ′ = (W ′
(1)
,W ′

(2)
, . . .). In the case of biometric data,

however, W,W ′ are not likely to be equal and we cannot in general obtain an
unbounded number of samples.

Recently, some partial solutions to the problems considered above have been
obtained in the unauthenticated setting. Boyen [Boy04] shows, in the random
oracle model, how to achieve unidirectional authentication with noisy data, as
well as a weak form of security in the “key recovery” setting (essentially, R
remains secret but the user can be fooled into using an incorrect key R′). Sub-
sequent work of Boyen, et al. [BDK+05] shows two solutions: the first is non-
interactive but relies on random oracles; the second solution can be used for



secure authentication but does not apply to the “key recovery” scenario be-
cause it requires interaction. This second solution has some other limitations
as well: since it relies on a underlying password-based key-exchange protocol,
it inherently provides computational rather than information-theoretic secu-
rity; furthermore, given the current state-of-the-art for password-based key ex-
change [BPR00,BMP00,KOY01,GL01,GL03], the resulting protocol is either im-
practical or else requires additional assumptions such as random oracles/ideal
ciphers or public parameters.

The bounded storage model and the “keyed” case. Key agreement using
correlated information arises also in the context of the bounded storage model
(BSM) [Mau92] in the presence of errors [Din05,DS05]. In the BSM, two parties
share a long-term secret key SK. In each of an unlimited number of time periods
j = 1, . . ., a long random string Zj is broadcast to the parties (and observed by
an adversary); the assumption is that the length of Zj is more than what the
adversary can store. The parties use SK and Zj to generate a secret session key
Rj , with |Rj | ≫ |SK|, in each period. This process should achieve “everlasting
security” [ADR02], meaning that even if SK is revealed to the adversary in some
time period n, all session keys {Rj}j<n remain independently and uniformly
distributed from the perspective of the adversary.

A typical paradigm for achieving the above is for the parties to sample (using
SK) shorter strings Wj and W ′j , respectively, from the random string Zj in each
period. Next, the parties use Wj (resp., W ′j) and SK to generate Rj . In standard
treatments of the BSM (e.g., [Mau92,ADR02]), it is assumed that both parties
receive identical copies of Zj and hence Wj = W ′j . In the presence of trans-
mission errors in Zj , however, it is possible for Wj and W ′j to be close but not
identical [Din05,DS05]. The parallels to the case of biometric authentication, as
discussed earlier, should now be clear. Nevertheless, the problems are incompa-
rable: in the case of the BSM with errors there is a stronger setup assumption
(the parties share a long-term key SK), but the security requirements are more
stringent.

Our contributions. We focus on the abstract problem of secret key agreement
between two parties holding instances w,w′ of correlated random variablesW,W ′

that are guaranteed to be close but not necessarily identical. Specifically, we
assume that w and w′ are within distance t with respect to some underlying
metric. Some of our results hold for arbitrary metric spaces, while others assume
the Hamming metric in particular.

We consider only non-interactive protocols defined by procedures (Gen,Rep)
that operate as follows: the first party, holding w, computes (R,P ) ← Gen(w)
and sends P to the second party; this second party computes R′ ← Rep(w′, P ).
(If the parties share a long-term key SK then Gen,Rep take this as additional
input.) The basic requirements, informally, are

Correctness: R = R′ whenever w′ is within distance t of w.

Security: If the entropy of W is high, R is uniformly distributed even given P .



So far, this gives exactly a fuzzy extractor as defined by Dodis et al. [DORS06]
(although we additionally allow the possibility of a long-term key). Since we
are interested in the case when the parties communicate over an unauthenti-
cated channel, however, we actually want to construct robust fuzzy extractors
[BDK+05] that additionally protect against malicious modification of P . Ro-
bustness requires that if the adversary sends any modified value P ′ 6= P , then
with high probability the second player will reject (i.e., Rep(w′, P ) =⊥). Strong
robustness requires this to hold even if the adversary learns the R (held by the
first player). This property is essential in settings where the first party may be-
gin using R before the second party computes R′, and is also needed for the
“key recovery” scenario discussed earlier (since previous usages of R may leak
information about it). Weak robustness, still sufficient for some applications,
only requires robustness when R is not learned by the adversary.

Letting H∞(X) denote the min-entropy of a random variable X, we now
describe our results.

The keyless case with no errors. Although our focus is on the case when
W,W ′ are close, we obtain improvements also in the case when they are equal
(i.e., t = 0). Specifically, the best previous non-interactive solution in this setting
is due to Maurer and Wolf5 [MW03] who show that when H∞(W ) > 2|W |/3 it
is possible to achieve weak robustness and generate a shared key R of length
H∞(W ) − 2|W |/3. On the other hand, results of [DS02] imply that a non-
interactive solution is impossible when H∞(W ) ≤ |W |/2.

We bridge the gap between known upper- and lower-bounds and show that
wheneverH∞(W ) > |W |/2 it is possible to achieve weak robustness and generate
a shared key R of length 2H∞(W )− |W |. This improves both the required min-
entropy of W as well as the length of the resulting key. Moreover, we give the
first solution satisfying strong robustness which still works as long as H∞(W ) >
|W |/2 (but extracts a slightly shorter key).

The keyless case with errors. The only previously-known construction of
robust fuzzy extractors [BDK+05] relies on the random oracle model. (This so-
lution is generic and applies to any metric admitting a good error-correcting
code.) We (partially) resolve the main open question of [BDK+05] by showing
a construction of strongly robust fuzzy extractors in the standard model, for
the case of the Hamming, set difference, or edit metrics. In fact, our solution
is also better than the second (interactive) solution of [BDK+05] in the “se-
cure authentication” scenario: their solution achieves computational (rather than
information-theoretic) security, and is impractical unless additional assumptions
(such as the existence of public parameters) are made.

The keyed case with errors. Recent work focusing on the BSM with errors
[Din05,DS05] shows that a constant relative Hamming distance between Wj and
W ′j (recall, these are the samples recorded by the two parties) can be tolerated
using a non-interactive protocol. The solution of [Din05] is stateful (i.e., SK is
updated between each time period) while the second solution [DS05] requires the

5 The journal version fixes some incorrect claims made in [MW97].



parties to communicate over an authenticated channel. We construct a robust
keyed fuzzy extractor (for generic metrics), and show that this enables a stateless
BSM solution (for the Hamming metric) using an unauthenticated channel. In
doing so, we retain essentially all other parameters of the previous BSM solutions.

2 Definitions

If S is a set, x← S means that x is chosen uniformly from S. If X is probability
distribution, then x ← X means that x is chosen according to distribution X.
The notation PrX [x] denotes the probability assigned by X to the value x. (We
often omit the subscript when the probability distribution is clear from context.)
IfA is a probabilistic algorithm and x an input,A(x) denotes the random variable
A(x;ω) where random coins ω are sampled uniformly. If X is a random variable,
then A(X) is defined in the analogous manner. All logarithms are base 2.

The min-entropy of a random variable X is H∞(X) = − log(maxx PrX [x]).

We define the (average) conditional min-entropy of X given Y as H̃∞(X | Y ) =
− log(Ey←Y (2−H∞(X|Y =y))). This (non-standard) definition is convenient for
cryptographic purposes [DORS06,RW05].

Definition 1. A family of efficient functions H =
{
hi : {0, 1}n → {0, 1}ℓ

}
i∈I

is δ-almost universal if for all distinct x, x′ we have Pri←I [hi(x) = hi(x
′)] ≤ δ.

Families with δ = 2−ℓ are called universal. ♦

Let X1,X2 be two probability distributions over S. Their statistical distance

is SD (X1,X2)
def

= 1
2

∑
s∈S |PrX1

[s]−PrX2
[s]|. If two distributions have statistical

distance at most ε, we say they are ε-close, and write X1 ≈ε X2. Note that ε-
close distributions cannot be distinguished with advantage better than ε even
by a computationally unbounded adversary.

Definition 2. An efficient probabilistic function Ext : {0, 1}n → {0, 1}ℓ is a
strong (m, ε)-extractor if for all distributions X over {0, 1}n with H∞(X) ≥ m
we have SD ((I,Ext(X; I)), (I, Uℓ)) ≤ ε. The randomness I is called the seed. ♦

Lemma 1 ([BBR88,HILL99]). Fix m, ε > 0, and ℓ ≤ m − 2 log
(

1
ε

)
. If H =

{hi : {0, 1}n → {0, 1}ℓ}i∈I is a 2−ℓ(1 + ε2)-almost universal family then H is a
strong (m, ε)-extractor.

One-time message authentication codes (MACs). One-time MACs allow
information-theoretic authentication of a message using a key shared in advance.

Definition 3. A function family
{
MACµ : {0, 1}ñ → {0, 1}v

}
is a strongly δ-

secure (one-time) MAC if: (a) for any x and σ, Prµ [MACµ(x) = σ] = 2−v; and
(b) for any x 6= x′ and any σ, σ′, Prµ [MACµ(x′) = σ′ | MACµ(x) = σ] ≤ δ. ♦

The definition above is stronger than usual, since part (b) requires security
conditioned on a worst-case choice of σ, rather than taking an average over µ.
However, it is convenient because it is satisfied by standard constructions, and
also composes nicely with universal hash families:



Lemma 2. If {MACµ : {0, 1}u → {0, 1}v} is a strongly δ-secure MAC and{
hi : {0, 1}ñ → {0, 1}u

}
is δ′-almost universal, then MAC′µ,i(x) = MACµ(hi(x))

is a strongly (δ + δ′)-secure MAC for ñ-bit messages.

Secure Sketches and Fuzzy Extractors. We start by reviewing the def-
initions of (ordinary) secure sketches and fuzzy extractors from [DORS06]. Let
M be a metric space with distance function dis.

Definition 4. An (m, m̃, t)-secure sketch is a pair of efficient randomized pro-
cedures (SS,SRec) s.t.:

1. The sketching procedure SS on input w ∈M returns a bit string s ∈ {0, 1}
∗
.

The recovery procedure SRec takes an element w′ ∈M and s ∈ {0, 1}
∗
.

2. Correctness: If dis(w,w′) ≤ t then SRec(w′,SS(w)) = w.
3. Security: For any distribution W overM with min-entropy m, the (average)

min-entropy of W conditioned on s does not decrease very much. Specifically,
if H∞(W ) ≥ m then H̃∞(W | SS(W )) ≥ m̃.

The quantity m− m̃ is called the entropy loss of the secure sketch. ♦

For the case of the Hamming metric on M = {0, 1}n, the following “code-
offset” construction [BBR88,Cré97] is well known. The sketch s = SS(w) consists
of the syndrome6 of w with respect to some (efficiently decodable) [n, k, 2t+ 1]-
error-correcting code C. We do not need any details of this construction other
than the facts that s is a (deterministic) linear function of w and that the entropy
loss is at most |s| = n− k.

Definition 5. An (m, ℓ, t, ε)-fuzzy extractor is a pair of efficient randomized pro-
cedures (Gen,Rep) with the following properties:

1. The generation procedure Gen, on input w ∈M, outputs an extracted string
R ∈ {0, 1}ℓ and a helper string P ∈ {0, 1}

∗
. The reproduction procedure Rep

takes an element w′ ∈M and a string P ∈ {0, 1}
∗

as inputs.
2. Correctness: If dis(w,w′) ≤ t and (R,P )← Gen(w), then Rep(w′, P ) = R.
3. Security: For any distribution W overM with min-entropy m, the string R is

close to uniform even conditioned on the value of P . Formally, if H∞(W ) ≥
m and (R,P )← Gen(W ), then we have SD ((R,P ), (Uℓ, P )) ≤ ε. ♦

Composing an (m, m̃, t)-secure sketch with a strong (m̃ − log
(

1
ε

)
, ε)-extractor

{hi : M→ {0, 1}ℓ} yields a (m, ℓ, t, 2ε)-fuzzy extractor [DORS06]. In that case
P = (SS(w), i) and R = hi(w).

2.1 Robust Fuzzy Extractors

Fuzzy extractors, defined above, protect against a passive attack in which an
adversary observes P , and tries to learn something about the extracted key R.
However, the definition says nothing about what happens if an adversary can
modify P as it is sent to the user holding w′. That is, there are no guarantees
about the output of Rep(w′, P̃ ) for P̃ 6= P .

6 For a linear code with parity check matrix H, the syndrome of w is wH⊤.



Boyen et al. [BDK+05] propose the notion of robust fuzzy extractors which
provides strong guarantees against such an attack. Specifically, Rep can output
either a key or a special value ⊥ (“fail”). We require that any value P̃ 6= P
produced by the adversary given P causes Rep(w′, P̃ ) to output ⊥. Modified
versions of the correct public information P can therefore be detected.

We consider two variants of this idea, depending on whether Gen and Rep
additionally share a (short) long-term key SK. Boyen et al. considered the keyless
primitive; this is what we define first. Further below, we adjust the definitions
to the case of a shared key.

If W,W ′ are two (correlated) random variables over a metric spaceM, we say
dis(W,W ′) ≤ t if the distance between W and W ′ is at most t with probability
one. We call (W,W ′) a (t,m)-pair if dis(W,W ′) ≤ t and H∞(W ) ≥ m.

Definition 6. Given algorithms (Gen,Rep) and values w,w′ ∈M, consider the
following game involving an adversary A: Compute (R,P ) ← Gen(w) and P̃ =
A(R,P ). The adversary succeeds if P̃ 6= P and Rep(w′, P̃ ) 6=⊥.

(Gen,Rep) is a (strong) (m, ℓ, t, ε, δ)-robust fuzzy extractor if it is an (m, ℓ, t, ε)-
fuzzy extractor, and for all (t,m)-pairs (W,W ′) and all adversaries A, the prob-
ability of success is at most δ. The notion of a (m, ℓ, t, ε, δ)-weakly-robust fuzzy
extractor is defined similarly, except that A is given only P and not R.

See Fig. 1 for an illustration. ♦

Re-using Robust Extractors. The definition of robust extractors composes
with itself in some situations. For example, a generalization of the above (used in
[BDK+05]) allows the adversary to output (P̃1, . . . , P̃j); the adversary succeeds

if there exists an i with Rep(w′, P̃i) 6=⊥. A simple union bound shows that the
success probability of an adversary in this case increases at most linearly in j.

Similarly, suppose that two players (Alice and Bob) receive a sequence of
correlated pairs of random variables (W1,W

′
1), (W2,W

′
2) . . . , such that each pair

is at distance at most t and the entropy of Wi conditioned on information from
other time periods

{
(Wj ,W

′
j)

}
j 6=i

is at least m (we call such a sequence (t,m)-

correlated). Once again, a simple hybrid argument shows that Alice and Bob can
agree on (essentially) random and uncorrelated keys R1, R2, . . ., by having Alice
apply Gen to each Wi and send Pi to Bob. Namely, after j periods the attacker’s
advantage at distinguishing the vector of unknown keys from random is at most
jε, and her probability of forging a valid message P̃i is at most δ in each period.

Keyed Robust Fuzzy Extractors. In some scenarios, such as the bounded
storage model, the parties running Gen and Rep can additionally share a short,
truly random key to help them extract a (long) session key R from close variables
W and W ′. Syntactically, this simply means that Gen and Rep now also take an
extra input SK: namely, we have (R,P ) ← GenSK(w), R′ = RepSK(w′, P ), and
require that for any SK we have R = R′ whenever dis(w,w′) ≤ t.

The robustness property of keyed fuzzy extractors (Def. 6) does not change
with the addition of SK: in particular, the attacker does not get the secret key SK
in the unforgeability game of Def. 6. At first glance, this appears to trivialize the
problem of constructing keyed robust fuzzy extractors. For example, one might



attempt the following transformation. Given an output (R,P ) or a regular fuzzy
extractor, let SK be a key to an information-theoretic MAC, and simply append
to P its own tag MACSK(P ) computed using SK. This transformation is not
sufficient, however, because keyed fuzzy extractors must satisfy a very strong
security (i.e. extraction) condition which we define next.

Definition 7. A keyed keyed (m, ℓ, t, ε)-fuzzy extractor (Gen,Rep) is secure if
for any distribution W over M with min-entropy m, the string (SK, R) is close
to a pair of fresh uniform random strings, even conditioned on the value of P :
if H∞(W ) ≥ m and (R,P )← GenSK(W ), then (SK, R, P ) ≈ε (U|SK|, Uℓ, P ).

We say the extractor is strongly secure if (SK, R, P ) ≈ε (U|SK|, Uℓ, U|P |). ♦

(a)

(b)

P̃
Gen A

R or ⊥

w SK w′

P

R

Rec

Fig. 1. Robustness of extractors (Def. 6). Dot-
ted lines indicate variations in the definition. (a)
Keyed extractors take an additional input SK

shared by Gen and Rep. (b) For weak robustness,
the adversary does not have access to the ex-
tracted key R.

The security condition for keyed
extractors ensures that value of
SK is essentially independent
from the attacker’s view. For ex-
ample, the simplistic transfor-
mation above from regular fuzzy
extractors leaks the tag of P
(which is a known deterministic
function of SK) to the attacker
A, implying that SK no longer
looks random to A — it there-
fore does not satisfy Def. 7. This
security condition is important
for two reasons: first, it means
that the session key R remains
secure even if the long-term key SK is revealed in the future; second, the long-
term key can be re-used (e.g., for future authentication). If Alice and Bob are
given a sequence of j correlated pairs (as discussed above), then A has advantage
at most jε in distinguishing the vector of unknown session keys from random.
Similarly, her probability of forging a valid P̃j in the j-th execution of the ro-
bustness game (Def. 6) is at most jε+ δ. The repeated game and its reduction
to the one-time definitions presented here are given in detail in the full version
of this paper.

Finally, we note that some settings require a more stringent condition called
strong security in Def. 7. In this case the adversary’s view hides both the long-
term key SK and the exact distribution of W (since P is distributed identically
regardless of W ). The bounded storage model, discussed in Section 4, is an
example of such a setting.

3 Constructing Robust Fuzzy Extractors

In this section, we describe new constructions of robust fuzzy extractors. In
particular, these solve the problem of secret key generation over a completely
insecure channel. We begin by analyzing the case of no errors (i.e., t = 0) and
then consider the more challenging case where errors may occur.



3.1 The Errorless Case (w = w
′)

Recall the “standard” solution using strong extractors, which works when the
adversary is passive. In this case, Gen(w) chooses a random seed i for a strong
extractor and sets R = hi(w) and P = i; the recovery procedure Rep(w, i)
simply outputs R = hi(w). Unfortunately, this solution does not work if the
adversary is active. In particular, if i′ 6= i there is no longer any guarantee on
the output Rep(w, i′) (and it is easy to show counterexamples where a malicious
i′ completely determines Rep(w, i′) even if w is uniform). One idea is to somehow
authenticate i using the extracted key R; in general, this does not work either.
It turns out, however, that w itself can be used to authenticate i, at least for a
particular choice of MAC and a particular strong extractor. Details follow.

Construction. We define the procedures (Gen,Rep). To compute Gen(w), parse
the n-bit string w as two strings a and b of lengths n − v and v, respectively
(the value of v will be determined later). View a as an element of F2n−v and b as
an element of F2v so that addition in the field corresponds to exclusive-or of bit
strings. Choose a random i ∈ F2n−v , compute ia ∈ F2n−v , and let [ia]n−v

v+1 denote
the most significant n−2v bits of ia and [ia]v1 denote the remaining v bits. View
[ia]v1 as an element of F2v . Then compute σ = [ia]v1 + b, set P = (i, σ), and let
the extracted key be R = [ia]n−v

v+1 .
Rep(w,P ′), where P ′ = (i′, σ′), proceeds as follows. Parse w as two strings a

and b as above. Then verify that σ′ = [i′a]v1 + b and output ⊥ if this is not the
case. Otherwise, compute the extracted key R = [i′a]n−v

v+1 .

Theorem 1. Let |w| = n. For an appropriate setting of v, the above con-
struction is an (m, ℓ, 0, ε, δ)-weakly-robust extractor for any m, ℓ, ε, δ satisfying
ℓ ≤ 2m − n − 2max

{
log

(
1
δ

)
, 2 log

(
1
ε

)}
. It is an (m, ℓ, 0, ε, δ)-robust extractor

when ℓ ≤ min
(

2m−n
3 − 2

3 log
(

1
δ

)
, 2m− n− 4 log

(
1
ε

))
.

The proof is given in the full version. Observe that extraction is possible as long

as H∞(W )
def

= m > |W |/2. Furthermore, in the case of weakly robust extraction
(which is the notion of security considered by Maurer and Wolf [MW03]) we
extract a key of length roughly 2 ·H∞(W )− |W |.

3.2 Authenticating a Message While Extracting

The above construction uses the input w to authenticate the extractor seed i.
It can be extended to additionally authenticate a (bounded-length) message M ;
i.e., to be simultaneously a robust fuzzy extractor and an information-theoretic
one-time MAC. In this case, both Gen and Rep will take an additional input M ,
and it should be difficult for an adversary to cause Rep to accept a different M .
(We are being informal here since this is merely a stepping stone to the results of
the following section.) Naturally, this could be done easily by using (a part of) R
as a key for a MAC, but this would correspondingly reduce the final number of
extracted bits. In contrast, the approach presented here (almost) does not reduce
the length of R at all. We adapt a standard technique [WC81] for authenticating
long messages using almost-universal hash functions.



Construction. Assume |M | ≤ L · (n − v), where L is known to all parties in
advance. Split M into L chunks M0, . . . ,ML−1, each n − v bits long, and view
these as coefficients of a polynomial M(x) ∈ F2n−v [x] of degree L − 1. Modify
the construction of the previous section as follows: to compute Gen(w,M), parse
w as a‖b, choose random i ∈ F2n−v , compute σ = [a2M(a) + ia]v1 + b, and set
P = (i, σ). As before, the extracted key is R = [ia]n−v

v+1 .

Given w, M ′, and P ′ = (i′, σ′), verify that |M ′| ≤ L(n − v) and that σ′ =
[a2M ′(a) + i′a]v1 + b. If so, compute R = [i′a]n−v

v+1 .

The property we need is that every distinct pair of tuples (M, i) 6= (M ′, i′)
the “difference” polynomial f(x) = x2(M(x)−M ′(x))+(i− i′)x is non-constant
and has degree at most L+ 1. The analysis is deferred to the full version.

3.3 Adding Error-Tolerance

We can now consider settings when the input w′ held by the receiver is close,
but not identical to, the value w used by the sender. An obvious first attempt,
given the scheme just discussed, is to include a secure sketch s = SS(w) along
with (i, σ), and to authenticate s using the message authentication technique
discussed previously; s would allow recovery of w from w′, and then verification
could proceed as before. Unfortunately, this does not quite work: if the adversary
modifies s, then a different value w∗ 6= w may be recovered; however, the results
of the previous section apply only when the receiver uses the same w as used by
the sender (and so in particular we can no longer claim that the adversary could
not have modified s without being detected). In effect, we have a circularity: the
receiver uses w to verify that s was not modified, but the receiver computes w
(from w′) using a possibly modified s.

We show how to break this circularity using a modification of the message
authentication technique used earlier. One key idea is to use the part of w that
is “independent of s” (in a way made clear below) to authenticate s.

The second key idea is to exploit algebraic structure in the metric space, and
to change the message authentication code so that it remains secure even when
the adversary can influence the key (sometimes called security against related-key
attacks). Specifically, we will assume that the errors are small in the Hamming
metric, and that we are given a deterministic, linear secure sketch (for example,
a syndrome-based construction). In Section 3.3 we will extend the approach to
related metrics such as set difference and edit distance.

Construction for Hamming Errors. Suppose the input w is an n bit string.
Our starting point is a deterministic, linear secure sketch s = SS(w) that is k
bits long; let n′ = n−k. We assume that SS is a surjective, linear function (this is
the case for the code-offset construction for the Hamming metric), and so there
exists an k × n matrix S of rank k such that SS(w) = Sw (see footnote 6. Let
S⊥ be an n′ × n matrix such that the n× n matrix

(
S

S⊥

)
has full rank. We let

SS⊥(w)
def

= S⊥w. One can view SS⊥(w) as the information remaining in w once
SS(w) has been learned by the adversary.



Gen(w):

1. Set s = SS(w), c = SS⊥(w)
- Parse c as a‖b with |a| = n′ − v and |b| = v
- Let L = 2⌈k/(2(n′ − v))⌉. Pad s with 0s to length L(n′ − v).

Parse s as sL−1‖sL−2‖ . . . ‖s0, for si ∈ GF (2n′−v).
2. Select i← GF (2n′−v)

- Define fs,i(x) = xL+3 + x2(sL−1x
L−1 + sL−2x

L−2 + · · ·+ s0) + ix

3. Set σ = [fs,i(a)]
v
1 + b and output R = [ia]n

′−v
v+1 and P = (s, i, σ).

To reproduce R given w′ and P ′ = (s′, i′, σ′), first compute w∗ = SRec(w′, s′);
make sure SS(w∗) = s′ and dis(w∗, w′) ≤ t (if not, output ⊥). Let c′ = SS⊥(w∗);
parse c′ as a′‖b′. Compute σ∗ as above using s′, a′, b′, i′, and check that this

matches the value σ′ received. If so, output R = [i′a′]n
′−v

v+1 , else output ⊥.
The polynomial fs,i defined above differs from the message authentication

technique in the previous section only in the leading term xL+3 (and the forcing
of L to be even). It has the property that for any pair (s′, i′) 6= (s, i), and for
any fixed offset ∆a, the polynomial fs,i(x) − fs′,i′(x + ∆a) is a non-constant
polynomial of degree at most L + 2 (this is easy to see for ∆a = 0; if ∆a 6= 0,
then the leading term is ((L + 3) mod 2)∆ax

L+2). In our analysis, we use the
linearity of the scheme to understand the offset∆a = a′−a, and conclude that the
adversary succeeds only if she can guess the last v bits of fs,i(x)−fs′,i′(x+∆a),
which happens with low probability. Note that this definition of fs,i amounts to
a message authentication code (MAC) provably secure against a class of related
key attacks where the adversary Eve can force the receiver to use a key shifted
by an offset of Eve’s choice. We obtain:

Theorem 2. Let |w| = n. Assume SS is an (m,m − k, t)-secure sketch for the
Hamming metric. Then for an appropriate setting of v, the above construction
is an (m, ℓ, t, ε, δ)-weakly robust fuzzy extractor for any m, ε, δ, ℓ ≥ 0 satisfying
ℓ ≤ 2m − n − k − 2t log( en

t
) − 2 log( n

ε2δ
) − O(1). It is an (m, ℓ, t, ε, δ)-strongly

robust extractor when ℓ ≤ 1
3

(
2m− n− k − 2t log( en

t
)− 2 log( n

ε2δ
)
)
−O(1).

The proof of this theorem is deferred to the full version. We briefly discuss
the parameters in the statement. In the weakly robust case, the bound on ℓ
differs in two large terms from the errorless bound 2m− n (assuming, say, that
ε, δ = 2−o(n)). First, we lose the length of the sketch k. This is not surprising,
since we need to publish the sketch in order to correct errors.7 The second term
2t(log en

t
) is also easy to explain, although it appears to be a technicality arising

from our analysis. Our analysis essentially starts by giving the attacker the error
pattern ∆ = w′ ⊕ w “for free”, which in the worst case can reduce the min-
entropy w by the logarithm of volume of the Hamming ball of radius t. This
logarithm is at most t log en

t
. Our analysis can, in fact, yield a more general

7 In fact, a more naive construction would lose 2k, since the sketch reduces the min-
entropy m by k, and blindly applying the errorless bound 2m−n would double this
loss. The use of SS⊥ is precisely what allows us not to lose the value k twice.



result: if m̂ = H̃∞(W | ∆), then 2(m− t log en
t

) in the above bounds on ℓ simply
gets replaced with 2m̂. For instance, when knowing the error pattern w′ ⊕ w
does not reduce the entropy of w (say, the errors are independent of w, as in the
work of Boyen [Boy04]), then the term 2t log en

t
disappears from the bounds.

The analysis gives away ∆ since we can then use the linearity of the sketch
to conclude that the adversary knows the difference between the original input
w and the value w∗ that Rep(w′, P̃ ) reconstructs. This means she knows ∆a =
a′ − a, and we can use the properties of fs,i to bound the forgery probability.

Extensions to Other Metrics. The analysis of the previous section relies
heavily on the linearity of the secure sketch used in the protocol and on the
structure of the Hamming space. We briefly indicate how it can be extended to
two seemingly different metric spaces.

In the set difference metric, inputs in W are sets of at most r elements in
a large universe [N ] = {1, ..., N}, and the distance between two sets is the size
of their symmetric difference. This is geometrically identical to the Hamming
metric, since one can represent sets as characteristic vectors in {0, 1}

N
. However,

the efficiency requirement is much stricter: for set difference, we require that
operations take time polynomial in the description length of the inputs, which
is only r logN , not N .

In order to extend the analysis of the previous section to handle this different
representation of the input, we need a pair of functions SS(),SS⊥() that take sets
and output bit strings of length k and (r logN)−k, respectively. A set w of size up
to r should be unique given the pair (SS(w),SS⊥(w)), and the functions should
possess the following linearity property: the addition or removal of a particular
element to/from the set should correspond to adding a particular bit vector to
the output. The SS() function of the BCH secure sketch of Dodis et al. [DORS06]
(called “PinSketch”) is, in fact, linear; it outputs t values of logN bits each in
order to correct up to t errors, thus producing sketches of length k = t logN .
For SS⊥(), we can use the last r − t values computed by PinSketch with error
parameter r. Since N is large, t logN is a good upper bound on the logarithm
of the volume of the ball of radius t. We obtain the following statement, proved
in the full version:

Corollary 1. For any r,m, t, ε, δ, there exists a weakly robust fuzzy extractor
for set difference over sets of size up to r in [N ] with extracted key length ℓ =
2m− (r + 3t) logN −O(log( r log N

εδ
)), and a strongly robust extractor with

ℓ = 1
3 (2m− (r + 3t) logN)−O(log( r log N

εδ
)).

In the edit metric, inputs are strings over a small alphabet and distance is
measured by the number of insertions and deletions required to move between
strings. Dodis et al. defined a weak notion of a metric embedding8 sufficient for
key agreement and showed that the edit metric can be embedded into set differ-
ence with relatively little loss of entropy [DORS06, Lem. 7.3]. In our protocols,

8 Roughly, a embedding of a metric space M1 into another space M2 is an efficiently
computable function ψ : M1 → M2 which preserves distances approximately.



we can use embeddings along the lines of [DORS06] provided they are determin-
istic. The analysis then works as before, except it is applied to the embedded
string ψ(w) (the same idea may not work for randomized embeddings since ψ(w)
may then depend on P̃ ). The embedding of [DORS06] is indeed deterministic,
and we obtain the following (for exact constants, see [DORS06, Thm 7.4]):

Corollary 2. For any m > n/2, there exists a robust fuzzy extractor tolerating
t = Ω(n log2 F/ log2 n) edit errors in [F ]n which extracts a key of length ℓ =
Ω(n logF ) with parameters ε, δ = 2−Ω(n log F ).

4 Keyed Robust Fuzzy Extractors and Their Applications

In this section we show that the addition of a very short secret key SK allows us
to achieve considerably better parameters when constructing keyed robust fuzzy
extractors. The parameters are optimal up to constant factors.

To motivate our construction, let us recall the naive transformation from
regular fuzzy extractors to keyed robust fuzzy extractors discussed in Section 2.
Suppose we start from the generic construction of a fuzzy extractor: P = (s, i),
where s ← SS(w), and R = Ext(w; i) where Ext is a strong extractor. In an
attempt to make this construction robust, we set SK = µ and σ = MACµ(s, i),
and redefine P to also include the tag σ. The problem is that the value σ allows
the attacker to distinguish the real key µ from a random key U|µ|, since the
attacker knows the authenticated message (s, i). Thus this scheme fails to meet
the extraction requirement (Def. 7).

We can change the scheme to avoid this. First, note that Rep must recover
the input w = Rec(w′, s) before computing R. Thus, we can add w to the au-
thenticated message without sacrificing the correctness of the scheme: that is, set
σ = MACµ(w, s, i). This does not strengthen the robustness property (Def. 6),
which was already satisfied by the naive scheme. However, it does help sat-
isfy extraction (Def. 7). In the naive scheme the attacker A knows the message
(s, i) we are authenticating. In contrast, W has high entropy from A’s point of
view, even given SS(W ) and R (for appropriate parameters). Thus, to make the
pair (P,R) independent of SK = µ, it suffices to construct information-theoretic
MACs whose key µ looks independent from the tag, as long as the authenticated
message has high min-entropy. In other words, if we can ensure that the MAC
is simultaneously a strong randomness extractor, we can solve our problem.

4.1 Extractor-MACs

Definition 8. A family of functions
{
MACµ : {0, 1}ñ → {0, 1}v

}
is a strong

(m̃, ε, δ)-extractor-MAC if it is simultaneously a strongly δ-secure one-time MAC
(Def. 3) and a (m̃, ε)-strong extractor (Def. 2, where the key µ is the seed). ♦

We can construct extractor-MACS with (essentially optimal) key length
O(log ñ + log

(
1
ε

)
+ log

(
1
δ

)
). The idea is to modify the “AU” extractor con-

struction of Srinivasan and Zuckerman [SZ99] so that it is also MAC.
Before giving an optimal construction, note that pairwise independent hash

functions are simultaneously (strong) one-time MACs and strong extractors.



For example, consider the function family fa,b(x) = [ax]v1 + b, where a ∈ F2u ,
b ∈ F2v , and [ax]v1 denotes the truncation of ax to the first v bits. This is
pairwise independent [CW79], and gives an extractor-MAC with key length u+
v = ñ + log

(
1
δ

)
. The key length needed to authenticate a u-bit message is

κ = u+ v = u+ log
(

1
δ

)
, which is rather large. However, we can reduce the key

length by first reducing the size of the input using almost-universal hashing.
Specifically, let {pβ} be a (δε2/2)-almost-universal hash family mapping ñ

bits to u bits, and compose it with a pair-wise independent family {fα} from u to
v bits, where v = log

(
1
δ

)
+1. That is, set MACα,β(w) = pβ(fα(w)). By Lemma 2,

{MACα,β} is a strong δ-secure MAC, since δε2/2 + 2−v ≤ δ. Furthermore,
composing δ1- and δ2-almost universal families yields a (δ1+δ2)-almost-universal
family. Thus {MACα,β} is (1 + ε2)2−v-almost-universal. By the left-over hash
lemma (Lemma 1), it is a (m, ε)-extractor with m = v + 2 log

(
1
ε

)
.

It remains to set u so that we can construct a convenient almost universal
hash family {pβ}. We can use a standard polynomial-based construction, also
used in previous sections. The key β is a point in F2u , and the message x is split
into c = ñ/u pieces (x1, . . . , xc), each of which is viewed as an element of F2u .
Now, set pβ(x1 . . . xc) = xcβ

c−1 + . . . + x2β + x1. This family is c/2u-almost
universal with key length u. We can set u = v+ log( ñ

2ε2 ) = 2 log
(

1
ε

)
+ log

(
1
δ

)
+

log ñ− 1 to make c/2u < δε2/2. This gives key length u+ 2v, and we obtain:

Theorem 3. For any δ, ε and m̃ ≥ log
(

1
δ

)
+2 log

(
1
ε

)
+1, there exists a (m̃, ε, δ)-

extractor-MAC with key length κ = 2 log ñ+ 3 log
(

1
δ

)
+ 4 log

(
1
ε

)
and tag length

v = log
(

1
δ

)
+ 1.

4.2 Building Keyed Robust Fuzzy Extractors

We now apply the extractor-MACs to build keyed robust fuzzy extractors forM
(which we assumed for simplicity is {0, 1}n). We start with a generic construction
and set the parameters below.

Assume (SS,SRec) is a (m, m̃, t)-secure sketch with sketch length k, Ext is a
strong (m̃ − log

(
1
ε

)
, ε)-extractor having a seed i of length d and an output of

length ℓ, and MAC is a (m̃− ℓ− log
(

1
ε

)
, ε, δ)-extractor-MAC from ñ = n+k+d

bits to v bits having a key µ of length κ. We now define a keyed robust fuzzy
extractor with secret key SK = µ:

– Genµ(w): compute sketch s ← SS(w), sample i at random, set key R =
Ext(w; i), tag σ = MACµ(w, s, i), P = (s, i, σ) and output (R,P ).

– Repµ(w′, (s′, i′, σ′)): Let w̄ = SRec(w′, s′). If MACµ(w̄, s′, i′) = σ′, then R =
Ext(w̄; i); else R = ⊥.

Theorem 4. The above construction is a (m, ℓ, t, 4ε, δ)-robust keyed fuzzy ex-
tractor, which uses a secret key SK of length κ and outputs public information
P of length k + d+ v.

The proof of this Theorem is given in the full version. We remark that
if Lemma 1 (resp. Theorem 3) is used to instantiate the extractor Ext (resp.
extractor-MAC MAC) above, then a (m̃, ε)-extractor (resp. (m̃−ℓ, ε, δ)-extractor-
MAC) is sufficient for Theorem 4 to hold. We also note that a variant of this



construction (whose security is proven analogously) would move the extractor
seed i into the secret key SK. Namely, set SK = (µ, i), σ = MACµ(w,S) and
P = (S, σ). The main advantage of this variant is that the scheme becomes non-
interactive in the case of no errors (i.e., t = 0). However, in order to keep the
length of SK low one must use considerably more complicated strong extractors
than those given in Lemma 1.

The Price of Authentication. We compare the parameters of Theorem 4 to
the original (non-robust, non-keyed) constructions of [DORS06]. First, note that
the choice of a sketch and strong extractor can be done in the same manner as for
non-robust fuzzy extractors. For concreteness, assume we use almost-universal
hash functions as extractors, and let us now apply Theorem 3 to choose the
extractor-MAC. Then the secret key SK is the just the MAC key µ, which has
length κ = 2 log ñ+3 log

(
1
δ

)
+4 log

(
1
ε

)
. This is 2 log n+3 log

(
1
ε

)
+4 log

(
1
ε

)
+O(1)

when d, k = O(n). Second, recall from Theorem 3 that the extractor-MAC is a
good extractor as long as its min-entropy threshold m̃−ℓ is at least v+2 log

(
1
ε

)
=

1 + log
(

1
δ

)
+ 2 log

(
1
ε

)
. We get security as long as ℓ ≤ m̃− 2 log

(
1
ε

)
− (log

(
1
δ

)
+

1). Compared with non-robust extractors, which required ℓ ≤ m̃ − 2 log
(

1
ε

)

[DORS06], the keyed, robust construction loses at most log
(

1
δ

)
+ 1 bits in the

possible length of the extracted key. Finally, the length of the public information
P increases by the (short) tag length v = log

(
1
δ

)
+ 1. Overall, the parameters

remain similar to the corresponding “non-robust” case.

4.3 Application to the Bounded Storage Model with Errors

We briefly recall the key elements of the bounded storage model (BSM) with
errors [Din05,DS05], concentrating only on the stateless variant of [DS05]. Our
discussion will be specific to Hamming errors.

In the bounded storage model, the parties (say, Alice and Bob) have a long-
term secret key sk, and at each period j have access to two noisy versions Xj and
X ′j of a very long random string Zj (of length N). Both the honest parties and
the attacker A are limited in storage to fewer than N bits. More specifically, A
can look at Zj and store any γN bits of information about Zj , for γ < 1 (so that
on average Zj has entropy about (1− γ)N from her point of view). The honest
parties are also limited in their storage, but they can use their shared key to gain
an advantage. For example, in “sample-and-extract” protocols [Vad04], one part
of the shared key consists of a key sam for an oblivious sampler [BR94,Vad04].
Roughly, sam specifies n secret physical bits of Xj/X

′
j which Alice and Bob

will read, obtaining n-bit substrings Wj and W ′j . The properties of the sampler
ensure that (a) with high probability Wj and W ′j are still close (i.e., within
Hamming distance t from each other); and (b) with high probability, A still has
some uncertainty (min-entropy m ≈ (1− γ)n) about Wj and W ′j .

This setup is quite similar to the setting of keyed robust fuzzy extractors, and
provides a natural application for them. Alice and Bob can use part of the shared
secret as a key SK for the robust fuzzy extractor; she can then run GenSK(Wj) to
obtain (Pj , Rj) and send Pj to Bob. Bob can run RepSK to (hopefully) get either
the key Rj or ⊥, an indication that Alice’s message was modified in transmission.



However, there is a subtle difference between the setting of the keyed robust
extractors induced by the BSM and the setting we considered so far, which
already causes difficulties even in the case of authenticated channels [DS05].
In our model, discussed in Section 2, the (t,m)-correlated pairs (Wj ,W

′
j) were

arbitrary but fixed a priori. In contrast, in the BSM A can adaptively choose
her storage function at each period, based on what was seen so far, and therefore
affect the specific (still high-entropy) conditional distribution of each sampled
Wj . In particular, if the public values Pj seen by A could reveal something
about the long-term key sk = (sam,SK), then Eve can affect the conditional
distribution of the subsequent Wj in a manner dependent on sk, making it
unsound to reuse sk in the future.

On a positive side, our definition of keyed robust extractors (Def. 7) was
strong enough to ensure that the public value P is statistically independent
from the key SK (meaning it is safe to reuse SK). On a negative side, it still
allowed the value P to depend on the distribution of W (which, in turn, depends
on the sampling key sam), making it insufficient for reusing the sampling key
sam. And this is precisely why for this application of keyed robust extractors
we will need the enhanced notion of strongly secure keyed robust extractors
mentioned in Def. 7. Namely, the public value P not only hides the secret key
SK, but even the distribution of W : (SK, R, P ) ≈ε (U|SK|, Uℓ, U|P |). A similar
argument to the authenticated case of [DS05] shows that strongly secure keyed
robust extractors are sufficient to solve the unauthenticated setting. Thus, we
turn to constructions of such robust extractors.

Strongly Secure Keyed Robust Extractors. Examining the keyed con-
struction in Theorem 4, we see that the only place where the value P = (S, I, σ)
depends on the distribution of W is when computing the sketch S ← SS(W ).
Indeed, the seed I is chosen at random, and the value σ = MACµ(W,S, I) looks
random by the properties of the extractor-MAC. Thus, to solve our problem we
only need to build an (m, m̃, t)-secure sketch SS such that SS(W ) is statistically
close to uniform whenever W has enough min-entropy: SS(W ) ≈ε U|SS(W )| (no-
tice, such sketches can no longer be deterministic). Luckily, such (probabilistic)
sketches, called (m, m̃, t, ε)-extractor-sketches (or “entropically-secure” sketches)
were studied by Dodis and Smith [DS05], since they were already needed to solve
the noisy BSM problem even in the authenticated channel case. In particular,
[DS05] built extractor-sketches for the binary Hamming metric whose parame-
ters were only a constant factor worse than those of regular sketches.

Theorem 5 ([DS05]). For any min-entropy m = Ω(n), there exists efficient
(m, m̃, t, ε)-extractor-sketches for the Hamming metric over {0, 1}n, where m̃, t
and log

(
1
ε

)
are all Ω(n), and the length of the sketch is O(n).

Returning to the construction of strongly secure, keyed robust extractors, we
observe that Theorem 4 indeed yields such extractors (with error 5ε instead of 4ε)
if one uses (m, m̃, t, ε)-extractor-sketches in place of regular (m, m̃, t)-sketches.
Combining this observation with Theorem 5, we obtain:

Theorem 6. For any min-entropy m = Ω(n), there exists efficient (m, ℓ, t, ε, δ)-
strongly secure, robust, keyed fuzzy extractor for the Hamming metric over {0, 1}n,



which uses a secret key of length O(log n+ log
(

1
ε

)
+ log

(
1
δ

)
), tolerates t = Ω(n)

errors, extracts ℓ = Ω(n) bits, and has public information P of length O(n).

Application to the BSM. As we stated, after Alice and Bob use the shared
sampling key to obtain close n-bit strings W and W ′, respectively, they will use
a strongly secure, keyed, robust fuzzy extractor (GenSK,RepSK) to agree on a ses-
sion key R over an unauthenticated channel. To get a specific construction, we
can use Theorem 6 above. In doing so, we see that the only difference between the
resulting scheme and the solution of Dodis and Smith [DS05] (for the authenti-
cated channel) is that Alice and Bob additionally share a (short) extractor-MAC
key SK, and also append a (short) extractor-MAC of (W,S, I) to the public in-
formation (S, I) that Alice sends to Bob. Therefore, our construction retains the
nearly optimal parameters of [DS05], while also adding authentication.

More specifically, assume N, ε, δ are given. Since the number of read bits n
can be chosen by Alice and Bob, it is convenient to specify the required number
of extracted bits ℓ, and choose n afterwards. Then we obtain a stateless protocol
in the BSM model with Hamming errors satisfying: (1) key reuse (stateless) and
everlasting security; (2) having shared secret key sk of size O(logN + log

(
1
ε

)
+

log
(

1
δ

)
); (3) having forgery probability at most δ against active attacker; (4)

having Alice and Bob read n = O(ℓ) random bits W from the source and extract
ℓ bits R which are ε-close to uniform; (5) having Alice and Bob tolerate linear
fraction of errors (i.e., t = Ω(n)); and (6) having Alice send a single O(ℓ)-bit
message to Bob. All these parameters are optimal up to a constant factor.
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