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Abstract. We present an identity-based cryptosystem that features fully
anonymous ciphertexts and hierarchical key delegation. We give a proof
of security in the standard model, based on the mild Decision Linear
complexity assumption in bilinear groups. The system is efficient and
practical, with small ciphertexts of size linear in the depth of the hier-
archy. Applications include search on encrypted data, fully private com-
munication, etc.
Our results resolve two open problems pertaining to anonymous identity-
based encryption, our scheme being the first to offer provable anonymity
in the standard model, in addition to being the first to realize fully
anonymous HIBE at all levels in the hierarchy.

1 Introduction

The cryptographic primitive of Identity-Based Encryption (IBE) allows a sender
to encrypt a message for a receiver using only the receiver’s identity as a public
key. Recently, there has been interest in “anonymous” identity-based encryption
systems, where the ciphertext does not leak the identity of the recipient. In addi-
tion to their obvious privacy benefits, anonymous IBE systems can be leveraged
to construct Public key Encryption with Keyword Search (PEKS) schemes, as
was first observed by Boneh et al. [9] and later formalized by Abdalla et al. [1].
Roughly speaking, PEKS is a form of public key encryption that allows an en-
cryptor to make a document serarchable by keywords, and where the capabilities
to search on particular keywords are delegated by a central authority. Anony-
mous HIBE further enables sophisticated access policies for PEKS and ID-based
PEKS.

Prior to this paper, the only IBE system known to be inherently anonymous
was that of Boneh and Franklin [10]. Although they did not state it explicitly, the
anonymity of their scheme followed readily from their proof of semantic security.
This was noticed by Boyen [12], who gave an ID-based signcryption with a
formalization of sender and recipient anonymity. One drawback of the Boneh-
Franklin IBE paradigm is that its security proofs are set in the random oracle
model. More recently, a number of IBE schemes [14, 5, 6, 31, 16, 26] have been
proven secure outside of the random oracle model, but none of these schemes is



anonymous. In particular, in the efficient schemes of Boneh and Boyen [5] and
Waters [31], the identity is deterministically encoded in a simple manner within
the exponent of an element of the bilinear group G. When these schemes are
implemented using a “symmetric” bilinear pairing e : G×G→ GT , it becomes
trivial to test whether a given ciphertext was encrypted for a candidate identity.

A tempting workaround to this problem is to use an “asymmetric” pairing
e : G× Ĝ→ GT in the schemes that allow it, such as Boneh and Boyen’s “BB1”
and “BB2”, and Waters’ by extension. In those schemes, and under the additional
assumption that Decision Diffie-Hellman is hard in G, one may prevent the use
of the pairing as a direct test of whether a ciphertext is for a particular identity.
Unfortunately, turning this observation into a formal security reduction would
at the very least require making a strong assumption that is patently false in
bilinear groups with symmetric pairings, and the approach would still fail to
generalize to hierarchical IBE for fundamental reasons that are discussed later.
Ideally, one would like a scheme that works indifferently with symmetric and
asymmetric pairings, and generalizes to hierarchical identities.

The first anonymous IBE without random oracles was unveiled at the Rump
Session of CRYPTO’05 by one of the authors, and is now described in Section 4.
In a nutshell, the identity is split randomly into two blind components to prevent
its recognition by the bilinear map, without making unduly strong assumptions.
A second anonymous IBE without random oracles was recently proposed by
Gentry [19], based on a different principle. In Gentry’s scheme, the identity of a
ciphertext cannot be tested because a crucial element of the ciphertext lives in
the target group GT rather than the bilinear group G. Gentry’s scheme is very
efficient and has a number of advantages, but unfortunately relies on a strong
complexity assumption and does not generalize to hierarchical IBE.

In spite of these recent achievements, creating an Anonymous Hierarchical
IBE (A-HIBE) scheme has remained a challenge. Even if we avail ourselves of
random oracles, there simply does not exist any known hierarchical identity-
based encryption scheme which is also anonymous. In particular, the Gentry-
Silverberg [20] HIBE scheme is not anonymous, despite the fact that it derives
from the Boneh-Franklin IBE scheme, which is anonymous. The numerous ap-
plications to searching on encrypted data motivated Abdalla et al. [1], in their
CRYPTO’05 paper, to ask for the creation of an Anonymous HIBE system,
preferably without random oracles, as an important open research problem.

1.1 Our Results

Our contribution is twofold. First, we build a simple and efficient Anonymous
IBE scheme, and give a proof of security without random oracles. Second, we
generalize our construction into a fully Anonymous HIBE scheme (i.e., anony-
mous at all levels in the hierarchy), again with a proof without random oracles.
Our approach gives a very efficient system in the non-hierarchical case, and re-
mains practical for the shallow hierarchies that are likely to be encountered in
most applications. The security of our systems is based on Boneh’s et al. [8] De-



cision Linear assumption, which is arguably one of the mildest useful complexity
assumptions in the realm of bilinear groups.

At first sight, our construction bears a superficial resemblance to Boneh and
Boyen’s “BB1” HIBE scheme [5, §4] — but with at least two big differences. First,
we perform “linear splittings” on various portions of the ciphertext, to thwart
the trial-and-error identity guessing to which other schemes fell prey. This idea
gives us provable anonymity, even under symmetric pairings. Second, we use
multiple parallel HIBE systems and re-randomize the keys between them upon
each delegation. This is what lets us use the linear splitting technique at all levels
of the hierarchy, but also poses a technical challenge in the security reduction
which must now simulate multiple interacting HIBE systems at once. Solving
this problem was the crucial step that gave us a hierarchy without destroying
anonymity.

1.2 Related Work

The concept of identity-based encryption was first proposed by Shamir [28] two
decades ago. However, it was not until much later that Boneh and Franklin [10]
and Cocks [17] presented the first practical solutions. The Boneh-Franklin IBE
scheme was based on groups with efficiently computable bilinear maps, while
the Cocks scheme was proven secure under the quadratic residuosity problem,
which relies on the hardness of factoring. The security of either scheme was only
proven in the random oracle model.

Canetti, Halevi, and Katz [14] suggested a weaker security notion for IBE,
known as selective identity or selective-ID, relative to which they were able to
build an inefficient but secure IBE scheme without using random oracles. Boneh
and Boyen [5] presented two very efficient IBE systems (“BB1” and “BB2”) with
selective-ID security proofs, also without random oracles. The same authors [6]
then proposed a coding-theoretic extension to their “BB1” scheme that allowed
them to prove security for the full notion of adaptive identity or adaptive-ID se-
curity without random oracles, but the construction was impractical. Waters [31]
then proposed a much simpler extension to “BB1” also with an adaptive-ID se-
curity proof without random oracles; its efficiency was further improved in two
recent independent papers, [16] and [26].

The notion of hierarchical identity-based encryption was first defined by Hor-
witz and Lynn [22], and a construction in the random oracle model given by Gen-
try and Silverberg [20]. Canetti, Halevi, and Katz [14] give the first HIBE with
a (selective-ID) security proof without random oracles, but that is not efficient.
The first efficient HIBE scheme to be provably secure without random oracles is
the “BB1” system of Boneh and Boyen; further improvements include the HIBE
scheme by Boneh, Boyen, and Goh [7], which features shorter ciphertexts and
private keys.

Nominally adaptive-ID secure HIBE schemes have been proposed, although
all constructions known to date [20, 31, 16, 26] are depth-limited because they
suffer from an exponential security degradation with the depth of the hierar-
chy. Qualitatively, this is no different than taking an HIBE scheme with tight



selective-ID security, such as BB1 or BBG, and using one of the generic trans-
formations from [5, §7] to make it adaptive-ID secure. Quantitatively, the rate
of decay will differ between those approaches, which means that the number
of useful hierarchy levels will evolve similarly but not identically in function of
the chosen group size and the desired security bit strength. Accordingly, it re-
mains an important open problem in identity-based cryptography to devise an
adaptive-ID secure HIBE scheme whose security degrades at most polynomially
with the depth of the hierarchy, under reasonable assumptions. (In this paper,
we mostly leave aside this issue of adaptive-ID security for HIBE.)

Encrypted search was studied by Song, Wagner, and Perrig [30], who pre-
sented the first scheme for searching on encrypted data. Their scheme is in the
symmetric-key setting where the same party that encrypted the data would gen-
erate the keyword search capabilities. Boneh et al. [9] introduced Public Key
Encryption with Keyword Search (PEKS), where any party with access to a
public key could make an encrypted document that was searchable by keyword;
they realized their construction by applying the Boneh-Franklin IBE scheme.
Abdalla et al. [1] recently formalized the notion of Anonymous IBE and its rela-
tionship to PEKS. Additionally, they formalized the notion of Anonymous HIBE
and mentioned different applications for it. Using the GS system as a starting
point, they also gave an HIBE scheme that was anonymous at the first level,
in the random oracle model. Another view of Anonymous IBE is as a combina-
tion of identity-based encryption with the property of key privacy, which was
introduced by Bellare et al. [4].

1.3 Applications

In this section we discuss various applications of our fully anonymous HIBE
system. The main applications can be split into several broad categories.

Fully Private Communication. The first compelling application of anonymous
IBE is for fully private communication. Bellare et al. [4] argue that public key
encryption systems that have the “key privacy” property can be used for anony-
mous communication: for example, if one wishes to hide the identity of a recipient
one can encrypt a ciphertext with an anonymous IBE system and post it on a
public bulletin board. By the anonymity property, the ciphertext will betray
neither sender nor recipient identity, and since the bulletin board is public, this
method will also be resistant to traffic analysis. To compound this notion of key
privacy, identity-based encryption is particularly suited for untraceable anony-
mous communication, since, contrarily to public-key infrastructures, the sender
does not even need to query a directory for the public key of the recipient. For
this reason, anonymous IBE provides a very convincing solution to the problem
of secure anonymous communication, as it makes it harder to conduct traffic
analysis attack on directory lookups.

Search on Encrypted Data. The second main application of anonymous (H)IBE
is for encrypted search. As mentioned earlier, anonymous IBE and HIBE give



several application in the Public-key Encryption with Keyword Search (PEKS)
domain, proposed by Boneh et al. [9], and further discussed by Abdalla et al. [1].
As a simple example of real-world application of our scheme, PEKS is a useful
primitive for building secure audit logs [32, 18]. Furthermore, one can leverage
the hierarchical identities in our anonymous HIBE in several interesting ways.
For example, we can use a two-level anonymous HIBE scheme where the first
level is an identity and the second level is a keyword. This gives us the first
implementation of the Identity-Based Encryption with Keyword Search (IBEKS)
primitive asked for in [1]. With this primitive, someone with the private key for
an identity can delegate out search capabilities for encryptions to their identity,
without requiring a central authority to act as the delegator. Conversely, by
using certain keywords such as “Top Secret” at the first level of the hierarchy,
it is possible to broadcast innocent-looking ciphertexts that require a certain
clearance to decrypt, without even hinting at the fact that their payload might be
valuable. We can create more refined search capabilities with a deeper hierarchy.

As the last applications we mention, forward-secure public-key encryption [14]
and forward-secure HIBE [33] are not hard to construct from HIBE systems with
certain algebraic properties [7]. Without going into details, we mention that we
can implement Anonymous fs-HIBE with our scheme by embedding a time com-
ponent within the hierarchy, while preserving the anonymity property.

2 Background

Recall that a pairing is an efficiently computable [25], non-degenerate function,
e : G×Ĝ→ GT , with the bilinearity property that e(gr, ĝs) = e(g, ĝ)r s. Here, G,
Ĝ, and GT are all multiplicative groups of prime order p, respectively generated
by g, ĝ, and e(g, ĝ). It is asymmetric if G 6= Ĝ.

We call bilinear instance a tuple G = [p, G, Ĝ, GT , g, ĝ, e]. We assume an
efficient generation procedure that on input a security parameter Σ ∈ N outputs
G $←Gen(1Σ) where log2(p) = Θ(Σ). We write Zp = Z/pZ for the set of residues
modp and Z×

p = Zp \ {0} for its multiplicative group.

2.1 Assumptions

Since bilinear groups first appeared in cryptography half a decade ago [23], sev-
eral years after their first use in cryptanalysis [24], bilinear maps or pairings have
been used in a large variety of ways under many different complexity assump-
tions. Some of them are very strong; others are weaker. Informally, we say that
an assumption is mild if it is tautological in the generic group model [29], and
also “efficiently falsifiable” [27] in the sense that its problem instances are stated
non-interactively and concisely (e.g., independently of the number of adversarial
queries or such large quantity). Most IBE and HIBE schemes mentioned in In-
troduction (except “BB2” and the Factoring-based system by Cocks) are based
on mild bilinear complexity assumptions, such as BDH [23, 10] and Linear [8].
In this paper, our goal is to rely only on mild assumptions.



Decision BDH: The Bilinear DH assumption was first used by Joux [23], and
gained popularity for its role in the Boneh-Franklin IBE system [10]. The
decisional assumption posits the hardness of the D-BDH problem, which we
state in asymmetric bilinear groups as:

Given a tuple [g, gz1 , gz3 , ĝ, ĝz1 , ĝz2 , Z] ∈ G3 × Ĝ3 × GT for random
exponents [z1, z2, z3] ∈ (Zp)3, decide whether Z = e(g, ĝ)z1 z2 z3 .

Decision Linear: The Linear assumption was first proposed by Boneh, Boyen,
and Shacham for group signatures [8]. Its decisional form posits the hardness
of the D-Linear problem, which can be stated in asymmetric bilinear groups
as follows:

Given a tuple [g, gz1 , gz2 , gz1 z3 , gz2 z4 , ĝ, ĝz1 , ĝz2 , Z] ∈ G5 × Ĝ3 × G
for random [z1, z2, z3, z4] ∈ (Zp)4, decide whether Z = gz3+z4 .

We remark that the elements ĝ, ĝz1 , ĝz2 ∈ Ĝ3 were not explicitly included in
Boneh’s et al. original formulation.

“Hard” means algorithmically non-solvable with probability 1/2+Ω(poly(Σ)−1)
in time O(poly(Σ)) for “bilinear instances” [p, G, Ĝ, GT , g, ĝ, e] $←Gen(1Σ) that
are generated at random using an efficient algorithm, as Σ → +∞.

These assumptions allow but not require the groups G and Ĝ to be distinct,
and similarly we make no representation one way or the other regarding the
existence of computable homomorphisms between G and Ĝ, in either direction.
This is the most general formulation. It has two main benefits: (1) since it comes
with fewer restrictions, it is potentially more robust and increases our confidence
in the assumptions we make; and (2) it gives us the flexibility to implement the
bilinear pairing on a broad variety of algebraic curves with attractive compu-
tational characteristics [2], whereas symmetric pairings tend to be confined to
supersingular curves, to name this one distinction.

Note that if we let G = Ĝ and g = ĝ, our assumptions regain their familiar
“symmetric” forms:

Given [g, gz1 , gz2 , gz3 , Z] ∈ G4 × GT for random [z1, z2, z3] ∈ (Zp)3, decide
whether Z = e(g, g)z1 z2 z3 .
Given [g, gz1 , gz2 , gz1 z3 , gz2 z4 , Z] ∈ G5 × G for random [z1, z2, z3, z4] ∈ (Zp)4,
decide if Z = gz3+z4 .

As a rule of thumb, the remainder of this paper may be read in the context of
symmetric pairings, simply by dropping all “hats” (ˆ) in the notation. Also note
that D-Linear trivially implies D-BDH.

2.2 Models

We briefly precise the security notions that are implied by the concept of Anony-
mous IBE or HIBE. We omit the formal definitions, which may be found in the
literature [10, 1].

Confidentiality: This is the usual security notion of semantic security for en-
cryption. It means that no non-trivial information about the message can be
feasibly gleaned from the ciphertext.



Anonymity: Recipient anonymity is the property that the adversary be unable
to distinguish the encryption of a chosen message for a first chosen iden-
tity from the encryption of the same message for a second chosen identity.
Equivalently, the adversary must be unable to decide whether a ciphertext
was encrypted for a chosen identity, or for a random identity.

3 Intuition

Before we present our scheme we first explain why it is difficult to implement
anonymous IBE without random oracles, as well as any form of anonymous
HIBE even in the random oracle model. We then give some intuition behind our
solution.

3.1 The Difficulty

Recall that in the basic Boneh-Franklin IBE system [10], an encryption of a
message Msg to some identity Id, takes the following form,

CT = [ C1, C2 ] = [ gr, e(H(Id), Q)r Msg ] ∈ G×GT ,

where H is a random oracle, r is a random exponent, and g and Q are public
system parameters. A crucial observation is that the one element of the cipher-
text in the bilinear group G, namely, gr, is just a random element that gives no
information about the identity of the recipient. The reason why only one element
in G is needed is because private keys in the Boneh-Franklin scheme are deter-
ministic — there will be no randomness in the private key to cancel out. Since
the proof of semantic security is based on the fact that C2 is indistinguishable
from random without the private key for ID, it follows that the scheme is also
anonymous since C2 is the only part of the ciphertext on which the recipient
identity has any bearing.

More recently, there have been a number of IBE schemes proven secure with-
out random oracles, such as BTE from [14], BB1 and BB2 from [5], and Wa-
ters’ [31]. However, in all these schemes the proof of security requires that ran-
domness be injected into the private key generation. Since the private keys are
randomized, some extra information is needed in the ciphertext in order to can-
cel out the randomness upon decryption. To illustrate, consider the encryption
of a message Msg to an identity Id in the BB1 Boneh-Boyen system,

CT = [ C1, C2, C3 ] =
[

gr, (gId
1 g3)r, e(g1, ĝ2)r Msg

]
∈ G2 ×GT ,

where r is chosen by the encryptor and g, g1, g3, and e(g1, ĝ2) are public system
parameters. Notice, there are now two elements in G, and between them there
is enough redundancy to determine whether a ciphertext was intended for a
given identity Id, simply by testing whether the tuple [g, gId

1 g3, C1, C2] is Diffie-
Hellman, using the bilinear map,

e(C1, ĝ
Id
1 ĝ3)

?= e(C2, ĝ) .



We see that the extra ciphertext components which are seemingly necessary in
IBE schemes without random oracles, in fact contribute to leaking the identity
of the intended recipient of a ciphertext.

A similar argument can be made for why none of the existing HIBE schemes
is anonymous, even though some of them use random oracles. Indeed, all known
HIBE schemes, including the Gentry-Silverberg system in the random oracle
model, rely on randomization in order to properly delegate private keys down
the hierarchy in a collusion-resistant manner. Since the randomization is per-
formed not just by the master authority, but by anyone who has the power to
delegate a key, the elements needed for it are distributed as part of the public
parameters. Because of this, we end up in the same situation as above, where
the extra components needed to either perform or cancel the randomization will
also provide a test for the addressee’s identity.

Since having randomized keys seems to be fundamental to designing (H)IBE
systems without random oracles, we aim to design a system where the necessary
extra information will be hidden to a computationally bounded adversary. Thus,
even though we cannot prevent the ciphertext from containing information about
the recipient, we can design our system such that this information cannot be
easily tested from the public parameters and ciphertext alone.

3.2 Our Approach

As mentioned in the introduction, we can prevent a single-level identity to be
testable by performing some sort of blinding, by splitting the identity into two
randomized complementary components. Indeed, building a “flat” anonymous
IBE system turns out to be reasonably straightforward using our linear splitting
technique to hide the recipient identity behind some randomization.

Complications arise when one tries to support hierarchical key generation. In
a nutshell, to prevent collusion attacks in HIBE, “parents” must independently
re-randomize the private keys they give to their “children”. In all known HIBE
schemes, re-randomization is enabled by listing a number of supplemental com-
ponents in the public system parameters. Why this breaks anonymity is because
the same mechanism that allows private keys to be publicly re-randomized, also
allows ciphertexts to be publicly tested for recipient identities. Random oracles
offer no protection against this.

To circumvent this obstable, we need to make the re-randomization elements
non-public, and tie them to each individual private key. In practical terms, this
means that private keys must convey extra components (although not too many).
The real difficulty is that each set of re-randomization components constitutes
a full-fledged HIBE in its own right, which must be simulated together with its
peers in the security proof (their number grows linearly with the maximal depth).
Because these systems are not independent but interact with each other, we are
left with the task of simulating multiple HIBE subsystems that are globally
constrained by a set of linear relations. A novelty of our proof technique is a
method to endow the simulator with enough degrees of freedom to reduce a
system of unknown keys to a single instance of the presumed hard problem.



A notable feature of our construction is that it can be implemented using
all known instantiations of the bilinear pairing (whether symmetric or asym-
metric, with our without a computable or invertible homomorphism, etc.). To
cover all grounds, we first describe a “flat” anonymous IBE using the symmetric
notation, for ease of exposition, and then move to the full HIBE using the gen-
eral asymmetric notation without assuming any homomorphism, for maximum
generality.

4 A Primer : Anonymous IBE

We start by describing an Anonymous IBE scheme that is semantically secure
against selective-ID chosen plaintext attacks. This construction will illustrate
our basic technique of “splitting” the bilinear group elements into two pieces to
protect against the attacks described in the previous section.

For simplicity, and also to show that we get anonymity even when using
symmetric pairings, we describe the IBE system (and the IBE system only) in
the special case where G = Ĝ:

Setup The setup algorithm chooses a random generator g ∈ G, random group
elements g0, g1 ∈ G, and random exponents ω, t1, t2, t3, t4 ∈ Zp. It keeps
these exponents as the master key, Msk. The corresponding system param-
eters are published as:

Pub←
[

Ω = e(g, g)t1t2ω, g, g0, g1, v1 = gt1 , v2 = gt2 , v3 = gt3 , v4 = gt4
]

Extract(Msk, Id) To issue a private key for identity Id, the key extraction au-
thority chooses two random exponents r1, r2 ∈ Zp, and computes the private
key as: PvkId = [d0, d1, d2, d3, d4]←[

gr1t1t2+r2t3t4 , g−ωt2(g0g
Id
1 )−r1t2 , g−ωt1(g0g

Id
1 )−r1t1 , (g0g

Id
1 )−r2t4 , (g0g

Id
1 )−r2t3

]
Encrypt(Pub, Id,M) Encrypting a message Msg ∈ GT for an identity Id ∈ Z×

p

works as follows. The algorithm chooses random exponents s, s1, s2 ∈ Zp,
and creates the ciphertext as:

CT = [ C ′, C0, C1, C2, C3, C4 ]←
[

ΩsM, (g0g
Id
1 )s, vs−s1

1 , vs1
2 , vs−s2

3 , vs2
4

]
Decrypt(PvkId, C) The decryption algorithm attempts to decrypt a ciphertext

CT by computing:

C ′ e(C0, d0) e(C1, d1) e(C2, d2) e(C3, d3) e(C4, d4) = Msg .

Proving Security. We prove security using a hybrid experiment.
Let [C ′, C0, C1, C2, C3, C4] denote the challenge ciphertext given to the ad-

versary during a real attack. Additionally, let R be a random element of GT , and
R′, R′′ be random elements of G. We define the following hybrid games which
differ on what challenge ciphertext is given by the simulator to the adversary:



Γ0 : The challenge ciphertext is CT0 = [C ′, C0, C1, C2, C3, C4].
Γ1 : The challenge ciphertext is CT1 = [R,C0, C1, C2, C3, C4].
Γ2 : The challenge ciphertext is CT2 = [R,C0, R

′, C2, C3, C4].
Γ3 : The challenge ciphertext is CT3 = [R,C0, R

′, C2, R
′′, C4].

We remark that the challenge ciphertext in Γ3 leaks no information about the
identity since it is composed of six random group elements, whereas in Γ0 the
challenge is well formed. We show that the transitions from Γ0 to Γ1 to Γ2 to
Γ3 are all computationally indistinguishable.

Lemma 1 (semantic security). Under the (t, ε)-Decision BDH assumption,
there is no adversary running in time t that distinguishes between the games Γ0

and Γ1 with advantage greater than ε.

Proof. The proof from this lemma essentially follows from the security of the
Boneh-Boyen selective-ID scheme. Suppose there is an adversary that can dis-
tinguish between game Γ0 and Γ1 with advantage ε. Then we build a simulator
that plays the Decision BDH game with advantage ε.

The simulator receives a D-BDH challenge [g, gz1 , gz2 , gz3 , Z] where Z is ei-
ther e(g, g)z1z2z3 or a random element of GT with equal probability. The game
proceeds as follows:

� Init: The adversary announces the identity Id∗ it wants to be challenged upon.

� Setup: The simulator chooses random exponents t1, t2, t3, t4, y ∈ Zp. It retains
the generator g, and sets g0 = (gz1)−Id∗gy and g1 = gz1 . The public parameters
are published as:

Pub←
[

Ω = e(gz1 , gz2)t1t2 , g, g0, g1, v1 = gt1 , v2 = gt2 , v3 = gt3 , v4 = gt4
]

.

Note that this implies that ω = z1z2.

� Phase 1: Suppose the adversary requests a key for identity Id 6= Id∗. The
simulator picks random exponents r1, r2 ∈ Zp, and issues a private key as:
PvkId = [d0, d1, d2, d3, d4]←[

(gz2)
−1

Id−Id∗ gr1gr2t3t4 , ((gz2)
y

Id−Id∗ (g0g
Id
1 )r1)−t2 , ((gz2)

y
Id−Id∗ (g0g

Id
1 )r1)−t1 ,

(g0g
Id
1 )−r2t4 , (g0g

Id
1 )−r2t3

]
.

This is a well formed secret key for random exponents r̃1 = r1 − z2/(Id − Id∗)
and r̃2 = r2.

� Challenge: Upon receiving a message Msg from the adversary, the simulator
chooses s1, s2 ∈ Zp, and outputs the challenge ciphertext as:

CT = [ C ′, C0, C1, C2, C3, C4 ]←

[
Z−t1t2 M, (gz3)y, (gz3)t1g−s1t1 , gs1t2 ,

(gz3)t3g−s2t3 , gs2t4

]
.

We can let s = z3 and see that if Z = e(g, g)z1z2z3 the simulator is playing
game Γ0 with the adversary, otherwise the simulator is playing game Γ1 with
the adversary.



� Phase 2: The simulator answers the queries in the same way as Phase 1.

� Guess: The simulator outputs a guess γ, which the simulator forwards as its
own guess for the D-BDH game.

Since the simulator plays game Γ0 if and only the given D-BDH instance was
well formed, the simulator’s advantage in the D-BDH game is exactly ε.

Lemma 2 (anonymity, part 1). Under the (t, ε)-Decision linear assumption,
no adversary that runs in time t can distinguish between the games Γ1 and Γ2

with advantage greater than ε.

Proof. Suppose the existence of an adversary A that distinguishes between the
two games with advantage ε. Then we construct a simulator that wins the De-
cision Linear game as follows.

The simulator takes in a D-Linear instance [g, gz1 , gz2 , gz1z3 , gz2z4 , Z], where
Z is either gz3+z4 or random in G with equal probability. For convenience, we
rewrite this as [g, gz1 , gz2 , gz1z3 , Y, gs] for s such that gs = Z, and consider the
task of deciding whether Y = gz2(s−z3) which is equivalent. The simulator plays
the game in the following stages.

� Init: The adversary A gives the simulator the challenge identity Id∗.

� Setup: The simulator first chooses random exponents α, y, t3, t4, ω. It lets g in
the simulation be as in the instance, and sets v1 = gz2 and v2 = gz1 . The public
key is published as:

Pub←

[
Ω = e(gz1 , gz2)ω, g, g0 = (gz2)−Id∗αgy, g1 = (gz2)α,

v1 = (gz2), v2 = (gz1), v3 = gt3 , v4 = gt4

]
.

If we pose t1 = z2 and t2 = z1, we note that the public key is distributed as in
the real scheme.

� Phase 1: To answer a private key extraction query for an identity Id 6= Id∗,
the simulator chooses random exponents r1, r2 ∈ Zp, and outputs:

PvkId ←

[
(gz1)r1gr2t3t4 , (gz1)−ω−α(Id−Id∗)r1 , (gz2)−ω−α(Id−Id∗)r1 ,

(gz1)
−r1y

t3 (g0g
Id
1 )−r2t4 , (gz1)

−r1y
t4 (g0g

Id
1 )−r2t3

]
.

If, instead of r1 and r2, we consider this pair of uniform random exponents,

r̃1 =
r1α(Id− Id∗)

α(Id− Id∗)z2 + y
, r̃2 = r2 +

yz1r1

(t3t4)(α(Id− Id∗)z2 + y)
,

then we see that the private key is well formed, since it can be rewritten as:[
gr̃1t1t2+r̃2t3t4 , g−ωt2(g0g

Id
1 )−r̃1t2 , g−ωt1(g0g

Id
1 )−r̃1t1 , (g0g

Id
1 )−r̃2t4 , (g0g

Id
1 )−r̃2t3

]
.

� Challenge: The simulator gets from the adversary a message M which it
can discard, and responds with a challenge ciphertext for the identity Id∗. Pose



s1 = z3. To proceed, the simulator picks a random exponent s2 ∈ Zp and a
random element R ∈ GT , and outputs the ciphertext as:

CT = [ C ′, C0, C1, C2, C3, C4 ]←
[

R, (gs)y, Y, (gz1z3), (gs)t3g−s2t3 , gs2t4
]

.

If Y = gz2(s−z3), i.e., gs = Z = gz3+z4 , then C1 = vs−s1
1 and C2 = vs1

2 ; all parts
of the challenge but C ′ are thus well formed, and the simulator behaved as in
game Γ1. If instead Y is independent of z1, z2, s, s1, s2, which happens when Z
is random, then the simulator responded as in game Γ2.

� Phase 2: The simulator answer the query in the same way as Phase 1.

� Output: The adversary outputs a bit γ to guess which hybrid game the simu-
lator has been playing. To conclude, the simulator forwards γ as its own answer
in the Decision-Linear game.

By the simulation setup the advantage of the simulator will be exactly that
of the adversary.

Lemma 3 (anonymity, part 2). Under the (t, ε)-Decision linear assumption,
no adversary that runs in time t can distinguish between the games Γ2 and Γ3

with advantage greater than ε.

Proof. This argument follows almost identically to that of Lemma 2, except
where the simulation is done over the parameters v3 and v4 in place of v1 and
v2. The other difference is that the gω term that appeared in d1, d2 without
interfering with the simulation, does not even appear in d3, d4.

5 The Scheme : Anonymous HIBE

We now describe our full Anonymous HIBE scheme without random oracles.
Anonymity is provided by the splitting technique and hybrid proof introduced
in the previous section. In addition, to thwart the multiple avenues for user col-
lusion enabled by the hierarchy, the keys are re-randomized between all siblings
and all children. Roughly speaking, this is done by using several parallel HIBE
systems, which are recombined at random every time a new private key is issued.
In the proof of security, this extra complication is handled by a “multi-secret
simulator”, that is able to simulate multiple interacting HIBE systems under a
set of constraints. This is an information theoretic proof that sits on top of the
hybrid argument, which is computational.

For the most part, we focus on security against selective-identity, chosen
plaintext attacks, though we will briefly mention how to secure the scheme
against adaptive-ID and CCA2 adversaries. Our (selective-ID) Anonymous HIBE
scheme consists of the following algorithms:

Setup(1Σ , D) To generate the public system parameters and the corresponding
master secret key, given a security parameter Σ ∈ N in unary, and the
hierarchy’s maximum depth D ∈ N, the setup algorithm first generates a
bilinear instance G = [p, G, Ĝ, GT , g, ĝ, e] $←Gen(1Σ). Then:



1. Select 7 + 5 D + D2 random integers modulo p (some of them non-zero):

ω, [ αn, βn, [ θn,` ]`=0,...,D ]n=0,...,1+D ∈$ Z×
p × ((Z×

p )2 × (Zp)1+D)2+D ;

2. Publish G and the system parameters Pub ∈ GT ×G2 (1+D) (2+D) as:

Ω ← e(g, ĝ)ω ,

[ [ an,`, bn,` ]`=0,...,D ]n=0,...,1+D ←
[

[ gαn θn,` , gβn θn,` ]`=0,...,D

]
n=0,...,1+D

.

3. Retain the master secret key Msk ∈ Ĝ1+(3+D) (2+D) as the elements:

ŵ ← ĝω ,

[ ân, b̂n, [ ŷn,` ]`=0,...,D ]n=0,...,1+D ←

[
ĝαn , ĝβn ,

[ ĝαn βn θn,` ]`=0,...,D

]
n=0,...,1+D

.

Extract(Pub,Msk, Id) To extract from the master key Msk a private key for an
identity Id = [I0, I1, . . . , IL] ∈ (Z×

p )1+L where L ∈ {1, . . . , D} and I0 = 1:
1. Pick 6 + 5 D + D2 random integers:

[ ρn, [ ρn,m ]m=0,...,1+D ]n=0,...,1+D ∈$ (Zp)(3+D) (2+D) .

2. Output the private key PvkId ∈ Ĝ(5+3 D−L) (3+D) constituted of the fol-
lowing three subkeys (for decryption, re-randomization, and delegation):
(a) Pvkdecrypt

Id = k0, [kn,(a), kn,(b)]n=0,...,1+D

← ŵ

1+D∏
n=0

L∏
`=0

(ŷI`

n,`)
ρn ,

[
â−ρn

n , b̂−ρn
n

]
n=0,...,1+D

.

(b) Pvkrerand
Id = [fm,0, [fm,n,(a), fm,n,(b)]n=0,...,1+D]m=0,...,1+D

←

[
1+D∏
n=0

L∏
`=0

(ŷI`

n,`)
ρn,m ,

[
â−ρn,m

n , b̂−ρn,m
n

]
n=0,...,1+D

]
m=0,...,1+D

.

(c) Pvkdeleg
Id = [h`, [hm,`]m=0,...,1+D]`=1+L,...,D

←

 1+D∏
n=0

(ŷn,`)ρn ,

[
1+D∏
n=0

(ŷn,`)ρn,m

]
m=0,...,1+D


`=1+L,...,D

.

A more visual way to represent the private key is as a (3 + D) × (5 + 3 D − L)
array of elements in Ĝ, with Pvkdecrypt

Id as the upper left partial row, Pvkrerand
Id

as the lower left rectangle, and Pvkdeleg
Id as the entire right side block:[

k0 k1,(a) k1,(b) . . . k1+D,(a) k1+D,(b)

]
f0,0 f0,0,(a) f0,0,(a) . . . f0,1+D,(a) f0,1+D,(a)

f1,0 f1,0,(a) f1,0,(a) . . . f1,1+D,(a) f1,1+D,(a)

...
. . .

f1+D,0 f1+D,0,(a) f1+D,0,(a) . . . f1+D,1+D,(a) f1+D,1+D,(a)




h1+L . . . hD

h0,1+L . . . h0,D

h1,1+L . . . h1,D

. . .
h1+D,1+L . . . h1+D,D

 .



Each row on the left can be viewed as a private key in an independent HIBE
system (with generalized linear splitting as in Section 4). The main difference is
that only Pvkdecrypt

Id contains the secret ŵ. The rows of Pvkrerand
Id are independent

HIBE keys for the same Id that do not permit decryption. The elements on the
right side provide the delegation functionality: each column in Pvkdeleg

Id extends
the hierarchy down one level. Delegation works as follows:

Derive(Pub,PvkId|L−1, IdL) To derive a private key for Id = [I0, I1, . . . , IL] ∈
(Z×

p )1+L where L ∈ {2, . . . , D} and I0 = 1, given the parent’s private key,
PvkId|L−1 = [k0, [kn,(a), kn,(b)], [fm,0, [fm,n,(a), fm,n,(b)]], [h`, [hm,`]]`=L,...,D],
(where n, m range over {0, . . . , 1 + D}), do the following:
1. Pick 6 + 5 D + D2 random integers:

[ πm, [ πm,m′ ]m′=0,...,1+D ]m=0,...,1+D ∈$ (Zp)(3+D) (2+D) .

2. Output the subordinate private key PvkId ∈ Ĝ(5+3 D−L) (3+D) comprised
of Pvkdecrypt

Id , Pvkrerand
Id , and Pvkdeleg

Id , where:
(a) To build Pvkdecrypt

Id = k′0, [k
′
n,(a), k

′
n,(b)]n=0,...,1+D , we set, for all n:

k′0 ← (k0

1+D∏
m=0

(fm,0)πm) (h`

1+D∏
m=0

(hm,`)πm)IL

k′n,(a), k′n,(b) ← kn,(a)

1+D∏
m=0

(fm,n,(a))πm , kn,(b)

1+D∏
m=0

(fm,n,(b))πm

(b) For Pvkrerand
Id = [f ′

m′,0, [f
′
m′,n,(a), f

′
m′,n,(b)]n=0,...,1+D]m′=0,...,1+D :

f ′
m′,0 ← (

1+D∏
m=0

(fm,0)πm,m′ ) (
1+D∏
m=0

(hm,`)πm,m′ )IL

f ′
m′,n,(a), f ′

m′,n,(b) ←
1+D∏
m=0

(fm,n,(a))πm,m′ ,
1+D∏
m=0

(fm,n,(b))πm,m′

(c) And for Pvkdeleg
Id = [h′

`, [h
′
m′,`]m′=0,...,1+D]`=1+L,...,D , we assign:

h′
` ← h`

1+D∏
m=0

(hm,`)πm

h′
m′,` ←

1+D∏
m=0

(hm,`)πm,m′

We note that Derive and Extract create private keys with the same structure and
distribution. Notice that the Derive algorithm can be interpreted as the combina-
tion of two distinct operations: hierarchical delegation and key re-randomization.



– We start by re-randomizing the parent key, conceptually speaking, by per-
forming random linear combinations of all its rows (in the array represen-
tation shown earlier). The first row enjoys special treatment: its coefficient
into other rows’ re-randomization is 0, and its own coefficient is 1.

– We then delegate by transforming the leftmost elements of Pvkdecrypt
Id and

Pvkrerand
Id , in which identities are encoded. Suppose that re-randomization has

already occurred, and imagine the resulting Pvkdecrypt
Id , Pvkrerand

Id , Pvkdeleg
Id .

Delegation to a child identity IL will “consume” the first column of Pvkdeleg
Id :

each element is raised to the power of IL, and the result is aggregated into
the leftmost element of Pvkdecrypt

Id or Pvkrerand
Id on the same row, as follows:[

k0 . . . kn,(a) kn,(b) . . .
]

f0,0 . . . f0,n,(a) f0,n,(b) . . .
...

. . .
fm,0 . . . fm,n,(a) fm,n,(b) . . .

...
. . .





hL . . . hD

h0,L . . . h0,D

...
. . .

hm,L . . . hm,D

...
. . .

→
[

k′0 . . .
]

f ′
0,0 . . .
...

. . .
f ′

m,0 . . .
...





• h′
1+L . . . h′

D

• h′
0,1+L . . . h′

0,D

. . .
• h′

m,1+L . . . h′m,D

. . .


We now turn to the encryption and decryption methods.

Encrypt(Pub, Id,Msg) To encrypt a given message encoded as a group element
Msg ∈ GT for a given identity Id = [I0(= 1), I1, . . . , IL] at level L:
1. Select 3 + D random integers: r, [rn]n=0,...,1+D ∈$ (Zp)3+D.
2. Output the ciphertext CT = E, c0, [cn,(a), cn,(b)]n=0,...,1+D ∈ GT×G5+2 D,

computed as:

CT← Msg ·Ω−r, gr,

 ( L∏
`=0

bI`

n,`

)rn

,

(
L∏

`=0

aI`

n,`

)r−rn


n=0,...,1+D

.

Decrypt(Pub,PvkId,CT) To decrypt a ciphertext CT, using the decryption
subkey a private key, Pvkdecrypt

Id = [k0, [kn,(a), kn,(b)]n=0,...,1+D] , compute:

M̂sg← E · e(c0, k0)
1+D∏
n=0

e(cn,(a), kn,(a)) e(cn,(b), kn,(b)) ∈ GT .

Encryption can be made very cheap with a bit of caching since the exponentiation
bases never change. Decryption is also fairly efficient since all the pairings in the
product can be computed at once using a “multi-pairing” approach [21], which
is similar to multi-exponentiation. One can also exploit the fact that all the k···
are fixed for a given recipient to perform advantageous pre-computations [3].

6 Consistency and Security

The following theorems state that extracted and delegated private keys are iden-
tically distributed, and that extraction, encryption, and decryption, are consis-
tent. We remark that Theorem 1 is not essential for the security model, but it
is nice to have and it is also useful to prove Theorem 2.



Theorem 1. Private keys calculated by Derive and Extract have the same dis-
tribution.

Theorem 2. The Anonymous HIBE scheme is internally consistent.

We now state the basic security theorems for the A-HIBE scheme. The
selective-ID security reductions are almost tight and hold in the standard model.
We only consider recipient anonymity, since sender anonymity is trivially attain-
able in an unauthenticated encryption scheme.

Theorem 3 (Confidentiality). Suppose that G upholds the (τ, ε)-Decision
BDH assumption. Then, against a selective-ID adversary that makes at most
q private key extraction queries, the HIBE scheme of Section 5 is (q, τ̃ , ε̃)-IND-
sID-CPA secure in G with τ̃ ≈ τ and ε̃ = ε− (3 + D) q/p.

Theorem 4 (Anonymity). Suppose that G upholds the (τ, ε)-Decision Linear
assumption. Then, against a selective-ID adversary that makes q private key
extraction queries, the HIBE scheme of Section 5 is (q, τ̃ , ε̃)-ANON-sID-CPA
secure in G with τ̃ ≈ τ and ε̃ = ε− (2 + D) (7 + 3D) q/p.

For completeness, we mention that based on the above theorems it is easy
to secure the scheme against active adversaries, i.e., adaptive-ID and CCA2.
Adaptive-identity security can be obtained using the Waters [31] technique, or
by using random oracles [5, §7], although these methods only work for shallow
hierarchies. Adaptive chosen-ciphertext security can be achieved very effectively
using one of several techniques [15, 11, 13], all of which are applicable here.

7 Conclusion

We presented a provably anonymous IBE and HIBE scheme without random
oracles, which resolves an open question from CRYPTO 2005 regarding the
existence of anonymous HIBE systems.

Our constructions make use of a novel “linear-splitting” technique which pre-
vents an attacker from testing the intended recipient of ciphertexts, yet allows
for the use of randomized private IBE keys. In the hierarchical case, we add to
this a new “multi-simulation” proof device that permits multiple HIBE subsys-
tems to concurrently re-randomize each other. Security is based solely on the
Linear assumption in bilinear groups.

Our basic scheme is very efficient, a factor two slower than (non-anonymous)
Boneh-Boyen BB1 and BB2 encryption, and quite faster than Boneh-Franklin.
The full hierarchical scheme remains practical with its quadratic private key size,
and its linear ciphertext size, encryption time, and decryption time, as functions
of the depth of the hierarchy.
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