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Abstract. We consider the problem of random selection, where p play-
ers follow a protocol to jointly select a random element of a universe
of size n. However, some of the players may be adversarial and col-
lude to force the output to lie in a small subset of the universe. We
describe essentially the first protocols that solve this problem in the
presence of a dishonest majority in the full-information model (where
the adversary is computationally unbounded and all communication is
via non-simultaneous broadcast). Our protocols are nearly optimal in
several parameters, including the round complexity (as a function of
n), the randomness complexity, the communication complexity, and the
tradeoffs between the fraction of honest players, the probability that the
output lies in a small subset of the universe, and the density of this
subset.

1 Introduction

Suppose p players wish to jointly make a random choice from a universe of size n.
They follow some protocol, and if all parties play honestly, the output is indeed
a uniformly random one. However, some of the players may form a coalition
and deviate arbitrarily from the protocol, in an attempt to force some output.
The problem of random selection is that of designing a protocol in which the
influence of coalitions of dishonest players is somehow limited.

Random selection is a very useful building block for distributed algorithms
and cryptographic protocols, because it allows one to first design protocols as-
suming a public source of randomness, which is often an easier task, and then
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replace public randomness with the output of a random selection protocol. Of
course, for this to work, there must be a good match between the guarantees
of the random selection protocol and the requirements of the application at
hand. Nevertheless, this general paradigm has been applied successfully numer-
ous times in the past in various settings, e.g., [42, 20, 17, 32, 12, 13, 30, 21, 25, 3,
23]. This motivates a systematic study of random selection in its own right, like
the one we undertake in this paper.

The Setting. The problem of random selection has been widely studied in a
variety of settings, which differ in the following respects:

Adversary’s Computational Power. In some work on random selection, such as
Blum’s ‘coin-tossing over the telephone’ [4], the adversary is assumed to be
computationally bounded (e.g., probabilistic polynomial time). Generally, in
this setting one utilizes one-way functions and other cryptographic primitives
to limit the adversary’s ability to cheat, and thus the resulting protocols rely
on complexity assumptions. In this paper, we study the information-theoretic
setting, where the adversary is computationally unbounded (so complexity
assumptions are useless).

Communication Model and the Adversary’s Information. There is a choice be-
tween having point-to-point communication channels, a broadcast channel,
or both. In the case of point-to-point communication, one can either assume
private channels, as in [6, 10], or allow the adversary full access to all com-
munication, as in the full-information model of Ben-Or and Linial [7]. We
allow a broadcast channel and work in the full-information model (so there
is no benefit from point-to-point channels). We do not assume simultaneous
communication, and thus consider a ‘rushing’ adversary, which can send its
messages in a given round after receiving those of the honest players.

Number of Players. There has been work specifically studying two-party proto-
cols where one of the players is adversarial; examples in the full-information
model include [17, 39]. Other works study p-player protocols for large p, such
as the large body of work on collective coin-flipping (random selection where
the universe is of size n = 2) and leader election [7, 38, 1, 11, 31, 8, 43, 37, 15].
In this paper, we focus on the latter setting of p-player protocols, but some
of our results are significant even for p = 2.

To summarize, here we study general multiparty protocols for random selec-
tion in the full-information model (with a broadcast channel). This is the first
work in this setting to focus on the case that a majority of the players may be
dishonest.4 It may be surprising that protocols exist for this case, as the other
two other well-studied problems in this setting, leader election and collective
coin-flipping, are provably impossible to solve with an adversarial majority [38].

4 We note that dishonest majorities have been studied extensively in the settings of
computationally bounded parties and private channels, both for Byzantine agree-
ment and secure computation, e.g., [20, 26, 19].



The Goal: Construct p-player protocols for selecting an element of [n]
such that even if a β fraction of players are cheating, the probability that
the output lands in any small subset of [n], of density µ, is at most ε.

Particular applications of random selection protocols often have special ad-
ditional requirements, such as “simulatability.” However, all of the existing work
on random selection with information-theoretic security, such as [7, 38, 17, 28, 1,
12, 13, 21, 37, 15, 14, 39], seem to include at least some variant of our requirement
above. Thus it is of interest to understand this requirement on its own, in par-
ticular the tradeoffs between the parameters p, n, β, µ, and ε, as well as the
efficiency of protocols meeting the requirement.

As these five parameters vary, we have a very general class of problems, which
includes many previously studied problems as special cases (See Section 2.2.).
Some natural settings of parameters are n being exponentially large in the secu-
rity parameter (e.g., choosing a random k-bit string), p being constant or poly-
nomial, β being a constant in (0, 1) (we are particularly interested in β ≥ 1/2),
and µ, ε either being constants in (0, 1) or tending to zero.

Regarding protocol efficiency, we focus primarily on information-theoretic
measures, such as the communication and round complexities, but we also pro-
vide some computationally efficient versions of our protocols.

Our Results. In this paper, we give several protocols for random selection that
tolerate an arbitrarily large fraction of cheating players β < 1. The protocols are
nearly optimal in many of the parameters, for example:

– One of our protocols achieves an error probability of ε = Õ(µ1−β), when the
number of players is constant and the density µ of bad outcomes is arbitrary.
This comes close to the lower bound of ε ≥ µ1−β proven by Goldreich,
Goldwasser, and Linial [17]. For a nonconstant number of players, we can
come polynomially close to the lower bound, achieving ε = µΩ(1−β), provided
that the fraction β of cheating players is bounded away from 1.

– One of our protocols can handle any density µ of bad outcomes that is
smaller than the fraction α = 1 − β of honest players while achieving an
error probability ε that is bounded away from 1. More generally, we can
handle any constants α, µ such that b1/αc ≤ d1/µe − 1, which is a tight
tradeoff by a lower bound of Feige [15].

– In our protocols, the total number of coins tossed by the honest parties
is log n + o(log n) (when the other parameters are constant), which almost
equals the lower bound of log n − O(1). As the only bits communicated in
our protocols are the random coin tosses, the communication complexity is
also nearly optimal.

– As a function of n, the round complexity of our protocols is log∗ n + O(1)
(when the other parameters are constant). This is within a factor of es-
sentially 2 of the (1/2 − o(1)) log∗ n lower bound proven by Sanghvi and
Vadhan [39], which applies whenever β ≥ 1/2, and µ > 0 and ε < 1 are
constants.



Techniques. Our protocols build upon recent work on round-efficient leader elec-
tion [37, 15] and round-efficient two-party random selection [39]. Specifically, the
leader election protocols of Russell and Zuckerman [37] and Feige [15] work by
iterating a one-round protocol that reduces the task of electing a leader from
p players to that of electing from polylog(p) players. Similarly, the two-party
random selection protocol of Sanghvi and Vadhan [39] utilizes a one-round pro-
tocol that reduces selecting from a universe of size n to selecting from one of
size polylog(n). We combine these approaches, iteratively reducing both the
number of players and the universe size in parallel. To do this, we construct
new one-round universe reduction protocols that work for many parties (instead
of just two, as in [39]). We obtain these by establishing a connection between
randomness extractors [29] (or, equivalently, randomness-efficient samplers) and
universe reduction protocols. Optimizing parameters of the underlying extrac-
tors then translates to optimizing parameters of the universe reduction pro-
tocols, resulting in the near-optimal bounds we achieve in our final protocols.
Our main results, as outlined above, refer to protocols that use optimal extrac-
tors, as proven to exist via the probabilistic method, and thus are not explicit
or computationally efficient. In the full version of this work [22], we also give
computationally efficient versions of our protocols, using some of the best known
explicit constructions of extractors. Any additional deficiencies in these protocols
are due to limitations in the state-of-the-art in constructing extractors, which
we view as orthogonal to the issues we study here. Indeed, if the loss turns out
to be too much for some application, then that would provide motivation for
further research on explicit constructions of extractors.

Organization. Section 2 includes definitions, a more detailed description of pre-
vious work and how it relates to this paper, and our results. Section 3 contains
the one-round selection protocols that are the final ingredient in our protocols,
and in Section 4 we give protocols that reduce the number of players and the
size of the universe. In Section 5 we informally describe how the different pieces
fit together to form our final protocols, and defer details and formal proofs from
this section to the full version [22]. Finally, in Section 6, we state known and
new lower bounds on the various parameters of random selection.

2 Definitions and Results

2.1 Random Selection Protocols

We now define random selection protocols, the model, and the complexity mea-
sures in which we are interested.

A (p, n)-selection protocol is a p-player protocol for selecting an element of
[n]. In each round of the protocol, the players broadcast messages that they
may base on the messages sent by all players in previous rounds, as well as
their own internal coin tosses. The players may not legally base their outputs in
round i on the outputs of other players in round i. However, since we can not
guarantee simultaneity within a round, we allow the dishonest players to base



their outputs on the outputs of other players from the same round (but not from
later rounds). This is known as rushing. At the end, a predetermined function
of all sent messages is computed, outputting an element of [n].

Given this definition, we have the following notion of security.

Definition 1. A (p, n)-selection protocol is called (β, µ, ε)-resilient if when at
most a β fraction of players are cheating and S is any subset of [n] of density
at most µ, the probability that the output lands in S is at most ε. We refer to S
as a bad set.

We will be interested in the asymptotic behavior of protocols, so when we
discuss (p, n)-selection protocols, we are implicitly referring to a family of pro-
tocols, one for each value of p and n (or some infinite set of pairs (p, n)). We are
then interested in optimizing a variety of complexity measures:

The computation time of a (p, n)-selection protocol is the maximum total time
spent by all (honest) players (to compute their messages and the final function)
in an execution of the protocol. We call a protocol explicit if its computation
time is poly(log n, p). The round complexity is the total number of rounds of the
protocol. The randomness complexity of a protocol is the (maximum possible)
total number of random bits used by the honest players. 5 (Typically this max-
imum is achieved when all players are honest.) The communication complexity
of a protocol is the total number of bits communicated by the honest players.6

All our protocols are public-coin, in the sense that the honest players flip their
random coins and broadcast the results. Thus, the communication complexity is
equal to the randomness complexity. By convention, we assume that if a player
sends a message that deviates from the protocol in some syntactically obvious
way (e.g. the player outputs more bits than requested), then its message is
replaced with some canonical string of the correct form (e.g. the all-zeroes string).

2.2 Previous Work

We now discuss the relationship of the above definitions, specifically of (β, µ, ε)-
resilient (p, n)-selection protocols, to existing notions and results in the litera-
ture.

Two-Party Random Selection. This is the special case where p = 2 and β = 1/2,
and attention in previous work has focused on the tradeoff between µ and ε as
well as the round complexity. Specifically,

– Goldreich, Goldwasser, and Linial [17] constructed, for every n = 2i, an
explicit (2, n)-selection protocol that is (1/2, µ,O(

√
µ))-resilient for every

5 Actually, it will be convenient to allow the players to pick elements uniformly at
random from {1, . . . , m} where m is determined during the protocol and may not
be a power of 2, and in such a case we view this as costing log2 m random bits.

6 As with randomness complexity, it will be convenient to allow players to send ele-
ments of {1, . . . , m}, in which case we charge log2 m bits of communication.



µ > 0. The protocol takes 2 log n rounds. They also prove that the bound
of ε = O(

√
µ) is tight (as a special case of a more general result mentioned

later).
– Sanghvi and Vadhan [39] constructed, for every constant δ > 0 and every n,

an explicit (2, n)-selection protocol that is (1/2, µ,O(
√

µ + δ))-resilient for
every µ > 0. Their protocol takes log∗ n+O(1) rounds. They also prove that
(log∗ n − log∗ log∗ n − O(1))/2 rounds are necessary for any (2, n)-selection
protocol that is (1/2, µ, ε)-resilient for constants µ > 0 and ε < 1.

Collective Coin-Flipping [7]. This is the special case when n = 2 and µ = 1/2.
Attention in the literature has focused on constructing efficient protocols that
are (β, 1/2, ε)-resilient where β and ε are constants (independent of p), β is as
large as possible, and ε < 1. Such a protocol exists for every constant β < 1/2 [8]
and can be made explicit [43]. Conversely, it is impossible to achieve β = 1/2 and
ε < 1 [38]. Efficient constructions of such protocols have been based on leader
election (described below).

Leader Election.

Definition 2. A p-player leader election protocol is a (p, p)-selection protocol.
It is (β, ε)-resilient if when at most a β fraction of players are cheating, the
probability that the output is the index of a cheating player is at most ε.

– Every (β, β, ε)-resilient (p, p)-selection protocol is a (β, ε)-resilient p-player
leader election protocol. The converse does not hold because the the former
considers each subset S ⊂ [p] of density at most β as a potential bad set of
outcomes, but the latter only considers the subset consisting of the cheating
players.

– Nevertheless, a p-player leader election protocol can be used to construct
a (p, n)-selection protocol for any n by having the elected leader choose
a uniform, random element of [n] as the output. If the election protocol is
(β, ε)-resilient, then the resulting selection protocol will be (β, µ, ε+(1−ε)·µ)-
resilient for every µ ≥ 0.

– By the impossibility result for collective coin-flipping mentioned above [38]
and the previous bullet, it is impossible to have an election protocol that is
(β, ε)-resilient for β = 1/2 and ε < 1.

– A long line of work [1, 11, 31, 43, 37, 15] on optimizing the resilience and round
complexity for leader election has culminated in the following result of Rus-
sell and Zuckerman [37].7 For every constant β < 1/2, there exists an ε < 1
such that for all p, there is an explicit (β, ε)-resilient p-player leader election
protocol of round complexity log∗ p + O(1). Consequently, for all constants
β < 1/2 and µ > 0, there is a constant ε < 1 such that for all p and n, there
is an explicit (β, µ, ε)-resilient (p, n)-selection protocol.

7 A very recent paper [2] aims to optimize ε as a function of β, obtaining efficient
leader election protocols with ε = O(β).



Multi-Party Random Selection. This is the general problem that encompasses
the previous special cases.

– Goldreich, Goldwasser, and Linial [17] constructed, for every n = 2i and
every p, an explicit (p, n)-selection protocol that is (β, µ, µ1−O(β))-resilient
for all sufficiently small β and every µ > 0. The protocol runs in polylog(n)
rounds. They also showed that any (β, µ, ε)-resilient protocol must satisfy
ε ≥ µ1−β .

– Russell and Zuckerman [37] constructed, for every n and p such that n ≥
pc for a constant c, an explicit one-round (p, n)-selection protocol that is
(β, µ, µ · n/nΩ(1−β))-resilient for every µ > 0 and 1 > β > 0.

Notice that all but the last of the above results require that the fraction β
of bad players satisfies β ≤ 1/2.8 For collective coin-flipping and leader election,
this is supported by impossibility results showing that β ≥ 1/2 is impossible. For
2-party random selection, it does not make sense to discuss β > 1/2. The only
result which applies to β ≥ 1/2 is the last one (of [37]). However, the resilience
µ · n/nΩ(1−β) is quite weak and only interesting when the density µ of the bad
set is close to 1/n.9 Our work is the first to show strong results for the case
β > 1/2.

2.3 Our Results

In this section, we present our main results. All of our protocols utilize certain
kinds of randomness-efficient samplers (equivalently, randomness extractors).
Here we present the versions of our results obtained by using optimal samplers,
proven to exist via the probabilistic method. We also have explicit (i.e., com-
putationally efficient) versions of our protocols, obtained by using best known
explicit constructions of samplers. One such protocol is given by Theorem 7, and
the rest are deferred to the full version of this work [22].

The first main result of this paper is the following:

Theorem 3. For all constants k ∈ N, k > 0 and δ > 0, there exists a constant
ε < 1 and a (p, n)-selection protocol with the following properties:

(i) The protocol has max(log∗ p, log∗ n) + O(1) rounds.
(ii) The protocol is (1− α, µ, ε)-resilient for α = 1/(k + 1) + δ and µ = 1/k − δ.
(iii) The randomness complexity of the protocol is (log n)/α+o(log n)+O(p log p).

The tradeoff between α and µ in the above theorem is optimal up to the
slackness parameter δ. This is shown in Corollary 27, as a consequence of a
lower bound of Feige [15]. Furthermore, the round and randomness complexity
are nearly optimal as functions of n, as shown by Corollary 25 and Theorem 28.

Setting p = 2 and α = 1/2, we obtain the following two-party protocol:
8 The hidden constant in the protocol of [17] is larger than 2.
9 The significance of the [37] protocol is that it is one round and only requires n

polynomial in p; in fact, there is a trivial protocol with somewhat better parameters
when n is exponential in p (Lemma 10).



Corollary 4. For every constant δ > 0, there exists a constant ε < 1 and a
(2, n)-selection protocol with the following properties:

(i) The protocol has log∗ n + O(1) rounds.
(ii) The protocol is (1/2, 1/2− δ, ε)-resilient.
(iii) The randomness complexity of the protocol is 2 log n + o(log n).

This protocol improves upon the two-party protocol of [39]10 in two ways:
first, the randomness complexity is a nearly optimal 2 log n + o(log n), and not
polylog(n). Second, their protocol is (1/2, ν, ε′)-resilient for some small constant
ν, and not for the nearly optimal 1

2 − δ. In other words, their resilience is not
optimal in the density of the bad set. On the other hand, the error probability
ε′ of their protocol is smaller than that of ours. However, a special case of our
second theorem below gives the parameters of [39] with the added benefit of
optimal randomness complexity.

Our next two results optimize the error probability ε as a function of the
density µ of the bad set and fraction β of cheating players. The first achieves a
near-optimal tradeoff when the number of players is small (e.g., constant).

Theorem 5. For all µ, α > 0 and p, n ∈ N, there exists a (p, n)-selection pro-
tocol with the following properties:

(i) The protocol has log∗ n− log∗(1/µ) + O(1) rounds.
(ii) The protocol is (1− α, µ, ε)-resilient for

ε = µα ·O
(

1
α
· log

1
µ

+ (1− α)p
)1−α

· 2(1−α)p.

(iii) The randomness complexity is [log n+o(log n)+O(p+log(1/µ))]/α+log(1/(1−
α)) + O(p log p).

Note that when the number p of players and the fraction α of honest players
are constants, the bound becomes ε = Õ(µα), which nearly matches the lower
bound of ε ≥ µα proven in [17] (see Theorem 26). However, the bound on ε
grows exponentially with p. This is removed in the following theorem, albeit at
the price of achieving a slightly worse error probability of µΩ(α) (for constrained
values of α).

Theorem 6. There is a universal constant c such that for all p, n ∈ N, µ, α > 0
satisfying α ≥

√
c log log(1/µ)/ log(1/µ), there exists a (p, n)-selection protocol

with the following properties:

(i) The protocol has max{log∗ p, log∗ n} − log∗(1/µ) + O(1) rounds.
(ii) The protocol is (1− α, µ, µΩ(α))-resilient.

10 Note that in [39], the claimed round complexity is 2 log∗ n+O(1), but this difference
from our claim is only a difference of convention: in their model, only one player may
communicate in each round, whereas we use the convention of multi-party protocols,
in which all players may communicate simultaneously in one round.



(iii) The randomness complexity is [log n + o(log n) + O(p)]/α + O(p log p) +
poly(1/α, log(1/µ)).

One disadvantage of the above two theorems (as compared to, say, the honest-
majority protocols of [17]) is that the protocols require an a priori upper-bound
µ on the density of the bad set. However, we also benefit from this, in that the
round complexity improves as µ tends to zero. In particular, if µ ≤ 1/ log(k) n

for some constant k, where log(k) denotes k iterated logarithms, then the round
complexity is constant.

An explicit version of the protocol of Theorem 3 is the following theorem:

Theorem 7. For all constants k ∈ N, k > 0,γ > 0 and δ > 0, there exists a
constant ε < 1 and an explicit (p, n)-selection protocol with the following prop-
erties:

(i) The protocol has max(log∗ p, log∗ n) + O(1) rounds.
(ii) The protocol is (1− α, µ, ε)-resilient for α = 1/(k + 1) + δ and µ = 1/k − δ.
(iii) The randomness complexity of the protocol is (log n)1+γ + O(p log p).

Apart from its explicitness, note that the randomness complexity of the above
theorem is now (log n)1+γ for an arbitrarily small constant γ, rather than (1 +
o(1))(log n)/α. Intuitively, this occurs because the explicit sampler we use (based
on an extractor of [34]) only has randomness complexity polynomially close to
optimal. It is possible to remedy this and obtain a randomness complexity of
(1 + o(1)) log n by using other samplers (e.g. based on the extractors of [33]) for
the first few rounds of universe reduction, but this creates some messy constraints
on the other parameters, so we omit a formal statement.

We also have explicit versions of Theorem 5 and Theorem 6.

Theorem 8. For every constant γ > 0, and every p, n ∈ N, µ, α > 0, there
exists a (p, n)-selection protocol with the following properties:

(i) The protocol has log∗ n− log∗(1/µ) + O(1) rounds.
(ii) The protocol is (1− α, µ, ε)-resilient for

ε = µα ·O
(

1
α
· log

1
µ

+ (1− α) p

)1−α

· 2(1−α)p.

(iii) The randomness complexity is [(log n)1+γ+O(p+log(1/µ))]/α+O(log(1/(1−
α))) + O(p log p).

(iv) The protocol is explicit given appropriate samplers of size

s = poly(2p, 1/µ, log(3) n)1/(α).

which can be obtained probabilistically in time O(s) and deterministically in
time 2O(s).

Theorem 9. There is a universal constant c such that for every constant γ > 0
and every p, n ∈ N, µ, α > 0 satisfying α ≥

√
c log log(1/µ)/ log(1/µ), there

exists a (p, n)-selection protocol with the following properties:



(i) The protocol has max{log∗ p, log∗ n} − log∗(1/µ) + O(1) rounds.
(ii) The protocol is (1− α, µ, µΩ(α))-resilient.
(iii) The randomness complexity is [(log n)1+γ+O(p)]/α+O(p log p)+poly(1/α, log(1/µ)).
(iv) The protocol is explicit given appropriate samplers of size

s = poly(1/µ, 1/α, log(3) n)1/α.

which can be obtained probabilistically in time O(s) and deterministically in
time 2O(s).

Note that the protocols are explicit whenever s = O(log log n) (in particular,
when µ and α are constants). Due to space constraints, details of these explicit
constructions are deferred to the full version [22].

3 One-round Protocols

We start with some simple one-round protocols that will play a role in our later
constructions.

Lemma 10. For every p, ` ∈ N and n = `p, there is an explicit (p, n)-selection
protocol that is (β, µ, nβ · µ)-resilient for every β, µ > 0.

Proof sketch. Each player outputs a random element of [`], and we take the
concatenation of the player’s outputs. ut

The above protocol has two main disadvantages. First, the size of the uni-
verse n = `p must be at least exponential in the number of players. (We note
that Russell and Zuckerman [37] showed how to reduce this requirement to be
only polynomial, at the price of a somewhat worse resilience. We will avoid this
difficulty in a different manner, by first reducing the number of players.) Sec-
ond, in terms of resilience, a bad set of density µ gets multiplied by a factor
that grows polynomially with the universe size (namely, nβ). However, when the
number of players is small (e.g. a fixed constant) and the universe is small (e.g.
n = O(1/µ)), it can achieve a nearly optimal bound on ε as a function of β and
µ (cf. Theorem 26).

Lemma 11 ([15], Cor. 5). For every p, n ∈ N and α, µ ∈ [0, 1] such that
b1/αc ≤ d1/µe − 1, there exists an ε < 1 and a (p, n)-selection protocol that is
(1−α, µ, ε)-resilient. Specifically, one can take ε = 1− exp(−Ω(α · (1−µ) ·np)).

Proof sketch. Every player chooses a random subset of [n] of density at least
1 − µ, and the output is the first element of [n] that is contained in every set
S that was picked by at least an α fraction of players. Such an element exists
because there exist at most b1/αc ≤ d1/µe − 1 such sets S, but any d1/µe − 1
sets of density at least 1− µ must have a common intersection. ut

The advantage of the above protocol is that it achieves an optimal tradeoff
between α and µ (cf. Theorem 27). The main disadvantage is that ε can depend
on p and n (this time with exponentially bad dependence), and that it is not
sufficiently explicit — even the communication is of length Θ(n) (rather than
polylog(n)).



4 Universe and Player Reduction

The simple 1-round protocols of the previous section behave well when the num-
ber of players p and universe size n are small. Thus, as in previous work, our
main efforts will be aimed at giving protocols to reduce p and n while approx-
imately preserving the fraction β of bad players and the density µ of the bad
set. Roughly speaking, in one round we will reduce p and n to polylog(p) and
polylog(n), respectively. For this, we consider protocols that select a subset of
the universe (or a subset of the players).

4.1 Definitions

Definition 12. A [(p, n) 7→ n′]-universe reduction protocol is a p-player proto-
col whose output is a sequence (s1, . . . , sn′) of elements of [n]. Such a protocol
is [(β, µ)

γ7→ µ′]-resilient if when at most a β fraction of players are cheating
and S is any subset of [n] of density at most µ, the probability that at most
a µ′ fraction of the output sequence is in S is at least γ. It is explicit if the
players’ strategies are computable in time poly(log n, p), and given the protocol
transcript and i ∈ [n′], the i’th element of the output sequence is computable in
time poly(log n, p).

Notice that a (p, n)-selection protocol is equivalent to a [(p, n) 7→ n′]-universe
reduction protocol with n′ = 1, and the former is (β, µ, ε)-resilient if and only if
the latter is [(β, µ) 1−ε7→ 0]-resilient.

Definition 13. A [p 7→ p′]-player reduction protocol is a [(p, p) 7→ p′]-universe
reduction protocol. It is [β

γ7→ β′]-resilient if when at most a β fraction of players
are cheating, the probability that at most a β′ fraction of the output sequence are
indices of cheating players is at least γ.

Definition 14. A [(p, n) 7→ (p′, n′)]-universe+player reduction protocol is a p-
player protocol whose output is a sequence (s1, . . . , sn′) of elements of [n] and
a sequence (t1, . . . , tp′) of elements of [p]. Such a protocol is [(β, µ)

γ7→ (β′, µ′)]-
resilient if when at most a β fraction of players are cheating and S is any subset
of [n] of density at most µ, the probability that at most a β′ fraction of the first
output sequence are cheating players and at most a µ′ fraction of the second
output sequence is in S is at least γ. It is explicit if the players’ strategies are
computable in time poly(log n, p), and given the protocol transcript and i ∈ [n′]
(resp., j ∈ [p′]), the i’th (resp., j’th) element of the first (resp., second) output
sequence is computable in time poly(log n, p).

4.2 One-Round Reduction Protocols

In the following one-round protocols, think of θ = 1/polylog(n) and ε = 1/poly(n).
We use both a one-round player-reduction protocol and a one-round universe-
reduction protocol.



Theorem 15 ([37, 15]). For every p ∈ N, ε > 0, and θ > 0, there is an explicit,
one-round [p 7→ p′]-player reduction protocol with

p′ = O

(
1− β

θ2
· log

p

ε

)
,

that is [β 1−ε7→ β +θ]-resilient for all β > 0. Moreover, the randomness complexity
is p · log(p/p′).

The starting point for our universe reduction protocol is the simple protocol
of Lemma 10. That protocol has the property that a β fraction of cheating
players cannot make any outcome in [n] appear with probability more than
1/n1−β . (This can be seen by taking µ = 1/n.) Thus the output can be viewed
as a source with “min-entropy rate” at least 1 − β.11 To get a higher quality
output, it is natural to try applying a randomness extractor, a function that
extracts almost-uniform bits from sources with sufficient min-entropy. However,
randomness extractors require an additional random seed to do such extraction.
Thus we will enumerate over all seeds of the extractor, and the resulting sequence
will be the output of our universe reduction protocol. Fortunately, there exist
extractors where the number of seeds is only polylogarithmic in n, the domain
of the source.

Actually, it is more convenient for us to work with an object that is essentially
equivalent to extractors, namely (averaging) samplers (cf., [9, 43, 16]). Samplers
are functions that output sample points of a given universe, with the property
that the fraction of samples from any particular subset of the universe is roughly
equal to the density of that subset. In the following definition, Ur denotes an
element of [r] chosen uniformly at random.

Definition 16. A function Samp : [r] → [n]t is a (θ, ε) sampler if for every set
S ⊆ [n],

Pr
(i1,...,it)←Samp(Ur)

[
#{j : ij ∈ S}

t
>
|S|
n

+ θ

]
≤ ε.

We say that Samp is explicit if for every x ∈ [r] and every j ∈ [t], the j’th
component of Samp(x) can be computed in time poly(log r, log n).12

Zuckerman [43] showed that samplers (as defined above) are essentially equiv-
alent to randomness extractors.

Given p, ` ∈ N and a sampler Samp : [r] → [n]n
′

with r = `p, we obtain
a [(p, n) 7→ n′]-universe reduction protocol ΠSamp as follows: the players use
11 The min-entropy of a random variable X is defined as H∞(X) = maxx Pr[X =

x]. If X takes values in a universe U , then its min-entropy rate is defined to be
H∞(X)/ log |U |.

12 Often the definition of samplers also requires that the fraction of samples that lie
in S is also not much larger than the density of S. However, this follows from our
definition (paying a factor of 2 in ε) by considering S. Moreover, we will only need
the one-sided version, and below, in Definition 20 we will consider a variant which
is not symmetric with respect to approximation from above and below.



the protocol of Lemma 10 to select an element x ∈ [`p], and then output the
sequence Samp(x).

Lemma 17. If Samp is a (θ, ε) averaging sampler, then for every µ, β > 0,
ΠSamp is [(β, µ)

γ7→ µ + θ]-resilient for γ = 1− rβ · ε. Moreover, the randomness
complexity is log r.

Proof. Call x ∈ [r] “bad” if #{j : ij ∈ S}/t > |S|/n + θ when (i1, . . . , it) ←
Samp(x), and note that the number of bad x’s is at most ε · r by the properties
of the sampler. The players use the protocol of Lemma 10 to select an element
x from a universe of size r, where the fraction of bad elements is ε. This is a
(p, r)-selection protocol that is (β, ε, rβ · ε)-resilient, and so the probability of
selecting a good x is at least γ = 1 − rβ · ε. If a good x is selected, then the
fraction of bad elements is increased by at most θ. ut

Notice that for this to be useful, we need the error probability ε of the sampler
to be smaller than r−β , and in fact we will be interested in β that are arbitrarily
close to 1. Fortunately, we have samplers that achieve this. (This is equivalent
to the fact that we have extractors that work for min-entropy rate arbitrarily
close to 0.)

Lemma 18 (nonconstructive samplers [36, 43]). There is a universal con-
stant c such that for every n ∈ N, θ > 0, ε > 0 and r ≥ c · n/(εθ2), there exists a
(θ, ε) sampler Samp : [r] → [n]t with t = O(log(1/ε)/θ2).

It is important to note that the lower bound on r depends linearly on 1/ε;
this means that we can make the error ε ≤ r−β for any β < 1. Combining the
above two lemmas, we have:

Theorem 19 (nonconstructive 1-round universe reduction). For every
p, n ∈ N, β, ε, θ > 0, there exists a 1-round [(p, n) 7→ n′]-universe reduction
protocol that is [(β, µ) 1−ε7→ µ + θ]-resilient for every µ > 0, with

n′ = O

(
log(1/ε) + (β/(1− β)) · log n + β · p

θ2

)
.

Moreover, the randomness complexity is p + (log n + log(1/ε) + 2 log(1/θ))/(1−
β) + O(1).

Proof. First note that without loss of generality, θ ≥ 1/n, otherwise we can
use the trivial protocol that outputs the entire universe. So now choose r ∈
[(cn/(εθ2))1/(1−β), 2p · (cn/(εθ2))1/(1−β)] such that r is the p’th power of some
natural number, and apply Lemma 17 with ε′ = ε/rβ . ut

Thus, for p = polylog(n), θ = 1/polylog(n), ε = 1/poly(n), and β = 1 −
1/polylog(n), we can reduce the universe size from n to polylog(n). If the number
of players is constant, then we can iterate this log∗ n times to reduce the universe
size to a constant. However, if the number of players p is large, then the above



will not reduce the universe size below βp. Therefore, we will combine this with
the player reduction of Theorem 15.

Notice that if we want to preserve the density µ of the bad set up to a
constant factor, then we can set θ = 1/µ and the above protocol will reduce
the universe size to n′ depending polynomially on 1/µ. However, to obtain some
of our results (namely, Theorems 6, 5, and their explicit versions), it will be
beneficial to reduce to a universe size that depends almost-linearly on 1/µ. To
achieve this, we use a variant of our sampler-based protocol that is tailored to a
particular value of µ.

Definition 20. A function Samp : [r] → [n]t is a (µ, θ, ε) density-tailored sam-
pler if for every set S ⊆ [n] with |S| ≤ µ · n,

Pr
(i1,...,it)←Samp(Ur)

[
#{j : ij ∈ S}

t
> µ + θ

]
≤ 1− ε.

We say that Samp is explicit if for every x ∈ [r] and every j ∈ [t], the j’th
component of Samp(x) can be computed in time poly(log r, log n).

Density-tailored samplers are essentially equivalent to ‘slice extractors’, de-
fined in [36]. As in Lemma 17, these density-tailored samplers also induce selec-
tion protocols.

Lemma 21. If Samp is a (µ, θ, ε) density-tailored sampler, then for every β > 0,
ΠSamp is [(β, µ)

γ7→ µ + θ]-resilient for γ = 1− rβ · ε. Moreover the randomness
complexity is log r.

The reason we are interested in these density-tailored samplers is that they
exist with slightly better parameters for certain values of µ.

Lemma 22 (nonconstructive density-tailored samplers [40]). There is
a universal constant c such that for every n ∈ N, µ > 0, θ > 0, ε > 0, t ≥
c · log(1/ε) ·max{1/µ, µ/θ2}, and r ≥ c ·n · (µ log(1/µ))/(ε log(1/ε)), there exists
a (µ, θ, ε) density-tailored sampler Samp : [r] → [n]t.

Note that the number of samples t in these samplers depends linearly on 1/µ
(if θ = Ω(µ)) and not polynomially as in Lemma 18. Combining the above lemma
with Lemma 17 we get a nonconstructive 1-round universe reduction protocol
with different parameters from those of Theorem 19:

Theorem 23 (nonconstructive, density-tailored 1-round universe re-
duction). There is a universal constant c such that for every p, n ∈ N, β, µ, ε, θ >
0 and every

n′ ≥ c ·max
{

µ

θ2
,
1
θ

}
·
(

log
1
ε

+
β

1− β
·
(

log n + log
1
β

)
+ β · p

)
,

there exists a 1-round [(p, n) 7→ n′]-universe reduction protocol that is [(β, µ) 1−ε7→
µ + θ]-resilient. Moreover, the randomness complexity is p + [log n + log(1/ε)−
log log(1/ε)− log(1/µ) + log log(1/µ) + log(1/β)]/(1− β) + O(1).



Proof. We can choose r ∈ [r′, 2p ·r′] such that r is the p’th power of some natural
number and

r′ =

(
cn · µ log 1

µ

β · ε log 1
ε

) 1
1−β

.

We then apply Lemmas 21 and 22 with ε′ = ε/rβ . ut

5 Putting It Together

In this section we give a sketch of how our main results are obtained by combining
the various building blocks described above. Due to space constraints, details and
formal proofs are deferred to the full version of this work [22].

First we construct a sub-protocol that reduces the size of the universe and
the number of players to n′, p′ = poly(log(1/ε), 1/θ) (Theorem 24). This is ac-
complished by iterating the 1-round player reduction protocol of Theorem 15
to reduce the number of players, and iterating the 1-round universe reduction
protocol of Theorem 19 to reduce the size of the universe. To save on the round
complexity, the player reduction and universe reduction can be done in parallel.
This yields the following theorem, which is the main component of our protocols:

Theorem 24 (many-round universe+player reduction). For every n, p ∈
N and every β, θ, ε > 0, there exists a [(p, n) 7→ (p′, n′)]-universe+player reduc-
tion protocol that is [(β, µ) 1−ε7→ (β + θ, µ + θ)]-resilient for every µ > 0, with

n′ = poly(log(1/ε), 1/θ)
p′ = poly(log(1/ε), 1/θ).

Moreover, the number of rounds is t = max{log∗ n, log∗ p} − log∗ n′ + O(1) and
the randomness complexity is [log n+o(log n)+O(p+t·log(1/ε)+t·log(1/θ))]/(1−
β) + O(p log p).

For Theorem 3, the size of the universe and the number of players are both
reduced to constant (poly(1/δ), where δ is the constant in the statement of the
theorem). We can then run the protocol of Lemma 11, and since all parameters
are constant, the error probability of the final output is also bounded by a
constant less than 1.

For Theorem 5, we wish to use the protocol of Lemma 10 as the final proto-
col, and thus obtain a near optimal probability of error. For this to work well,
however, we require that n′ be exponential in p, and that n′ = Õ(1/µ). This
requires a more delicate reduction than the one above.

First, we reduce the size of the universe to poly(1/µ) in the same way as
above (Theorem 24, ignoring the player reduction). Next we further reduce the
size of the universe to n′ = Õ(1/µ), using the density-tailored 1-round universe
reduction protocol of Theorem 23. This use of a density-tailored reduction is
critical, as it allows the reduction of n′ to 1/µ. Once this is accomplished, we
can use the protocol of Lemma 10.



The protocol of Theorem 6 is the same as that of Theorem 5, except that it
is combined with an appropriate player-reduction protocol (which can be run in
parallel).

6 Lower Bounds

The are several known and new lower bounds for the different parameters of
random selection, and here we state the relevant theorems. A lower bound on
the round complexity is a corollary of a theorem of [39]:

Corollary 25. For any (p, n)-selection protocol that is (β, µ, ε)-resilient with
β ≥ 1/2 and for constants µ > 0 and ε < 1, the round complexity is at least
(log∗ n− log∗ log∗ n−O(1))/2.

The lower bound on the error probability ε is given by a theorem of [17]:

Theorem 26 ([17]). For any (p, n)-selection protocol that is (1−α, µ, ε)-resilient,
ε ≥ µα.

The optimal tradeoff between µ and α is given by the following corollary of
[15, Thm. 4]:

Corollary 27. For any (p, n)-selection protocol that is (1−α, µ, ε)-resilient with
ε < 1, b1/αc ≤ d1/µe − 1.

Finally, in the full version of this work [22], we prove a lower bound on the
randomness and communication complexities.

Theorem 28. For any (p, n)-selection protocol that is (1−α′, µ, ε)-resilient for
ε < 1, the randomness and communication complexities are at least

max
{

(1− α′)p,
1− ε

α
log

µn

ε

}
,

where α = bα′pc/p.
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