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Abstract. We present a robust multiparty computation protocol. The
protocol is for the cryptographic model with open channels and a poly-
time adversary, and allows n parties to actively securely evaluate any
poly-sized circuit with resilience t < n/2. The total communication com-
plexity in bits over the point-to-point channels is O(Snκ + nBC), where
S is the size of the circuit being securely evaluated, κ is the security pa-
rameter and BC is the communication complexity of one broadcast of a
κ-bit value. This means the average number of bits sent and received by
a single party is O(Sκ+BC), which is almost independent of the number
of participating parties. This is the first robust multiparty computation
protocol with this property.

1 Introduction

Efficient Multiparty Computation. A multiparty computation (MPC) protocol
allows n parties to compute an agreed-upon function of their inputs in such a
way that every party learns the correct function output, but no party learns any
additional information about the other parties’ inputs. A protocol is said to be
t-robust if this holds even if up to t of the parties, called the corrupted parties,
in a coordinated manner try to falsify the protocol output by sending wrong
messages, and try to learn extra information by pooling the values that they
learned in the protocol.

Since the publication of the first MPC protocols [Yao82, GMW87, CDG87,

BGW88, CCD88, RB89, Bea91b] a lot of research went into improving the com-
munication complexity [GV87, BB89, BMR90, BFKR90, Bea91a, FH96, GRR98,

CDD+99, CDM00, CDD00, HMP00]. In [HM01] it was shown that any circuit with
S gates can be computed unconditionally secure and t-robust for t < n/3 with
communication complexity O(Sn2κ+n2 BC), where κ is the size of the elements
of the field secret-sharing is done over and BC is the communication complexity
of broadcasting a κ-bit value. Recently, similar communication complexities were
achieved for t < n/2, once with cryptographic security (O(Sn2κ + nBC), where
κ is the security parameter, [HN05]), and once with information-theoretic security
(O(Sn2κ+n3 BC), [BH05]). In these protocols there is an overall O(n) to O(n3)
broadcasts, and besides this the only communication is from each party sending
an average of O(κ) bits to each other party per gate to be evaluated.



Our Contributions. In this paper we show that, maybe somewhat surprisingly, a
circuit with S gates can be computed cryptographically secure and t-robust for
t < n/2 with communication complexity O(Snκ + nBC). This means that the
average number of bits sent and received by a single party is O(Sκ+BC), which
is almost independent of the number of participating parties. In particular, each
party does not send messages to each of the other parties to evaluate a gate.

In contrast to many other efficient MPC protocols, the stated complexity
holds also for circuits with many inputs and outputs, i.e., we give realizations
with linear complexity for input, addition, multiplication, random, local output,
and global output gates.

Related Work. In concurrent and independent work [DI06], it was showed that a
circuit with S gates can be computed t-robust with communication complexity
O

(

Sn poly(κ)
)

. Their protocol is constant-round and can be proven adaptively
secure, in contrast to our protocol which requires linear rounds and is proven
only static secure. However, their protocol only achieves sub-optimal resilience
(essentially t < n/5), whereas our protocol achieves optimal resilience (t < n/2).

2 Protocol Overview

Our MPC protocol follows the approach with homomorphic encryption
of [CDN01]: We assume that a homomorphic encryption scheme is available,
where the encryption key is known to all parties, and the decryption key is
shared among the parties such that we have verifiable threshold decryption. The
function to be computed is represented as an arithmetic circuit with input, ad-
dition (resp. linear), multiplication, random, and output gates. The evaluation
proceeds gate-by-gate, i.e., for each gate an encryption of its value is computed.

Furthermore, we use segmentation and player elimination [HMP00]: The cir-
cuit is divided into n segments of (almost) equal size, and the parties evaluate
one segment after each other. The evaluation of a segment may fail, but in this
case, two parties, (at least) one of them being corrupted, are identified and elim-
inated, and the segment is repeated. Note that at most t times a segment can fail
and must be repeated, hence the adversary can at most double the overall costs.
Also note that, as we have an honest majority in the original party set, we also
have honest majority in the party set resulting from a sequence of eliminations.

When a segment is to be evaluated, an arbitrary (non-eliminated) party is
selected to be the king for this segment [HNP05]. Most sub-protocols are so-called
king-fail-detect protocols, i.e., when cheating occurs, then the sub-protocol may
fail, but then this must be detected by at least one honest party, and the king
must be able to identify a cheater.

The actual evaluation of a segment follows the circuit-randomization ap-
proach of [Bea91b]: First, the parties generate one multiplication triple (A, B, C)
for each multiplication and each random gate in the segment, where A and B are
encryptions of random values and C is an encryption of their product. Then the
parties evaluate the segment gate by gate, where for evaluating a multiplication
or a random gate, one multiplication triple is consumed. The generation of the
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random values is based on super-invertible matrices: This technique allows us to
transform n encryptions of random values, t of them known to the adversary, into
n− t encryptions of random values unknown to the adversary. Furthermore, we
use homomorphic proof systems, i.e., proofs that allow to combine several proofs
into a single, compact proof. Finally we introduce the notion of strong soundness
for a Σ-protocol, which allows to turn Σ-protocols into zero-knowledge proofs
by challenging with an unpredictable, but deterministic value.

3 Preliminaries

The Security Model. Our protocols can be proven secure in the UC model [Can01]

against a static, actively corrupted minority. The page limit is however far from
allowing us full simulation proofs, and we therefore do not need to introduce the
UC model in detail. However we briefly sketch the used communication model.

We assume that at the beginning a party set P = {P1, . . . , Pn} is given, and
all parties Pi ∈ P agree on this set. Furthermore, the parties Pi ∈ P have access
to synchronous, authenticated point-to-point channels. The corrupted parties are
modeled by a probabilistic poly-time (PPT) Turing machine A, the adversary.
Before the execution of the protocol A gets to pick a subset C ⊂ P of size
|C| < n/2, the corrupted parties. Then the protocol is executed. The adversary
decides the scheduling of the honest parties, with the only restriction that in
each round each honest party is scheduled exactly once. The adversary sees all
messages sent, and can chooses the messages to be sent by corrupted parties
based on this.

Broadcast. We assume a protocol broadcast for broadcasting values. Some
party Pi ∈ P has input (Pi, m) and the remaining parties have input (Pi). The
output of all parties will be (Pi, m). The parties will output a common value
(Pi, m

′) even when Pi is corrupted. We will only broadcast O(κ)-bit values,
where κ is the security parameter, and we use BC to denote the communication
complexity of broadcasting O(κ)-bit values. In the analysis of the communica-
tion complexity we assume that BC ≥ O(n2κ), as this is the complexity of the
most efficient broadcast protocol for the cryptographic model [Nie03].

Threshold Signature Schemes. We also need a threshold signature scheme. Here
all parties know the verification key vk and the signing key sk is shared among
the n parties, with Pi holding a secret signing-key share ski. A party Pi can
compute a signature share σi = sigski

(m) and prove in zero-knowledge that σi

is a valid signature share from Pi on m. There is a threshold t < n such that
given a signature share σi on m from t + 1 parties one can compute sigsk(m) =
σ = combine({σi}i), and given t of the keys ski a poly-time adversary cannot
compute a signature on any message m on which it did not receive sigski

(m)
from at least one honest Pi.

Super-Invertible Matrices. We use super-invertible matrices over ZN . Given a
matrix M = {mi,j ∈ ZN}

j=1,...,c
i=1,...,r with r rows and c columns and a subset C ⊂
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{1, . . . , c} we let MC = {mi,j}
j∈C
i=1,...,r denote the matrix consisting of columns j ∈

C from M . If c = r we call M invertible if its columns are linear independent over
ZN . If c ≥ r we call M super-invertible if MC is invertible for all C ⊂ {1, . . . , c}
with |C| = r. If {1, . . . , c} all are mutually prime with N , as will be the case
later, a simple construction exists. For i = 1, . . . , r, let fi be a polynomial of
degree at most r − 1 with fi(i) = 1 and fi(j) = 0 for j ∈ {1, . . . , r} \ {i},
and let M = {mi,j = fi(j)}

j=1,...,c
i=1,...,r . Then M{1,...,r} is the identity matrix and

thus invertible. Furthermore, any matrix MC with C ⊂ {1, . . . , c} and |C| = r
can be mapped onto M{1,...,r} using an invertible matrix given by Lagrange
interpolation over points from {1, . . . , c}.

We use the following simple fact about super-invertible matrices. Pick any
C ⊂ {1, . . . , c} with |C| = r. First sample xj for j 6∈ C using any joint dis-
tribution. Then for each j ∈ C sample xj ∈R ZN uniformly at random, and
independent of {xj}j 6∈C . Let y = (y1, . . . , yr) = M(x1, . . . , xc). Then y is uni-
formly random in (ZN )r.

4 Paillier’s Encryption Scheme

We will use Paillier’s public-key encryption scheme, along with a number of
known and new tools for this encryption scheme.

The public key is N = pq where p and q are O(κ)-bit primes. In addition
p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ are primes such that p, q, p′, q′ are
distinct.

A plaintext m ∈ ZN is encrypted as M = E(m; r) = GmrN mod N2, where
G = N + 1 and r ∈R Z

∗
N is uniformly random. The element N + 1 has order N

in Z
∗
N2 and it can be showed that E is a homomorphism from ZN ×Z

∗
N to Z

∗
N2 ,

where E(m0; r0)E(m1; r1) mod N2 = E(m0 + m1 mod N ; r0r1 mod N).
By the choice of p and q the integers N = pq and φ(N) = 2p′2q′ are mutually

prime, so one can compute an integer d such that d mod N = 1 and d mod
φ(N) = 0. It then follows that E(m; r)d mod N2 = E(md mod N ; rd mod N) =
E(m mod N ; 1), as d mod φ(N) = 0 and the order of r ∈ Z

∗
N divides φ(N). So,

E(m; r)d = (N + 1)m mod N2. It can then be showed that m can be computed
efficiently from (N + 1)m mod N2, without knowing d. Therefore d acts as the
private key and decryption is equivalent to computing E(m; r)d mod N2. In the
following we use m = D(M) to denote the decryption function.

4.1 Σ-Protocols with Strong Soundness.

We will use a large number of zero-knowledge proofs, all based on Σ-protocols.
A Σ-protocol is a three-move proof system. The verifier knows an instance x and
the prover knows a witness w for x. The prover sends a first message a sampled
using x and w. The verifier returns a challenge e ∈ E for some challenge set E,
and then the prover returns a reply c depending on e. Based on the conversation

(x, a, e, c) the verifier either accepts or rejects. A conversation is called valid if
it is accepted by the verifier. To be called a Σ-protocol the system must be
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complete and have the following two properties. Special soundness: Given two
valid conversations (x, a, e, c) and (x, a, e′, c′) with the the same first message
a and different challenges e 6= e′ one can efficiently compute a witness w for
x. Special honest-verifier zero-knowledge: Given any (x, e), where x is a correct

instance, meaning that there exists a witness for x, one can efficiently compute
(a, c) such that the conversation (x, a, e, c) has a distribution statistically close
to that generated by the protocol when run with instance x and challenge e, and
the prover knowing a witness for x.

For any pair (x, a), being an instance and a first message, we say that (e, c)
is a valid pair if (x, a, e, c) is a valid conversation, and we call e a valid challenge

for (x, a) if there exists a valid pair (e′, c) for (x, a) with e′ = e. It follows from
the special soundness that a Σ-protocol has the following property: if x is an
incorrect instance, meaning an instance which has no witness, then for any (x, a)
there exists at most one valid challenge e. We introduce the notion of strong

soundness for a Σ-protocol, by which we will mean that if x is an incorrect
instance, then for all a for which there exists a valid challenge e for (x, a), this
(unique) challenge can be computed efficiently from (x, a). We call a Σ-protocol
with strong soundness a strong Σ-protocol.

As we will see later, a Σ-protocol with strong soundness can be turn
into a zero-knowledge proof in a particularly simple manner, by letting e =
sigsk(nonce) be a signature on some fresh value nonce.

Proof of Plaintext Knowledge. The first strong Σ-protocol is for proving plaintext
knowledge. Normally a Paillier encryption is computed as A = GmrN mod N2.
For generality, we need to consider the case where some other arbitrary element
H ∈ Z

∗
N2 was used in place of G. I.e., the encryption has been computed as

A = HmrN mod N2. In this case m might be an arbitrary integer, but we
assume that a public bound ` is known such that m ≤ 2`.

Proof of plaintext knowledge

1. The verifier knows an instance x = (H, A) and the prover knows a witness

w = (m, r) such that A = HmrN mod N2.
2. The prover samples n ∈R Z2`+κ and s ∈R Z

∗
N , computes B = HnsN mod N2

and sends the first message a = B.
3. The verifier sends a challenge e ∈ ZBound, where Bound is a lower bound on the

primes p′, q′.
4. The prover computes z = em + n and t = res mod N and sends the reply

c = (z, t).
5. The verifier accepts the conversation if HztN ≡N2 AeB.

If ` ∈ O(κ), as will always be the case, the bit-length of a conversation is
seen to be O(κ).

This proof is known to be a Σ-protocol (see e.g. [CDN01]). We argue that
it also has strong soundness. For this we have to consider an incorrect instance
x = (H, A), where A = HmrN mod N2 has no solution for (m, r), and a first
message a = B for which there exists

(

e, (z, t)
)

such that HztN ≡N2 AeB. Then
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we must show how to compute e efficiently from (x, a). The algorithm for doing
this uses the factorization (p, q) of N .

Since H, A ∈ Z
∗
N2 , they are ciphertexts and can be written as A = E(mA; rA)

and H = E(mH ; rH ). The equivalence A ≡N2 HmrN having no solution for
(m, r) is then easily seen to be equivalent to E(mA; rA) ≡N2 E(mH ; rH )mE(0; r)
having no solution for (m, r), which in turn is equivalent to E(0; 1) ≡N2

E(mHm−mA mod N ; rm
Hrr−1

A mod N) having no solution for (m, r). Since set-
ting r = r−m

H rA mod N guarantees that 1 = rm
H rr−1

A mod N , it follows that
A ≡N2 HmrN having no solution for (m, r) is equivalent to mHm ≡N mA

having no solution for m. This implies that there is a prime factor of N , p
say, such that mHm ≡p mA has no solution for m. From this it easily fol-
lows that mA 6≡p 0 and mH ≡p 0. We assumed that HztN ≡N2 AeB. If we
write B = E(mB ; rB), then using arguments as those above it follows that
zmH ≡p emA + mB . From mH ≡p 0 it then follows that emA ≡p −mB, and
from mA 6≡p 0 it follows that e ≡p −mBm−1

A . Since e < Bound ≤ p we there-
fore have that e = −mBm−1

A mod p. Since mB = D(B) and mA = D(A) can
be computed efficiently from (x, a) given the factorization of N , it follows that
e = −mBm−1

A mod p can be computed efficiently from (x, a) given the factor-
ization of N . This establishes the strong soundness.

Proof of Identical Encryptions. The next strong Σ-protocol is for proving iden-
tical encryptions.

Proof of identical encryption

1. The verifier knows an instance x = (H0, H1, A0, A1) and the prover knows a
witness w = (m, r0, r1) with A0 = Hm

0 rN
0 mod N2 and A1 = Hm

1 rN
1 mod N2.

2. The prover samples n ∈R Z2`+κ and s0, s1 ∈R Z
∗
N , computes B0 = Hn

0 sN
0 mod

N2 and B1 = Hn
1 sN

1 mod N2 and sends the first message a = (B0, B1).
3. The verifier sends a challenge e ∈ ZBound.
4. The prover computes z = em + n and t0 = re

0s0 mod N and t1 = re
1s1 mod N ,

and sends the reply c = (z, t0, t1).
5. The verifier accepts the proof if Hz

0 tN
0 ≡N2 Ae

0B0 and Hz
1 tN

1 ≡N2 Ae
1B1.

The bit-length of a conversation is O(κ) bits. Again the proof is known to be
a Σ-protocol. The strong soundness can be argued using techniques very similar
to those used for the proof of plaintext knowledge. In particular, if for a value
(x, a) =

(

(H0, H1, A0, A1), (B0, B1)
)

there does not exist (m, r0, r1) such that
A0 = Hm

0 rN
0 mod N2 and A1 = Hm

1 rN
1 mod N2, but still there exists a valid

challenge e, then e can be computed efficiently given (x, a) and (p, q).

4.2 Homomorphic Conversations

Another notion that we use for efficiency purposes is that of homomorphic con-

versations. We look at the proof of identical encryption for an example.
Let x = (H0, H1, A0, A1) be an instance for the proof system. If the

instance is correct there exists (m, r0, r1) such that A0 = Hm
0 rN

0 mod N2

and A1 = Hm
1 rN

1 mod N2. Assume then that we have ` correct instances
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x(l) = (H0, H1, A
(l)
0 , A

(l)
1 ) with witnesses (m(l), r

(l)
0 , r

(l)
1 ). If we let A0 =

∏`

i=1 A
(l)
0 mod N2 and A1 =

∏`

i=1 A
(l)
1 mod N2, then (H0, H1, A0, A1) is again

a correct instance, as it has the witness (m, r0, r1) with m =
∑`

i=1 m(l),

r0 =
∏`

i=1 r
(l)
0 mod N and r1 =

∏`
i=1 r

(l)
1 mod N . We call (H0, H1, A0, A1) the

combined instance.
A similar property holds for valid conversations. A value (x, a, e, c) =

(

(H0, H1, A0, A1), (B0, B1), e, (z, t0, t1)
)

is a valid conversation iff Hz
0 tN0 ≡N2

Ae
0B0 and Hz

1 tN1 ≡N2 Ae
1B1.

Assume now that we have ` valid conversations (x(l), a(l), e, c(l)) =
(

(H0, H1, A
(l)
0 , A

(l)
1 ), (B

(l)
0 , B

(l)
1 ), e, (z(l), t

(l)
0 , t

(l)
1 )

)

, with the same (H0, H1) and
the same challenge e. Define A0 and A1 as above, and let B0 =
∏`

i=1 B
(l)
0 mod N2, B1 =

∏`

i=1 B
(l)
1 mod N2, z =

∑`

l=1 z(l), t0 =
∏`

l=1 t
(l)
0 mod

N and t1 =
∏`

l=1 t
(l)
1 mod N . Then it can be seen that (x, a, e, c) =

(

(H0, H1, A0, A1), (B0, B1), e, (z, t0, t1)
)

is again a valid conversation, now for
the combined instance (H0, H1, A0, A1) computed above. We call (x, a, e, c) the
combined conversation.

When combining instances and conversations in the following we will sim-
ply write a = combine({ai}`l=1) and c = combine({ci}`l=1) for the above way
to compute the combined first message a and the combined reply c. We later
use combined conversations for efficiency purposes. Note that the only value
in (x, a, e, c) =

(

(H0, H1, A0, A1), (B0, B1), e, (z, t0, t1)
)

which is larger than the

corresponding value in a normal conversation is z, where z =
∑`

l=1 z(l). We will
however only combine polynomially many proofs, so z will be an O(κ)-bit value,
even in combined proofs.

4.3 Distributed Decryption

We then sketch how the decryption function can be distributed. Recall that
when M = E(m; r) = GmrN mod N2, then Md mod N2 = (N + 1)m mod N2,
from which m can be computed efficiently without knowing d. Distributing the
decryption function is therefore equivalent to distributing the function M 7→
Md mod N2, letting each Pi hold a share di of d.

The key distribution is done by a trusted server which generates N and
d and hands N to all parties. It furthermore samples an integer secret shar-
ing (d1, . . . , dn) such that d =

∑n
i=1 di and hands di secretly to party Pi, for

i = 1, . . . , n. To distributedly decrypt a ciphertext M = E(m; r), each party Pi

contributes with the decryption share Mi = Mdi mod N2. Then the parties com-
pute M0 =

∏n

i=1 Mi mod N2 = Md mod N2. Since Md = (N + 1)m mod N2 all
parties can now efficiently compute m from M0. In the following we write this
as m = combine(M1, . . . , Mn). It can be showed [CDN01] that this distributed
decryption protocol does not leak information about d, as the decryption shares
Mi can be simulated given just M and m, without using the values di.

To add robustness to the protocol the actual encryption key distributed by
the trusted server is of the form ek = (N, com1, . . . , comn), where comi is a
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commitment to di. Furthermore, the decryption key share given to Pi is of the
form dki = (di, oi), where oi is an opening of comi to di. After sending the
decryption share Mi = Mdi mod N2 the party Pi will then prove that comi

contains a commitment to a value di for which it holds that Mi = Mdi mod N2.
This guarantees that if all parties give acceptable proofs for their decryption
share Mi, then m = combine(M1, . . . , Mn) is the plaintext of M , except with
negligible probability.

The proof that comi is a commitment to a value di such that Mi = Mdi mod
N2 we will call the proof of correct decryption share. The proof is done using
a Σ-protocol. We denote the instance by x = (ek, M, Mi) and we call a valid
conversation

(

(ek, M, Mi), a, e, c
)

a valid conversation for Mi being the decryption

share of M from Pi. The details of this Σ-protocol have been removed from this
extended abstract due to lack of space.

The Σ-protocol for proving correct decryption share has total bit-length
O(κ). Furthermore, it has homomorphic conversations, in the following sense:
Given n decryption shares M1, . . . , Mn along with a valid conversation
(

(ek, M, Mi), ai, e, ci

)

for each Mi being the decryption share of M from Pi,
it is possible to compute m = combine(M1, . . . , Mn), a = combine(a1, . . . , an)
and c = combine(c1, . . . , cn) such that

(

(ek, M, m), a, e, c
)

is a valid conversation
for a Σ-protocol for proving that m is the plaintext of M when ek is the public
key. In addition, the Σ-protocol for proving that m is the plaintext of M has
strong soundness in the following sense. Given (ek, M, m) where m is not the
plaintext of M (when the N in ek is the encryption key) and given any first
message a, if there exists a valid challenge e for

(

(ek, M, m), a
)

, then this e can

be computed efficiently from
(

(ek, M, m), a
)

given the factorization of N .

5 Setup, Key-share Backup and Party Elimination

We use Pori = {P1, . . . , Pn} to denote the original party set which agreed on run-
ning the protocol. Before our MPC protocol is run we assume that the following
key-distribution has been made. An encryption-key ek for Paillier’s encryption
scheme has been generated and made public, and Pi has been given a decryption
key share dki, as described in Section 4. This means that the decryption key is
shared with threshold n − 1. A verification-key/signing-key pair (vk, sk) for a
threshold signature scheme has been generated and sk is shared among Pori
with threshold n − 1 and Pi holding ski. A verification-key/signing-key pair
(vkzk, skzk) for a threshold signature scheme has been generated and skzk is
shared among Pori with threshold t = b(n−1)/2c and Pi holding skzki. Finally
an auxiliary string has been setup as described in [Dam00] to allow transforming
all Σ-protocols into concurrent zero-knowledge proofs.3

Because the decryption key dk and the signing key sk are shared with thresh-
old n−1 among the parties in Pori one corrupted party can halt the protocol. To

3 The proofs of identical encryption and correct decryption share, with strong sound-
ness, will not be made zero-knowledge using [Dam00], but by challenging with a
signature, as described in Section 6.
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deal with this issue we use the technique of key-share backup by Rabin [Rab98].
As part of the protocol setup, the key shares ski and dki of each Pi ∈ Pori are
verifiably secret shared among the parties in Pori, with threshold t = b(n−1)/2c.
The parties then hold an active party set, originallyPact = Pori. Then, whenever
some protocol fails, the parties will run a detection protocol, detect-eliminate,
where all parties in Pori end up agreeing on a subset D ⊂ Pact that can be
thought of as the active parties causing the failure. Then each Pi ∈ Pori will for
each Pj ∈ D send its shares of dkj and skj to all parties, and all parties recon-
struct dkj and skj . Then the parties set Pact := Pact \D. This ensures that all
parties at all times hold dkj and skj for all eliminated parties Pj ∈ Pori \ Pact.

As opposed to [Rab98] our detection protocol will not detect only corrupted
parties. Our detection protocol will however guarantee that there are at least as
many corrupted parties as honest parties in the detected set D. Therefore Pact
will continue to have honest majority. This is an idea from the party elimination

framework from [HMP00, HM01].

6 Some Sub-Protocols

6.1 Transferable Zero-Knowledge Proofs

We need a protocol trans-zk for a party Pi to give a short transferable zero-
knowledge proof. We assume that there exists a two-party protocol for a prover
Pi to prove some instance x using a witness w, and we assume that the pro-
tocol is zero-knowledge when run concurrently. Such protocols exists for all the
problems that we need to prove in zero-knowledge later, as we based all proofs
on Σ-protocols which can be made concurrent zero-knowledge using [Dam00].
The protocol trans-zk uses the threshold signature scheme (vkzk, skzk) with
threshold t = b(n− 1)/2c.

trans-zk

1. Pi ∈ Pori has input (sid , Pi, x,w), where sid ∈ {0, 1}κ is a unique session
identifier, x is an instance for some proof system and w is a witness for x. Each
Pj ∈ Pori \ {Pi} has input (sid , Pi).

2. Pi: Send (sid , x) to each Pj ∈ Pori and use the witness w to run the two-party
zero-knowledge proof for x with each Pj .

3. Each Pj ∈ Pori: If Pi sends a value x and gives an accepting zero-knowledge
proof for x, then send σj = sigskzkj

(sid , i, x) to Pi.
a

4. Pi: Collect t+1 valid signature shares σj on (sid , i, x) and compute a signature
σ = combine({σj}j) on (sid , i, x). Then output proof (sid , i, x) = (sid , σ).

a Here, and for the rest of the paper, whenever a party sends a signature share
under skj or skzkj it will give a zero-knowledge proof of correctness to the
recipient, and we will not mentioning this explicitly from now on.

The value proof (sid , i, x) is then the transferable proof. If
vervkzk

(

(sid , i, x), σ
)

= 1, then any Pj ∈ Pori will accept (sid , σ) as evidence
that x was proved by Pi in session sid . The proof is clearly zero-knowledge
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when the underlying zero-knowledge proof is concurrent zero-knowledge.
As for soundness, a party Pi can only construct a valid transferable proof
proof (sid , i, x) by obtaining t + 1 signature shares on (sid , i, x). Since we have
assumed that at most a minority of the parties in Pori are corrupted, it follows
that a corrupted prover Pi must give an accepting proof for x to at least
one honest party to construct a valid transferable proof proof (sid , i, x). This
guarantees the soundness. Since t = b(n − 1)/2c and we have assumed that a
majority of the parties in Pori are honest, an honest prover will always receive
t + 1 signature shares on (sid , i, x). This guarantees the completeness of the
proof system.

For all the proof systems that we use, the communication complexity of
one proof is O(κ). Therefore the total communication complexity of one run of
trans-zk is O(nκ), and proofs (sid , σ) have length O(κ).

6.2 King-Fail-Detect Protocols

The rest of our sub-protocols will be so-called King-Fail-Detect (KFD) protocols,
where all parties have inputs, only active parties have outputs and a designated
active party Pking ∈ Pact acts as King. Each party Pi ∈ Pori has some input

(sid , Pking, xi), where sid is a unique session identifier.4 The output of each
active party Pi ∈ Pact will be some value (sid , si, yi), where si ∈ {ok!, failed!}
is a termination status. If si = ok! for all honest Pi ∈ Pact, then we say that
the session succeeded. In that case the values yi constitute the outputs of the
protocol. Otherwise, we say that the session failed. If an honest Pi ∈ Pact has
output si = failed!, then yi = Pj for some Pj ∈ Pact, meaning that Pi accuses
Pj of being corrupted. In words: A KFD protocol is said to fail if some honest,
active party considers it failed, and if a KFD protocol fails, then at least one
honest active party will accuse some active party of causing the failure.

We put some restrictions on what accusations are allowed by the honest par-
ties. Specifically we require that a KFD protocol has the following two properties.
King Awareness: When Pking is honest and at least one honest party Pi ∈ Pact
outputs si = failed! and yi = Pking, then Pking outputs sking = failed!.
Sound Detection: If Pking has outputs sking = failed! and yking = Pj ∈ Pact,
then Pj is corrupted, and if some honest Pi ∈ Pact \ {Pking} has outputs
si = failed! and yi = Pj ∈ Pact \ {Pking}, then Pj is corrupted. In words:
No honest party accuses another honest party, except maybe the King. And, if
some honest party accuses an honest King, then the King will in turn accuse
some corrupted party.

After a KFD protocol the below protocol detect-eliminate will sometimes
be run to detect failing parties and eliminate them. The protocol uses the thresh-
old signature scheme (vk, sk) with threshold n− 1.

In Step 2 in detect-eliminate Pking is instructed to compute a signature
σ on (sid , ok!) when it received correct signature shares σi = sigski

(sid , ok!)

4 Typically the eliminated parties Pi ∈ Pori \ Pact have no input xi, but in some
case they do.
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detect-eliminate

1. Each Pi ∈ Pact: If si = ok!, then send σi = sigski
(sid , ok!) to Pking.

2. Pking: If sking = failed!, then broadcast (corrupt!, yking) to Pori. Oth-

erwise, if some Pi ∈ Pact did not send σi = sigski
(sid , ok!), then broadcast

(complained!, Pi) to Pori, for one of these parties. Otherwise, compute a sig-
nature σ on (sid , ok!) and broadcast σ to Pori.

3. Each Pi ∈ Pact: If Pking broadcast (complained!, Pi), then broadcast

(si, yi) to Pori.
4. Each Pk ∈ Pori: If Pking broadcast (corrupt!, Pj) with Pj ∈ Pact, then

let D = {Pking, Pj}. If Pking broadcast (complained!, Pi) and Pi did not

broadcast si = failed! and yi = Pj ∈ Pact, then let D = {Pking, Pi}. If

Pking broadcast (complained!, Pi) and Pi broadcast si = failed! and yi ∈

Pact, then let D = {Pi, yi}. If Pking broadcast σ = sigsk(sid , ok!), then let

D = ∅. Otherwise, let D = {Pking}.

5. Each Pk ∈ Pori: Let Pact := Pact \D, and for each Pi ∈ D, reconstruct the
key shares dki, ski.

from all Pi ∈ Pact. This is possible as Pking knows ski for all Pi 6∈ Pact, as

these were reconstructed in Step 5 in earlier runs of detect-eliminate.5

Note that if any honest Pi ∈ Pact has si = failed!, then D 6= ∅, and note
that King Awareness and Sound Detection guarantee that there are always at
least as many corrupted parties as honest parties in D. So, if the session fails,
at least one corrupted party is eliminated, and Pact will keep having honest
majority. One run of detect-eliminate can be seen to have communication
complexity O(nκ + BC) = O(BC).

6.3 KFD Signing

We use the below KFD protocol for signing under sk. It is straight-forward to
verify that this is a KFD protocol, with King Awareness and Sound Detection.
When the protocol succeeds it is clear that all parties received a signature σ on
(sid , mking). Since sk is shared with threshold n−1 and sid is used only once, it
is clear that at most one value (sid, m) is signed for each sid. The communication
complexity is O(nκ).

kfd-sign

1. Each Pi ∈ Pact has input (sid , Pking, mi) for Pking ∈ Pact, and if Pking is
honest, then mi = mking for all honest Pi ∈ Pact.

2. Each Pi ∈ Pact: Send σi = sigski
(sid , mi) to Pking.

3. Pking: If some Pi ∈ Pact did not send a valid σi, then output

(sid , failed!, Pi). Otherwise, compute σi = sigski
(sid , mking) for Pi ∈ Pori \

Pact, compute σ = combine(σ1, . . . , σn), and send σ to all parties in Pact.
4. Each Pi ∈ Pact: If receiving σ such that vervk

`

(sid , mi

´

, σ) = 1, then output
`

sid , ok!, (mi, σ)
´

. Otherwise, output (sid , failed!, Pking).

5 Only detect-eliminate will change the value of Pact.
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6.4 KFD Broadcast

We use the KFD protocol kfd-broadcast for broadcasting values. A party
Pj ∈ Pori has a message m which should be sent to all active parties. If m is
an instance of some proof system, then the party Pj also has a witness w for m
which allows Pj to give a zero-knowledge proof for m. In that case the broadcast
only succeeds if Pj can give a proof of m. If the proof fails, the output is some
dummy value D.

kfd-broadcast

1. Some Pj ∈ Pori has input (sid , Pking, Pj , m,w, D) for Pking ∈ Pact, and

each Pi ∈ Pact \ {Pj} has input (sid , Pking, Pj , D).

2. Pj : Run trans-zk(sid , Pj , m, w) to get proof (sid , j, m). The other parties have
input (sid , Pj).

3. Pj : Send
`

sid , m, proof (sid , j, m)
´

to each Pi ∈ Pact.
4. Each Pi ∈ Pact: If receiving

`

sid , m′, proof (sid , j, m′)
´

from Pj , then send it
to Pking.

5. Pking: If receiving any
`

sid , m′, proof (sid , j, m′)
´

from any Pi ∈ Pact, then

pick one of them,
`

sid , m, proof (sid , j, m)
´

, and send it to each Pi ∈ Pact.
6. Each Pi ∈ Pact: If

`

sid , m′, proof (sid , j, m′)
´

was sent to Pking in

Step 4, but Pking did not return any
`

sid , m, proof (sid , j, m)
´

in Step 5,

then output (sid , failed!, Pking). Otherwise, run kfd-sign(sid , Pking, mi)

(with Pking as King)a, where mi is determined as follows. If Pking sent
`

sid , m, proof (sid , j, m)
´

, then mi = m, and otherwise mi = D.
7. Each Pi ∈ Pact: If kfd-sign outputs ok!, then output (sid , ok!, mi). Other-

wise, output (sid , failed!, Pking).

a For the rest of the paper, when a KFD protocol runs another KFD protocol, it
calls it with its own King, and we do not mention this explicitly.

It is easy to verify that kfd-broadcast is a KFD protocol. Assume then
that the protocol succeeds. In that case kfd-sign terminated without failure,
so all honest Pi ∈ Pact had the same input mi. Therefore all honest Pi ∈ Pact
output the same mi. It is easy to see that if in addition Pj is honest, then
mi = m, were m is the input of Pj . Finally, observe that if Pj cannot prove m,
then the output of all honest Pi ∈ Pact will be the dummy value D. Let ` = |m|.
If ` ≥ κ, the communication complexity is seen to be O(n`).

6.5 KFD Promote

The following KFD sub-protocol allows to promote a vector x0, . . . , x`−1 of κ-bit
values, known only by active parties, to all parties. This can be done with com-
munication complexity O(n`κ+n2κ) = O(n`κ+BC) following an idea of [FH06].

6.6 KFD Decryption

The KFD sub-protocol kfd-decrypt allows to decrypt an agreed ciphertext M
toward all active parties. The decryption is performed through a King Pking. The
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kfd-promote

1. Each Pi ∈ Pact has input
`

sid , Pking, (x0, . . . , x`−1)
´

and each Pj ∈ Pori \

Pact has input (sid , Pking, `).

2. Each Pj ∈ Pori: Let f(z) =
P`−1

l=0
xlz

l be the polynomial constituted of the
coefficients xl, and let ~mi be the vector with the ith block of 2d`/|Pact|e values
on f(z), i.e., ~mi =

`

f(i · 2d`/|Pact|e), . . . , f((i + 1) · 2d`/|Pact|e − 1)
´

.
3. Each Pj ∈ Pact: Invoke kfd-sign, to compute signatures σi on ~mi for every

Pi ∈ Pact.
4. Each Pi ∈ Pact: Send (~mi, σi) to every Pj ∈ Pori \ Pact.
5. Each Pj ∈ Pori \ Pact: Accept those vectors ~mi with good signature σi, and

uses them to interpolate f(z) and compute (x0, . . . , x`−1).

protocol assumes that the parties in Pact agree on M , and does not guarantee
that all active parties receive the decryption m (this will be detected in detect-

eliminate), but it guarantees that no party outputs a wrong decryption m. The
protocol uses the homomorphic proofs for correct decryption share.

kfd-decrypt

1. Each Pi ∈ Pact has input (sid , Pking, ek, M, dki).

2. Each Pi ∈ Pact: Compute decryption share Mi = Ddki
(M) and send Mi

to Pking, along with the first message ai in a proof that Mi is the correct
decryption share from Pi.

3. Pking: For Pi ∈ Pori \ Pact, use dki to compute Mi = Ddki
(M) and the first

message ai in a proof that Mi is the correct decryption share from Pi. Compute
m = combine(M1, . . . , Mn) and a = combine(a1, . . . , an) and kfd-broadcast

(m,a) to each Pi ∈ Pact.
4. Each Pi ∈ Pact: Run kfd-sign on (sid) to receive e = sigsk(sid).
5. Each Pi ∈ Pact: Using e as challenge, compute the reply ci for the proof begun

in Step 2. Send ci to Pking.

6. Pking: If for some Pi ∈ Pact the value
`

(ek, M, Mi), ai, e, ci

´

is not a valid
conversation for Mi being the decryption share of M from Pi, then output
(sid , failed!, Pi). Otherwise, for each Pi ∈ Pori \ Pact, use dki to compute
the reply ci of the proof begun in Step 3, using e as challenge. Then compute
c = combine(c1, . . . , cn) and send c to all parties.

7. Each Pi ∈ Pact: If
`

(ek, M, m), a, e, c
´

is not a valid conversation for m be-
ing the plaintext of M , then output (sid , failed!, Pking). Otherwise, output

(sid , ok!, m).

The protocol is a KFD protocol, with King Detection and Sound Detection: If
any KFD sub-protocol fails, the parties adopt the accusation from the first one to
fail. If all KFD sub-protocols succeed, but some party Pi ∈ Pact does not give a
valid conversation

(

(ek, M, Mi), ai, e, ci

)

, then Pking outputs (sid , failed!, Pi).
Otherwise, Pking will, by the homomorphic-conversations property, always com-

pute a valid conversation
(

(ek, M, m), a, e, c
)

for m being the plaintext of M .
Therefore no honest party will output (sid , failed!, Pking).

We then consider the correctness of the protocol, by which we mean that
no honest party outputs (sid , m) with m 6= D(M). Assume for the sake of
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contradiction that some PPT adversary can control the corrupted parties in
such a way that some honest party outputs (sid , m) with m 6= D(M). Con-
sider the proof given by Pking from the viewpoint of an honest Pi ∈ Pact.
In Step 3 Pking sends (m, a). Then e = sigsk(sid) is generated, and in Step 6

Pking then sends c such that
(

(ek, M, m), a, e, c
)

is a valid conversation for m
being the plaintext of M . Since m is not the plaintext of M , it follows from
the strong soundness that using the factorization (p, q) of N one can compute
from (m, a) the one challenge e′ = e(p, q, M, m, a) for which there exists c′

such that
(

(ek, M, m), a, e′, c′
)

is a valid conversation. Since
(

(ek, M, m), a, e =

sigsk(sid), c
)

is a valid conversation (otherwise, Pi would not output (sid , m)), it
follows that e(p, q, M, m, a) = sigsk(sid ). Since the use of kfd-broadcast en-
sures that all Pi ∈ Pact receive the same (m, a), we can consider the point were
(m, a) is received by the first honest Pi ∈ Pact. At this point one can use (p, q)
to compute sigsk(sid ) = e(p, q, M, m, a). However, at this point in the protocol
no honest party Pi ∈ Pact has yet input (sid) to kfd-sign, so by the security
of kfd-sign, it should be infeasible to compute sigsk(sid ). Since the security of
kfd-sign does not depend on (p, q) being hidden, we have a contradiction. This
argument can easily be turned into a formal reduction to the unforgeability of
sigsk.

We then consider the privacy of the protocol. Revealing the decryption shares
leaks no additional information as they can be simulated from M and the plain-
text m. We therefore just have to ensure that the proofs of correct decryption
share do not leak any additional information. This follows from the fact that
the proofs can be simulated given only the decryption shares Mi and the plain-
text m, and especially without using di. Instead of di the simulator will use
the signing key sk. Recall namely that the proofs of correct decryption shares
are performed using a Σ-protocol, and observe that knowing sk allows the sim-
ulator to compute the challenge e = sigsk(sid ) before the proof is run. Using
the instance (ek, M, Mi) and the challenge e the simulator can apply the special
honest-verifier zero-knowledge property to compute a first message ai and a reply
ci for each honest Pi ∈ Pact, such that

(

(ek, M, Mi), ai, e, ci) has a distribution
statistically close to that in the protocol. Then the simulator sends ai to Pking.
When e = sigsk(sid) is output by kfd-sign, the simulator then simply sends
the preprocessed ci as reply.

6.7 Random Encrypted Elements

The next KFD sub-protocol, kfd-random, allows the parties to generate a
common ciphertext B, where the plaintext D(B) is computationally indistin-
guishable to the corrupted parties from a uniformly random value from ZN . For
efficiency many such values are generated in parallel.

Let H consist of the indices i of the honest Pi ∈ Pact, and let C consist of the
indices j of the corrupted Pj ∈ Pact. Note that by the assumption that Pact has
honest majority we have that |H | ≥ t′+1. Consider the ciphertexts (R1, . . . , Rn′).
For i ∈ H , the value ri = D(Ri) is computationally indistinguishable to the
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kfd-random

1. Each Pi ∈ Pact has input (sid , Pking), where Pking ∈ Pact. Let n′ = |Pact|

and t′ = b(n′−1)/2c. For notational convenience assume Pact = {P1, . . . , Pn′}.
2. Each Pi ∈ Pact: Compute Ri = E(ri; ρi) for uniformly random ri ∈ ZN ,

ρi ∈ Z
∗
N . Then kfd-broadcast Ri along with a proof of plaintext knowledge

for Ri. The dummy value is D = E(0; 1).
3. Each Pk ∈ Pact: Now n′ values Ri were received. Using some fixed agreed

upon scheme, pick a super-invertible matrix S = {sj,i}
i=1,...,n′

j=1,...,t′+1
with t′ + 1

rows and n′ columns. Then for j = 1, . . . , t′ + 1, let Bj =
Qn′

i=1
R

sj,i

i mod N2.
Then output (B1, . . . , Bt′+1).

corrupted parties from a uniformly random value from ZN , by semantic security.
For j ∈ C, the proof of plaintext knowledge (along with the choice of dummy
value) guarantees that the value rj = D(Rj) is known by Pj , and thus the
corrupted parties. Since the corrupted parties have no knowledge on ri for i ∈ H
and they know rj for j ∈ C, it follows that to the corrupted parties, the vector
(r1, . . . , rn′) looks as a vector with |C| values chosen by themselves and then
filled in with |H | independent, uniformly random values ri. Since S is a super-
invertible matrix with n′ columns and t′ + 1 ≤ |H | rows, it follows that to the
corrupted parties the vector (b1, . . . , bt′+1) = S(r1, . . . , rn′) looks as a uniformly
random vector from (ZN )t′+1. By the homomorphic properties of the encryption
function it follows that D(Bj) = bj for j = 1, . . . , t′ + 1. It therefore follows
that kfd-random outputs encrypted values which to the corrupted parties look
independent and uniformly random. This is exactly what we need from the
protocol.

The communication complexity is given by the n′ runs of kfd-broadcast

on O(κ)-bit values, giving a total communication complexity of O(n′nκ). The
protocol generates t′ + 1 = Θ(n′) outputs. To generate ` outputs the protocol
will be run d`/(t′ + 1)e ≤ `/(t′ + 1) + 1 times in parallel. In that case the
communication complexity is O(n`κ + n2κ) = O(n`κ + BC).

Recall that each output B was generated as B =
∏n′

i=1 Rsi

i mod N2 for a row
(s1, . . . , sn′) in S, and Pi knows ri and ρi such that Ri = E(ri; ρi). Therefore
all parties can compute Bi = Rsi

i mod N2 for i = 1, . . . , n′ such that B =
∏n′

i=1 Bi mod N2, and Pi can compute bi = siri mod N and βi = ρsi

i mod N
such that Bi = E(bi; βi). We use this in the next sub-protocol.

6.8 Random Encrypted Multiplication Triples

Our last KFD sub-protocol, kfd-triples, allows the parties to generate a triple
(A, B, C), where D(C) = D(A)D(B) mod N , and where D(A) and D(B) are
computationally indistinguishable to the corrupted parties from independent,
uniformly random values from ZN . The protocol uses the homomorphic proofs
of identical encryption.

The protocol is a KFD protocol, with King Detection and Sound Detec-
tion: If any KFD sub-protocol fails, the parties adopt the accusation from the
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kfd-triples

1. First kfd-random is run to generate random encryptions. Two of these are
taken and renamed to A and B. All parties know {Bi}Pi∈Pact

such that

B =
Q

Pi∈Pact
Bi mod N2, and Pi knows (bi, βi) such that Bi = E(bi; βi) =

GbiβN
i mod N2.

2. Each Pi ∈ Pact: Compute Ci = AbiγN
i mod N2 for uniformly random γi ∈R

Z
∗
N , and send Ci to Pking, along with the first message ai in a proof that there

exists (bi, βi, γi) such that Bi = GbiβN
i mod N2 and Ci = AbiγN

i mod N2.
3. Pking: Compute C =

Q

Pi∈Pact
Ci mod N2 and a = combine({ai}Pi∈Pact

)

and kfd-broadcast (C, a).
4. Each Pi ∈ Pact: On (C, a), run kfd-sign on (sid) to receive e = sigsk(sid).
5. Each Pi: Compute the reply ci in the proof begun in Step 2, using e as challenge.

Send ci to Pking.

6. Pking: If for any Pi ∈ Pact the value
`

(G, A,Bi, Ci), ai, e, ci

´

is not a

valid conversation, then output (sid , failed!, Pi). Otherwise, compute c =
combine({ci}Pi∈Pact

) and send c to all parties.

7. Each Pi ∈ Pact: If
`

(G, A,B, C), a, e, c
´

is not a valid conversation for the

claim that there exists (b, β, γ) such that that B = GbβN mod N2 and
C = AbγN mod N2, then output (sid , failed!, Pking). Otherwise, output
`

sid , ok!, (A,B, C)
´

.

first one to fail. If all KFD sub-protocol succeed, but some party Pi ∈ Pact
does not give a valid conversation

(

(G, A, Bi, Ci), ai, e, ci

)

, then Pking outputs
(sid , failed!, Pi). Otherwise, Pking can, by the homomorphic-conversations

property, always compute a valid
(

(G, A, B, C), a, e, c
)

. Therefore no honest
party will output (sid , failed!, Pking).

As for the correctness, notice that the use of kfd-broadcast guarantees
that when kfd-triples succeeds, then the honest Pi ∈ Pact output a common
value (A, B, C). And, as for kfd-decrypt, it follows from the strong soundness
and the unforgeability of sigsk that when the protocol succeeds, then except with
negligible probability there exists (b, β, γ) such that that B = GbβN mod N2 and
C = AbγN mod N2. Therefore D(B) = D(GbβN ) = b and D(C) = D(AbγN ) =
bD(A) mod N = D(B)D(A) mod N , as required.

As for the privacy, the encryption Ci =AbiγN
i mod N2 hides bi, and the proofs

can be simulated without bi using the simulation technique from kfd-decrypt.

To generate ` triples, the protocol is run ` times in parallel. In that case the
communication complexity in bits is O(n`κ + BC). Namely, the communication
complexity for generating 2` random values using kfd-random is O(n`κ+BC).
The extra communication complexity per triple is then given by the run of
kfd-broadcast and kfd-sign, each O(nκ), and sending a constant number of
O(κ)-bit values between Pking and each of the other parties.
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7 The MPC Protocol

In the MPC protocol eval the parties are given an acyclic circuit Circ = {Ggid},
where each Ggid is a gate with gate identifier gid ∈ {0, 1}κ. Each gate is of one
of the following types:

Input gate (gid, in, i): Let Pi ∈ Pori give a secret input xgid.

Multiplication gate (gid, mul, gid1, gid2): xgid ← xgid1
xgid2

mod N .

Linear gate (gid, lin, a0, a1, gid1, . . . , a`, gid`): xgid ← a0 +
∑`

l=1 alxgidl
.

Random gate (gid, ran): A secret xgid ∈ ZN is sampled uniformly at random.

Global output gate (gid, gout, gid1): Let every Pi ∈ Pori learn xgid1
.

Local output gate (gid, lout, gid1, i): Let Pi ∈ Pori, and only Pi, learn xgid1
.

We assume that we are given a segmentation (Seg1, . . . , Segm) of the circuit,
such that the value of every gate in Segi only depends on values of gates in Segj

with j ≤ i. Furthermore, we require that if a segment contains an output gate,
then it does not contain an input or a random gate. This requirement is made to
ensure that if a segment is evaluated twice in a row, then all outputs will be the
same. This is needed for privacy reasons. If in addition it should not be possible
for the parties to pick inputs based on earlier outputs, all segments containing
input gates should appear before all segments containing output gates.

During the protocol a party Pi ∈ Pact stores a representation (gid, Xgid)
for some gates gid. These values will be consistent in the sense that all parties
storing a value (gid, Xgid) for some gid agree on Xgid. When gid is an output
gate, then Xgid ∈ ZN is a plaintext, and otherwise Xgid ∈ Z

∗
N2 is a ciphertext.

For an input gate (gid, in, i) to be called correct we require that Pi gave a
proof of plaintext knowledge for Xgid. When Pi is honest, we also require that
D(Xgid) = xgid. When (gid, in, i) is correct we define V(gid) = D(Xgid). We
extend V(·) to the rest of the circuit by V(gid) = V(gid1)V(gid2) mod N for

multiplication gates and V(gid) = a0 +
∑`

l=1 alV(gidl) mod N for linear gates.
We then call a multiplication or linear gate correct if D(Xgid) = V(gid), and we
say that a global output gate is correct if Xgid = V(gid1). The goal is to end up
with all gates in Circ being correct and all parties Pi ∈ Pori holding (gid, Xgid)
for all output gates.

It is straightforward to see that the inputs to detect-eliminate in Step 2e
have King Awareness and Sound Detection: If any of the KFD sub-protocols fail,
the parties adopt the accusation from the first one to fail, and if no KFD sub-
protocol fails and yet some active honest party does not have a representation of
all output gates at the end of the protocol, then clearly Pking itself is corrupted.

The use of kfd-broadcast ensures that all parties receiving values receive
the same values. Therefore the stored representations are at all times consistent.

That the circuit is at all times correct follows from the homomorphic proper-
ties of E . For a linear gate it holds that D(Xgid) = a0+

∑`
l=1 alD(Xgidl

) mod N .
So, if D(Xgidl

) = V(gidl) for l = 1, . . . , `, then D(Xgid) = V(gid). For a multipli-
cation gate it holds that D(Xgid) = αβ − αD(Bgid)− βD(Agid) +D(Cgid) mod
N =

(

α−D(Agid)
)(

β−D(Bgid)
)

mod N , as D(Cgid) = D(Agid)D(Bgid) mod N .
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eval

1. Each Pi ∈ Pori has input Circ = (Seg1, . . . , Segm) and xgid ∈ ZN for every
(gid, in, i) ∈ Circ. Let Pact = Pori and let cur = 1.

2. Terminate if cur > m, otherwise, let Seg = Segcur and let Pking denote the
party in Pact with the smallest index.
(a) (Prepare multiplication triples) Run kfd-triples with Pking to generate

triples (Agid, Bgid, Cgid) for each (gid, mul, ·, ·), (gid, ran) ∈ Seg.
(b) (Evaluate segment) Every gate Ggid ∈ Seg is evaluated (in parallel) as soon

as its source-gates have been evaluated.
Input: For (gid, in, i), Pi ∈ Pori generates Xgid ← E(xgid) and kfd-

broadcast the encryption Xgid along with a proof of plaintext knowl-
edge, with Pking as King and D = E(0; 1) as dummy value. Every Pj

stores the value Xgid broadcasted by Pi as (gid,Xgid).
Random: For (gid, ran), Pi ∈ Pact stores (gid,Agid).
Linear function: For (gid, lin, a0, a1, gid1, . . . , a`, gid`), let Xgid =
E(a0; 1)

`
Q`

l=1
X

al
gidl

´

mod N2, and store (gid,Xgid).
Multiplication: For (gid, mul, gid1, gid2), run kfd-decrypt on

Xgid1
Agid mod N2 and Xgid2

Bgid mod N2. Let α and β be the
respective outputs, let Xgid = E(αβ; 1)B−α

gid A−β

gidCgid mod N2, and
store (gid, Xgid).

Global output: For (gid, gout, gid1), let Xgid = Xgid1
, run kfd-decrypt

on Xgid, and let xgid be the output. Store (gid, xgid).
Local output: For (gid, lout, gid1, i), Pi ∈ Pori selects a random blinding

bgid ∈R ZN , and the parties first evaluate (gid, in, i) for input bgid, re-
sulting in an encryption Bgid, then evaluate (gid, gout, ·) for the encryp-
tion Xgid = Xgid1

Bgid mod N2, and store the blinded result (gid, xgid).
(c) (Result promotion) Let ` be the number of global and local outputs in Seg.

Invoke kfd-promote with input (xgid1
, . . . , xgid`

) to promote these values
from Pact to Pori. Parties Pi ∈ Pori \ Pact store (gid, xgid) for every
output xgid.

(d) (Result unblinding) Every party Pi ∈ Pori with local output
(gid, lout, ·, i) ∈ Seg stores (gid, xgid − bgid mod N).

(e) (Detect and eliminate) Each Pi ∈ Pact: Run detect-eliminate with
input (si, yi) derived as follows. If some KFD sub-protocol terminated with
output si = failed!, then use the accusation yi from the first one to
fail. Otherwise, if all KFD sub-protocols output si = ok!, but a value
(gid, ·) was not stored for all gates Ggid ∈ Seg, then use si = failed! and
yi = Pking. Otherwise, use si = ok!.

(f) (Conclude segment) If no parties were eliminated in detect-eliminate,
then let cur := cur + 1. Go to Step 2.

Since α = D(Xgid1
Agid) = D(Xgid1

) + D(Agid) mod N and β = D(Xgid2
) +

D(Bgid) mod N , it follows that D(Xgid) = D(Xgid1
)D(Xgid2

) mod N , as de-
sired. The correctness of global output gates follows from the correctness of
kfd-decrypt, the correctness of local output gates follows from the correctness
of global output gates and from the fact that any (also eliminated) parties can
input a blinding bgid.
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Since the circuit is at all times correct and a segment only succeeds if all
active parties end up with a representation of all gates in the segment, it follows
that when a segment succeeds, then Xgid = V(gid) for all output gates gid at all
active parties. The correctness of kfd-promote then guarantees that all parties
end up storing

(

gid,V(gid)
)

for all output gates (gid, gout, gid1) ∈ Seg, and the
correctness of local outputs is guaranteed by the correctness of the (blinded)
global outputs.

The privacy of the protocol follows as for previous MPC protocols based
on threshold homomorphic encryption (see e.g. [CDN01]). The important point
being that e.g. α = D(Xgid1

) + D(Agid) mod N leaks no information to the
corrupted parties, as D(Agid) looks uniformly random to them and thus blinds
D(Xgid1

). The privacy of local output is guaranteed by the blinding chosen by
the output party.

As for the communication complexity it can be seen that evaluating Segcur

generates communication O(|Segcur|nκ + BC) bits. We can divide the circuit
Circ of any function into m = O(n) segments of size at most d|Circ|/ne, and
evaluating Circ requires evaluation of at most m + t = O(n) segments. Hence,
the total communication complexity is O(|Circ|nκ + nBC) bits.

8 Conclusions

Any function can be securely evaluated by n parties with communication
O(|Circ|nκ + nBC) bits, where Circ is a circuit computing the function, κ is
the security parameter, and BC is the communication complexity of broadcast.
The communication complexity is linear in the number of parties, for all types
of gates, including multiplication, input and output gates.
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