
How Should We Solve Search Problems
Privately?

Amos Beimel1, Tal Malkin2?, Kobbi Nissim1??, and Enav Weinreb3

1 Dept. of Computer Science, Ben-Gurion University. Be’er Sheva, Israel.
{beimel|kobbi}@cs.bgu.ac.il

2 Dept. of Computer Science, Columbia University, New York, NY.
tal@cs.columbia.edu

3 Dept. of Computer Science, Technion, Haifa, Israel.
weinreb@cs.technion.ac.il

Abstract. Secure multiparty computation allows a group of distrust-
ing parties to jointly compute a (possibly randomized) function of their
inputs. However, it is often the case that the parties executing a computa-
tion try to solve a search problem, where one input may have a multitude
of correct answers – such as when the parties compute a shortest path
in a graph or find a solution to a set of linear equations.

Picking one output arbitrarily from the solution set has significant impli-
cations on the privacy of the algorithm. Beimel et al. [STOC 2006] gave
a minimal definition for private computation of search problems with
focus on proving impossibility result. In this work we aim for stronger
definitions of privacy for search problems that provide reasonable privacy.
We give two alternative definitions and discuss their privacy guarantees.
We also supply algorithmic machinery for designing such protocols for a
broad selection of search problems.

1 Introduction

Secure multiparty computation addresses a setting where several distrusting
parties want to jointly compute a function f(x1, . . . , xn) of their private in-
puts x1, . . . , xn, while maintaining the privacy of their inputs. One of the most
fundamental, and by now well known, achievements in cryptography (initiated
by [19, 14, 8, 3], and continued by a long line of research) shows that in fact for
any feasible function f , there exists a secure multiparty protocol for f (in a
variety of settings). However, in many cases, what the parties wish to compute
is not a function with just a single possible output for each input, and not even
a randomized function with a well defined output distribution. Rather, in many
cases the parties are solving a problem where several correct answers (or solu-
tions) may exist for a single instance x = (x1, . . . , xn). For example, the parties
may jointly hold a graph and wish to compute a shortest path between two of

? Research partially supported by the NSF (grant No. CCF-0347839).
?? Research partially supported by the Israel Science Foundation (grant No. 860/06).

its vertices or to find a minimal vertex cover in it.4 We call such problems search
problems. In such cases, to apply known results of secure multiparty computa-
tion, one has first to decide upon a polynomial-time computable function that
solves the search problem.

An approach often taken by designers of secure multiparty protocols for such
applications is to arbitrarily choose one of the existing algorithms/heuristics for
the search problem, and implement a secure protocol for it. This amounts to
choosing an arbitrary (possibly randomized) function that provides a solution,
and implementing it securely. The privacy implications of such choices have not
been analyzed, and it is clear that if the computed function leaks unnecessary
information on the parties’ private inputs, any protocol realizing it, no matter
how secure, will also leak this information. Thus, some privacy requirements
should be imposed on the chosen input-output functionality.

To illustrate the necessity of a rigid discussion of secure computation of search
problems, consider the following setting. A server holds a database with valuable
information, and a client makes queries to this database such that there may be
many different answers to a single query. The server is interested in answering
the client’s queries in a way that reveals the least information possible on the
database. However, the strategy the server chooses to answer each query might
reveal information. For example, consider a case where the client queries for the
name of a person whose details are in the database and satisfies some condition.
An arbitrary solution such as answering with the details of the appropriate
person whose name is the lexicographically first in the database reveals the fact
that every person prior to that person in the lexicographic order does not satisfy
the given condition.

In this paper we study the privacy implications of how the output is chosen for
search problems, propose suitable privacy requirements, and provide construc-
tions achieving them for several problems (see details below). This generalizes
the approach of [1], who introduced the problem of private search algorithms in
the context of private approximations. Beimel et al. [1] have put forward what
seems to be a minimal requirement of privacy (first coined in the context of
private approximation of functions [10], and later extended to search problems):

If two instances x, y have an identical set of possible solutions, their outputs
should not be distinguished.

That is, in order for the algorithm to be private, the output must depend only
on the solution set, and not on the specific input. In spirit of this requirement,
we say that two inputs are equivalent if they have the same set of solutions.

This definition was reasonable in the context of [1] because they provide
mostly negative results (so a weaker definition corresponds to stronger infea-
sibility results), and because in the context of private approximations of func-

4 Another example is when the parties compute an approximation to a function f()
as in [10, 16, 17]. Again, there is potentially more than one correct answer for an
instance.

tions5, this turns out to be a significant privacy guarantee (as it implies that
no information beyond the original f(x) is leaked). However, in the context of
search problems the implication is potentially much weaker – that no information
beyond the entire solution set of x is leaked. Arguably, for most applications re-
quiring privacy, leaking information up to the entire solution set does not provide
a sufficient privacy guarantee. Furthermore, even with this minimal definition of
privacy, the notion of private search has so far proved to be very problematic.
Search versions of many NP-complete problems do not admit even very weakened
notion of private approximation algorithms [1, 2], and private search is infeasible
even to some problems that do admit polynomial time search algorithms.

We are thus faced with a double challenge: first, strengthen the definition,
imposing further requirements on the function in order to provide reasonable
privacy guarantees. Second, provide protocols implementing the stronger defini-
tion for as wide as possible class of search problems. This is the goal we tackle
in this work.

1.1 This Work

As discussed above, the outcome of a private algorithm A when run on an
instance x should only depend on the set of possible solutions to x. Which
further requirements should be imposed on this outcome? While the answer
to this question may be application dependent, we identify two (incomparable)
requirements that are suitable in many situations, and study which problems
admit those requirements and which techniques can be used to achieve them.
Before elaborating on this, let us start with two näıve proposals that are used
to demonstrate essential privacy considerations arising for search problems, and
to facilitate our actual proposed definitions and algorithms.

Deterministic vs. Randomized Private Algorithms. Consider first requir-
ing any private algorithm A to be deterministic. As such, it consistently selects
one of the solutions, hence subsequent applications of the algorithm on the same
(or equivalent) inputs do not reveal further information. A possible choice is to
output the lexicographically first solution. This choice is computationally fea-
sible for several polynomially solvable search problems such as the problem of
finding a solution for a linear system, and stable marriage (using the stable
marriage with restrictions algorithm [9]).6 Deterministic algorithms, however,
leak definite information, that (depending on the application) may turn to be
crucial. E.g., the lexicographically first solution rules out all solutions that are
ordered below it. Furthermore, deterministic algorithms would enable verifying
that the instance x is not equivalent to another instance y, even if x, y have

5 And similarly for those instances of search problems for which a unique solution
exists.

6 The recent protocols of [15, 11] also output a deterministic solution – the outcome
of the Gale-Shapley algorithm [12]. However, this is not a private search algorithm.

similar solution sets, just by checking the outcome of the algorithm on both
instances.

Next, consider a randomized algorithm A, which on input x selects from
the set of solutions according to a specific distribution (depending only on the
solution set). A natural choice here is to pick a solution uniformly at random.
Randomized private algorithms may be advantageous to deterministic private
algorithms, as the information they leak is potentially “blurred”. For example, if
instances x, y have similar solution sets, then the resulting output distributions
would be close. On the other hand, when applied repeatedly on the same instance
there is a potential for an increased leakage. E.g., for the problem of finding a
solution for a linear system of equations, the number of revealed solutions grows
exponentially in the number of invocations, until the entire solution space is
revealed.

We note that the benefits and disadvantages of deterministic and randomized
algorithms are generally incomparable. Moreover, there exist problems for which
an algorithm outputting a uniformly selected solutions exist, but no determin-
istic private algorithm exists (under standard assumptions), and vice versa (see
Appendix A).

Framework: Seeded Algorithms. In the following, we restrict our attention
to what we call seeded algorithms. The idea of seeded algorithms is not new –
these are deterministic algorithms that get as input a “random” seed s and an
instance x. If the seed s is selected at random the first time the seeded algorithm
is invoked, subsequent invocations on the same input may be answered consis-
tently. A seeded algorithm allows selecting a random solution for each instance
(separately), while preventing abuse of repeated queries. Arguably, seeded algo-
rithms are less desirable than algorithms that do not need to maintain any state
information.7 However, we note that the state information of seeded algorithms is
rather easy to maintain, as they do not need to keep a log of previously answered
queries, and hence their state does not grow with the number of queries. In that,
the usage of seeded algorithms is similar to that of pseudorandom functions.

Our Results. To focus on the choice of a function for solving a search problem,
we abstract out the implementation details of the underlying secure multiparty
setting (in analogy to [10, 16, 1, 2]). Our results directly apply to a client-server
setup, where the server is willing to let the client learn a solution to a specific
search problem applied to its input. They (similarly) directly apply to the setup
of a distributed multiparty computation where the parties share an instance
x using a secret sharing scheme, as it can be reduced to a client-server setup
using secure function evaluation protocols [19, 14, 8, 3]. In the general setup of

7 In secure multiparty computation, the parties should jointly generate a random seed,
and then work with this shared seed in subsequent executions of the algorithm. In
a client-server setup, the server should generate the seed the first time it is invoked,
and use it in future invocations.

distributed multiparty computation, however, one may also consider definitions
that allow leakage to a party of any information implied by its individual input.

Equivalence Protecting Algorithms. Equivalence protecting algorithms are seeded
algorithms that choose a uniformly random answer for each class of equivalent
instances. Given the seed, the output is deterministic and respects equivalence of
instances – an access to an equivalence protecting algorithm AP for a problem
P simulates an access to a random oracle for P that answers consistently on
inputs with the same solutions.8

To some extent, equivalence protecting algorithms enjoy benefits of both the
näıve privacy notions discussed above, deterministic and randomized private al-
gorithms: (i) there is a potential for not giving “definite” information; and (ii)
leakage is not accumulated with repeated queries. However, equivalence protect-
ing algorithms do allow distinguishing instances even when their solution sets
are very close.

In Section 3 we reduce the problem of designing an equivalence protecting
algorithm for a search problem, to that of (i) designing a deterministic algorithm
for finding a canonical representative of the equivalence class; (ii) designing a
randomized private algorithm returning a uniformly chosen solution; and (iii) the
existence of pseudorandom functions. We then show how to use this to construct
an equivalence protecting algorithm for what we call “monotone search prob-
lems”, a wide class of functions including perfect matching in bipartite graphs
and shortest path in a directed graph. We further demonstrate the power of our
general construction by showing an equivalence protecting algorithm for solving
a system of linear equations over a finite field.

Resemblance Preserving Algorithms. Our second strengthening of the require-
ments on a private search algorithm addresses the problem of distinguishing
non-equivalent instances with similar solution sets. Similarly to equivalence pro-
tecting algorithms, resemblance preserving algorithms choose a random solution
for each set of equivalence instances. However, here the choices for non-equivalent
instances are highly correlated such that pairs of instances that have close output
sets are answered identically with high probability.

In Section 4 we present a generic construction of resemblance preserving
algorithms, for any search problem whose output space admits a pairwise inde-
pendent family of permutations, where the minimum of a permuted solution set
can be computed efficiently. Examples of such search problems include finding
roots or non-roots of a polynomial, solving a system of linear equations over a
finite field, finding a point in a union of rectangles in a fixed dimensional space,
and finding a satisfying assignment for a DNF formula. It is interesting to note
that for the last problem, finding an efficient equivalence protecting algorithm
implies P=NP.

To summarize, we present two definitions (suitable for different applications),
provide technical tools to achieve these definitions, and identify generic classes,
8 Such a random oracle can be thought of as an ideal model solution to the problem,

which this definition requires to emulate.

as well as specific examples, of search problems where our tools can be used to
yield private search algorithms with the desired properties. The main concep-
tual contribution of the paper is in putting forward the need to study private
computation of search problems (where a non-private solution is well known),
analyzing privacy considerations, and defining equivalence protecting and resem-
blance preserving algorithms. The main technical contribution of the paper is
in the tools and algorithms presented in Section 4 for resemblance preserving
algorithms.

2 Definitions

We define a search problem as a function assigning to an instance x ∈ {0, 1}n

a solution set Pn(x). Two instances of a search problem are equivalent if they
have exactly the same solution set. More formally:

Definition 1 (Search Problem). A search problem is an ensemble P = {Pn}n∈N

such that Pn : {0, 1}n → 2{0,1}q(n)
for some positive polynomial q(n).

Definition 2. For a search problem P the equivalence relation ≡P includes all
pairs of instances x, y ∈ {0, 1}n such that Pn(x) = Pn(y).

We recall the minimal definition of private search algorithms from [1]. All
our definitions will be stronger – an algorithm that satisfies Definition 7 or
Definition 13 trivially satisfies Definition 3.

Definition 3 (Private Search Algorithms [1]). A probabilistic polynomial
time algorithm AP is a private search algorithm for P if (i) AP(x) ∈ Pn(x)
for all x ∈ {0, 1}n, n ∈ N; and (ii) for every polynomial-time algorithm D and
for every positive polynomial q(·), there exists some n0 ∈ N such that for every
x, y ∈ {0, 1}∗ such that x ≡P y and |x| = |y| ≥ n0∣∣∣Pr[D(AP(x), x, y) = 1]− Pr[D(AP(y), x, y) = 1]

∣∣∣ ≤ 1
q(|x|)

.

That is, when x ≡P y, every polynomial time algorithm D cannot distinguish if
the input of AP is x or y.

We proceed to a standard definition of pseudorandom functions from binary
strings of size n to binary strings of size `(n), where `(·) is some fixed polynomial.

Definition 4 (Pseudorandom Functions [13]). A function ensemble F =
{Fn}n∈N of functions from {0, 1}n to {0, 1}`(n) is called pseudorandom if for
every probabilistic polynomial time oracle machine M , every polynomial p(·),
and all sufficiently large n’s,∣∣∣Pr[MFn(1n) = 1]− Pr[MHn(1n) = 1]

∣∣∣ < 1
p(n)

where `(·) is some fixed polynomial, and H = {Hn}n∈N is the uniform function
ensemble over functions from {0, 1}n to {0, 1}`(n).

Finally, we define seeded algorithms, which are central to our constructions.

Definition 5 (Seeded Algorithms). A seeded algorithm A is a deterministic
polynomial time algorithm taking two inputs x, sn where |x| = n and |sn| = p(n)
for some polynomial p(). The distribution induced by a seeded algorithm on an
input x is the distribution on outcomes A(x, sn) where sn is chosen uniformly
at random from {0, 1}p(|x|).

Informally, a seeded algorithm is private if it is a deterministic private algorithm
for every choice of the seed sn, i.e., A(x, sn) = A(y, sn) for all sn ∈ {0, 1}p(|x|)

whenever x ≡P y.

3 Equivalence Protecting Privacy Definition

In this section we suggest a definition of private algorithm for a search prob-
lem and supply efficient algorithms satisfying this definition for a broad class
of problems. The privacy guarantee we introduce enjoys the advantages of both
deterministic and random algorithms. Based on the existence of pseudorandom
functions, it provides solutions that look random but do not leak further in-
formation while executed repeatedly on inputs that are equivalent. In order to
suggest appropriate privacy definitions for secure computation of a search prob-
lem, we need to picture how such a computation would take place in an ideal
world. The following two definitions capture random sampling of an answer that
depends only on the solution set (and not on the specific input).

Definition 6 (Private Oracle). Let P = {Pn}n∈N be a search problem and p

be the polynomial such that Pn : {0, 1}n → 2{0,1}p(n)
. We say that for a given

n ∈ N an oracle On : {0, 1}n → {0, 1}p(n) is private with respect to Pn if

1. For every x ∈ {0, 1}n it holds that On(x) ∈ Pn(x). That is, On returns
correct answers.

2. For every x, x′ ∈ {0, 1}n it holds that x ≡P x′ implies On(x) = On(x′). That
is, On satisfies the privacy requirement of Definition 3.

An oracle that is private with respect to P represents one possible func-
tionality that solves the search problem and protects the equivalence relation.
We define an algorithm to be equivalence protecting if it cannot be efficiently
distinguished from a random oracle that is private with respect to P.

Definition 7 (Equivalence Protecting Algorithm). Let P = {Pn}n∈N be
a search problem. An algorithm A(·, ·) is private with respect to ≡P , if for every
polynomial time oracle machine D, for every polynomial p, and for all sufficiently
large n’s, ∣∣∣Pr[DOn(1n) = 1]− Pr[DA(·,sn)(1n) = 1]

∣∣∣ < 1
p(n)

,

where the first probability is over the uniform distribution over oracles On that
are private with respect to P, and the second probability is uniform over the
choices of the seed sn for the algorithm A.

In the above definition we arbitrarily choose the uniform distribution over
private oracles. We note that, for some applications, other distributions might
be preferred; the definition can be easily adjusted to such scenarios. We note
that using the uniform distribution is common in many sampling algorithms,
e.g., [18].

The following two definitions will be helpful in constructing equivalence pro-
tecting algorithms for various search problems. The first definition discusses
algorithms that return a representative element for every equivalence class of
the search problem P. The second defines sampling an answer from the output
set of a given input.

Definition 8 (Canonical Representative Algorithm). Let P = {Pn}n∈N
be a search problem. An algorithm A is a canonical representative algorithm
for P if (i) for every x ∈ {0, 1}n it holds that x ≡P A(x); and (ii) for every
x, y ∈ {0, 1}n, it holds that A(x) = A(y) iff x ≡P y.

Definition 9 (Output Sampling Algorithm). Let P = {Pn}n∈N be a search
problem. A randomized algorithm A is called an output sampling algorithm for
P if for every x ∈ {0, 1}n the distribution A(x, r) is computationally indistin-
guishable from UnifP(x), the uniform distribution on the possible outputs on x.

We reduce the problem of designing an equivalence protecting algorithm
for a search problem into designing a canonical representative algorithm and
an output sampling algorithm for the problem. The construction is based on
the existence of pseudorandom functions. Let F = {Fn}n∈N be an ensemble of
pseudorandom functions from {0, 1}n to {0, 1}`(n), where `(·) is a polynomial
that bounds the number of random bits used by the output sampling algorithm.
We denote by fsn

(x) the output of the function indexed by s on an input x ∈
{0, 1}n. The proof of Theorem 1 is omitted here.

Algorithm General Equivalence Protecting

Input: An instance x ∈ {0, 1}n and a seed sn for a family of pseudorandom
functions F = {Fn}n∈N.
Output: A solution sol ∈ Pn(x).

1. Compute y = Arep(x).
2. Compute r = Fsn(y).
3. Output sol = Arand(y, r).

Theorem 1. Let P be a search problem. Suppose P has (i) an efficient output
sampling algorithm Arand; and (ii) an efficient canonical representative algo-
rithm Arep. Then Algorithm General Equivalence Protecting is an efficient
equivalence protecting algorithm for P.

3.1 Private Algorithms for Monotone Search problems

In view of Theorem 1, the construction of a private algorithm for a given search
problem is reduced to finding a canonical representative algorithm and an out-
put sampling algorithm.We focus on search problems in which an output is a
subset of the input satisfying some property. We reduce the design of a canonical
representative algorithm into deciding whether an input element is contained in
some possible output.

Definition 10 (Monotone Search Problem). Let P be a search problem
and view the inputs to Pn as subsets of [n]. We say that P is a monotone search
problem if there exists a set S⊆2[n] such that Pn(X) = 2X ∩ S for every input
X⊆[n]. That is, there is a global set S of solutions and the outputs of X are the
solutions that are contained in X.

For example, the problem of finding a perfect matching in a bipartite graph
is monotone. The global set of solution consists of all the graphs whose edges
form exactly a perfect matching. For every bipartite graph G, the set of solutions
on G, is the set of perfect matching graphs whose edges are contained in G.

Definition 11 (Relevant Element). Let P be a subset search problem and
X be an input to Pn. We say that i∈X is relevant to X if there is an output
Y ∈ Pn(X) such that i ∈ Y . We denote by R(X) the set of elements relevant to
X.

In the perfect matching example, an edge is relevant if it appears in some
perfect matching. The following claim shows that computing R(X) efficiently
from X is sufficient to get a representation algorithm.

Claim 1. Let P be a monotone search problem and X, Y⊆[n] be inputs of Pn.
Then (i) X ≡P R(X); and (ii) X ≡P Y if and only if R(X) = R(Y).

Proof. (i) We show that X and R(X) have the same sets of solutions. Let Y be a
solution to X. Every i ∈ Y is relevant to X and thus i ∈ R(X). Hence Y⊆R(X)
and therefore Y is a solution to R(X). For the other direction let Y be a solution
to R(X). Obviously R(X)⊆X and thus Y⊆X and therefore Y is a solution to
X. (ii) Assume X ≡P Y and let i ∈ R(X). Then i ∈ Z where Z is a solution to
X. As X ≡P Y , we get that Z is also a solution to Y and thus i ∈ R(Y). The
other direction is immediate from (i) and the transitivity of ≡P . ut

3.2 Applications of the Construction

We introduce equivalence protecting algorithms for some well known search prob-
lems.

Example 1 (Perfect Matching in Bipartite Graphs). Consider the problem of
finding a perfect matching in a bipartite graph G = 〈G, E〉. To decide whether
an input edge 〈u, v〉 is relevant we do the following: (i) Denote by G′ the graph

that results from deleting u, v and all the edges adjacent to them from G. (ii)
Check whether there is a perfect matching in G′. Evidently, 〈u, v〉 is relevant
to G if and only if G′ has a perfect matching. Hence, perfect matching has an
efficient canonical representative algorithm.

As an output sampling algorithm, we use the algorithm of Jerrum et al. [18].
The algorithm samples a perfect matching of a bipartite graph from a distribu-
tion that is statistically close to uniform. Therefore, we have both a canonical
representative and a output sampling algorithm for perfect matching, and thus
by Theorem 1, we get that perfect matching has an efficient equivalence protect-
ing algorithm.

Example 2 (Linear Algebra). Let n and m be positive integers, F be a finite
field, M be an n×m matrix over F, and v ∈ Fn. Consider the problem of solving
the system My = v. As this problem is not monotone, we need to design both
the canonical representative algorithm and the output sampling algorithm. As
a canonical representative algorithm simply perform the Gaussian elimination
procedure on the system. Elementary linear algebra argument shows that if two
systems have the same sets of solutions, then they have the same structure after
performing the Gaussian elimination procedure. We now show a simple output
sampling algorithm for the problem: Compute an arbitrary solution y0 ∈ Fm

satisfying My0 = v. Compute k = rank(M) and compute an m× (n− k) matrix
K representing the kernel of the matrix M . Randomly pick a vector r ∈ Fn−k

and output w = y0 +Kr. Again, elementary linear algebra argument shows that
w is a random solution to the system My = v.

Example 3 (Shortest Path). Consider the problem of finding a shortest path from
a vertex s to a vertex t in a directed graph G. In this case there is no global set
of solutions, since a path can be an appropriate solution for one graph, while in
another graph there may be shorter paths. However, the set of edges that appear
in any shortest path in G still form an appropriate solution for the canonical
representative algorithm. Checking whether an edge is relevant for G is an easy
tasks. To sample a random solution do: (i) Compute for every v ∈ V the number
of shortest paths from v to t. (ii) Starting from s, pick the vertices on the path
randomly, where the probabilities are weighted according to the number of paths
computed in (i). Hence, by Theorem 1, shortest path has an efficient equivalence
protecting algorithm.

Similar ideas are applicable for finding shortest path in a weighted directed
graph. Here, however, we do not apply Theorem 1 directly. The equivalence
protecting algorithm in this case does the following: (i) Compute the set of edges
that appear in at least one shortest path from s to t. (ii) Output a random path
from s to t in the non-weighted graph computed in (i) (not a shortest path!).
The randomness for step (ii) should be extracted like in Theorem 1, by applying
a pseudorandom function on the graph computed in stage (i). This example is
different in the fact that the canonical input we use in step (ii) is an instance to
a problem that is slightly different than the original problem.

4 Resemblance Preserving Algorithms

We now strengthen the requirement on private algorithm in an alternative man-
ner to the definition of equivalence protecting algorithms presented in Section 3.
The motivation for the definition in this section is that we want the output of
the algorithm will not distinguish between inputs with similar sets of solutions.
While this requirement is met by a randomized algorithm that outputs a uni-
form solution, it cannot be satisfied by a deterministic algorithm for non-trivial
search problems (the algorithm would have to output the same “solution” for all
inputs contradicting the correctness of the algorithm). As we want an algorithm
that does not leak more information on repeated executions, we put forward
a definition of resemblance preserving algorithms, which are seeded algorithms
that protect inputs with similar sets of outputs.

To measure the similarity between the sets of outputs we use resemblance be-
tween sets, a notion used in [5, 7, 6] and seems to capture well the informal notion
of “roughly the same.” For example, in [5, 7] resemblance between documents
was successfully used for clustering documents.

Definition 12 (Resemblance). Let U be a set, and A,B⊆U . Then the resem-
blance between A and B is defined to be

r(A,B) =
|A ∩B|
|A ∪B|

.

For a search problem P we will consider the resemblance between solution sets
of Pn(x),Pn(y) of x, y ∈ {0, 1}n. Informally, a (perfect) resemblance preserving
algorithm is a seeded algorithm that returns the same output for x and y with
probability of at least the resemblance between Pn(x),Pn(y).

Definition 13 (Resemblance Preserving Algorithm). An algorithm A(·, ·)
is resemblance preserving with respect to P if:

1. For every polynomial-time algorithm D and every polynomial p(·) there exists
some n0 ∈ N such that for every x ∈ {0, 1}∗ satisfying |x| > n0∣∣∣Pr[D(x,A(sn, x)) = 1]− Pr[D(x,Unif(Pn(x))) = 1]

∣∣∣ ≤ 1
p(|x|)

.

The probability is taken over the random choice of the seed sn and the ran-
domness of D. Informally, taking the probability over the seed, the outputs
of AP on x is indistinguishable from the uniform distribution on Pn(x).

2. There exists a constant c > 0 such that for all x, y ∈ {0, 1}∗ such that
|x| = |y|

Pr[A(sn, x) = A(sn, y)] ≥ c · r(Pn(x),Pn(y)) .

The probability is taken over the random choice of sn. That is, the probability
that A returns the same output on two inputs is at least some constant times
the resemblance between Pn(x) and Pn(y).

3. If x ≡P y then A(sn, x) = A(sn, y) for all seeds sn. That is, if x and y are
equivalent then A always returns the same output on x and on y.

If c = 1 in the above Requirement 2, then A(·, ·) is perfect resemblance preserving
with respect to P.

Unlike Definition 9, in the definition of resemblance preserving algorithms we
do not know how to formulate this privacy using an “ideal world”. This difference
implies, in particular, that in designing resemblance preserving algorithms we
do not need cryptographic assumptions. In our constructions, for example, we
only use pairwise independent permutations. Furthermore, Definition 13 does not
prevent partial disclosure, or even full disclosure of the seed by the algorithm.
This should be considered when using a resemblance preserving algorithm.

Example 4 (Non Roots of a Polynomial). We give an example demonstrating
that perfect resemblance preserving algorithms exist. Consider the following
problem. The inputs are univariate polynomials of degree d(n) over F2n , where
d : N → N is some fixed increasing function (e.g., d(n) = n). The set of solutions
of a polynomial Q is the set of all points y which are not roots of Q, that is,
{y ∈ F2n : Q(y) 6= 0} . This problem arises, e.g., when we want to find points in
which two polynomials disagree.

The seed sn in the algorithm we construct is a random string of length
(d(n) + 1) · n considered as a list of d(n) + 1 elements in F2n . As Q has at
most d(n) roots, there is an element in the list sn that is not a root of Q. The
algorithm on input Q returns the first element in sn that is not a root of Q. We
claim that this algorithm is resemblance preserving. First, as the seed is chosen
at random, the first element in the list that is not a root is a random non-root of
Q. Second, consider two polynomials Q1 and Q2 with sets of non-roots Y1 and
Y2 respectively. The algorithm returns the same non-root on both Q1 and Q2 if
the first element in the list sn from Y1 is also the first element in the list sn from
Y2. In other words, the algorithm returns the same non-root if the first element
in the list sn which is from the set Y1 ∪ Y2 is from Y1 ∩ Y2. The probability of
this event is exactly r(Y1, Y2) = |Y1 ∩ Y2|/|Y1 ∪ Y2|.

4.1 Generic Constructions of Resemblance Preserving Algorithms

We present our main tool for constructing resemblance preserving algorithms –
min-wise independent permutations. We will first show a general construction,
that (depending on the search problem) may exhibit exponential time complex-
ity. Then, we will present the main contribution of this section – a polynomial-
time resemblance preserving algorithm that is applicable for problems for which
there is a pairwise independent family of permutations where we can compute
the minimum on any set of solutions.

Definition 14 (Family of Min-wise Independent Permutations [6]). Let
U be a set and F = {πs}s∈S be a collection of permutations πs : U → U . The col-
lection F is a collection of min-wise independent permutations if Pr[min(πs(A)) =

πs(a)] = 1/|A| for all A ⊆ U and all a ∈ A. The probability is taken over the
choice of the seed s at uniform from S.

We will use the following observation that relates min-wise permutations and
resemblance:

Observation 1 ([6]). Let F be a family of min-wise independent permutations
{πs}s∈S where πs : U → U . Then Pr[min(πs(A)) = min(πs(B))] = r(A,B) for
every sets A,B ⊆ U . The probability is taken over the choice of the seed s at
uniform from S.

In Fig. 1, we describe Algorithm MinwiseP for a search problem P, where
Pn : {0, 1}n → {0, 1}q(n). Using Obseration 1 it is easy to see that Algo-
rithm MinwiseP is perfectly resemblance preserving.

However, Algorithm MinwiseP maybe inefficient in several aspects:

1. Algorithm MinwiseP uses a family of min-wise independent permutations.
It was shown in [6] that such families are of size 2Ω(|U |) = 2Ω(2q(n)) (where
n is the input length), and hence the seed length |s| = Ω(2q(n)). However,
for most purposes, the seed length may be reduced to polynomial by using
pseudorandom permutations.9

2. Algorithm MinwiseP needs to compute the minimum element, according to
πs in the solution set Pn(x). This is feasible when it is possible to enumer-
ate in polynomial time the elements of Pn(x). However, to make MinwiseP
feasible in cases where, for example, Pn(x) is of super-polynomial size, one
needs to carefully use the structure of πs and the structure of the underlying
solution set space.

Algorithm MinwiseP

Input: An instance x ∈ {0, 1}∗, seed s for a family of min-wise independent

permutations {πs}s∈S where πs : {0, 1}q(|x|) → {0, 1}q(|x|).
Output: A solution sol ∈ Pn(x).

1. Let A = Pn(x).
2. Output sol ∈ A such that πs(sol) = min πs(A).

Fig. 1. Algorithm MinwiseP .

9 We need the family of pseudorandom permutations to be secure against a non-
uniform adversary. Thus, for every long enough inputs x and y a pseudorandom
permutation must be min-wise. We omit further details as this is not the approach
taken in this study.

Example 5 (Roots of a Polynomial). As an example for when Algorithm MinwiseP
can be implemented efficiently we consider the problem of finding roots of a poly-
nomial. As in Example 4, the inputs are univariate polynomials of degree d(n)
over F2n , where d : N → N is some fixed increasing function (e.g., d(n) = n).
The set of solutions of a polynomial Q is the set of all points y which are roots of
Q, that is, {y ∈ F2n : Q(y) = 0} . Berlekamp [4] presented an efficient algorithm
that finds roots of a polynomial over F2n . We implement Algorithm MinwiseP ,
where we use a family of pseudorandom permutations from F2n to F2n instead of
the family of min-wise independent permutations. Furthermore, as the number
of roots of a polynomial of degree d(n) is at most d(n), we can use Berlekamp’s
algorithm to explicitly find all roots of the polynomial, apply the pseudorandom
permutation to each roots, and find for which root πs(y) obtains a minimum.
The above algorithm can be generalized to any search problems whose entire set
of solutions can be generated efficiently.

Observation 2. If for a search problem P there is an algorithm that generates
the set of solutions of an input of P whose running time in polynomial in the
length of the input (and, in particular, the number of solutions in polynomial),
then Algorithm MinwiseP can be efficiently implemented for P.

4.2 Resemblance Preserving using Pairwise Independence

To get around the above mentioned problems of implementing MinwiseP for
search problems with super-polynomial number of solutions, we construct a non-
perfect resemblance preserving algorithm using pairwise independence permuta-
tions instead of min-wise independence.

Definition 15 (Family of Pairwise Independent Permutations). Let U
be a set and F = {πs}s∈S be a collection of permutations πs : U → U . The
collection F is a family of pairwise independent permutations if

Pr[πs(a) = c ∧ πs(b) = d] =
1

|U |(|U | − 1)
.

for all a, b ∈ U and c, d ∈ U . The probability is taken over the choice of the seed
s at uniform from S.

Theorem 2 ([6]). Let F be a family of pairwise independent permutations
{πs}s∈S where πs : U → U . Then for every set A ⊆ U and every a ∈ A

1
2(|A| − 1)

≤ Pr[min(πs(A)) = πs(a)] ≤ 2√
|A| − 1

.

The probability is taken over the choice of the seed s at uniform from S.

Lemma 1. Let F be a family of pairwise independent permutations {πs}s∈S

where πs : U → U . Then for every sets A,B ⊆ U

Pr[min(πs(A)) = min(πs(B))] ≥ max

(
r(A,B)

2
, 1− 2 · |A∆B|√

|A ∪B| − 1

)
.

The probability is taken over the choice of the seed s at uniform from S.

We construct an algorithm PairwiseP that is almost identical to MinwiseP
of Fig. 1, where the family of min-wise permutations is replaced with a family
of pairwise independent permutations. The following corollary follows directly
from Lemma 1:

Corollary 1. Algorithm PairwiseP is resemblance preserving.

4.3 Applications of the Pairwise Independence Construction

We next show how to apply Algorithm PairwiseP to a few search problems.
Given a search problem, we need to choose the family of pairwise independent
permutations such that the solution minimizing πs(A) can computed efficiently.
In our examples we use the following well-known family of pairwise independent
permutations from Fn

q to Fn
q for some prime-power q:

Lq,n
def=
{
Hy + b : H is an invertible n× n matrix over Fq and b ∈ Fn

q

}
.

Linear Algebra. We show how to construct a resemblance preserving algorithm
for finding a solution of a system of equations (as considered in Example 2 for
Equivalence Protecting Algorithms).

Linear Algebra over F2. We assume that the system is over F2.10 That is, the
input is an m × n matrix M over F2 and a vector v ∈ Fm

2 , and a solution is
a vector y ∈ Fn

2 such that My = v. We apply Algorithm PairwiseP for this
problem using the family L2,n. That is, we choose a permutation at random,
specified by H and b, and we need to find the lexicographically first z satisfying
z = Hy + b for y satisfying Ay = b. We view Ay = b and z = Hy + v as a
single system of linear equations with 2n unknowns, namely, y = 〈y1, . . . , yn〉
and z = 〈z1, . . . , zn〉. To find the value of z1 in the lexicographically first z,
we add the equation z1 = 0 to the system of equations. If the new system has
a solution, we keep the equation z1 = 0 in the system and continue to find
the value of z2. Otherwise, we understand that z1 = 1 in every solution of the
original system of equations, and, in particular, in the lexicographically first z.
In this case, we remove the equation z1 = 0 from the system of equations and
continue to find the value of z2. To conclude, we find the lexicographically first z
iteratively, where in iteration i we have already found the values of z1, . . . , zi−1

and we compute the value of zi in the lexicographically first z as we found z1.
We continue these iterations until we find the lexicographically first z. Recall
that Hy + b is a permutation. Thus, once we found z, the solution y is uniquely
defined and is easy to compute from the system of equations.

10 In the full version of this paper we generalize the result to every finite field.

Union of Systems of Equations. We want to use the resemblance preserving
algorithm for finding a solution of a system of linear equations to construct
resemblance preserving algorithms for other problems. That is, we want to rep-
resent the set of solutions of an instance of some search problem as a set of
solutions to a system of linear equations. In our applications, we manage to
represent the set of solutions of an instance as a union of polynomially many
systems of linear equations over the same field. We next show how to construct
a resemblance preserving algorithm for such a union. That is, the input is a
sequence M1, v1, . . . ,M`, v` and a solution is a vector y such that Miy = vi for
at least one i.

Algorithm LinearAlgebraUnion

Input: A a sequence M1, v1, . . . , M`, v` and a seed H, b.
Output: A vector y such that Miy = vi for at least one i.

1. Find for each system of equation a solution yi such that Hyi + b is mini-
mized amongst all vectors such that Miy = vi.

2. Output yj such that Hyj + b = min {Hyi + b : 1 ≤ i ≤ `}.

Theorem 3. There is a resemblance preserving algorithm for finding a solution
in a union of polynomially many solution sets of systems of linear equations over
the same field.

Points in a Union of Discrete Rectangles. We show how to use the resem-
blance preserving algorithm for linear algebra to construct resemblance preserv-
ing algorithms for finding a point in a union of discrete rectangles. We construct
such algorithms for two cases: (1) unions of rectangles in [2]n, that is, DNF for-
mulae, and (2) unions of rectangles in [N]d when d is fixed (however, N is not
fixed).

Satisfying Assignment for a DNF Formula. We show how to construct a re-
semblance preserving algorithm for finding a satisfying assignment of a DNF
formula. This follows Theorem 3 and the following observations. First, the set
of satisfying assignments of a single term is the set of solutions to a system of
linear equations over F2:

– For every variable xi that appears in the term without negation, add the
equation yi = 1.

– For every variable xi that appears in the term with negation, add the equa-
tion yi = 0.

Now, given a DNF formula with ` terms, a satisfying assignment to the formula
is a assignment satisfying at least one of the terms in the formula, that is, it
belongs to the union of solutions of the ` systems of linear equations constructed
for each of the terms of the formula. Thus, by Theorem 3, we get a resemblance
preserving algorithm for finding a satisfying assignment of a DNF formula.

It is interesting to note that, unless P=NP, there is no efficient equivalence
protecting algorithm for DNF as an equivalence protecting algorithm for DNF
can be used to check if two DNF formulae are equivalent, a problem that is
coNP-hard.

Points in a Union of Discrete Rectangles in a d-dimensional Space. We show how
to construct a resemblance preserving algorithm for finding a point in a discrete
rectangle. That is, for some fixed d ∈ N and for an integer N ∈ N, our inputs are
2d elements a1, . . . , ad, b1, . . . , bd ∈ [N] which represents a rectangle as follows:
First, for two points a, b we define the segment Ia,b

def= {y ∈ N : a ≤ y ≤ b} .

Second, we define Ra1,...,ad,b1,...,bd
def= Ia1,b1×Ia2,b2×· · ·×Iad,bd . Let n

def= dlog Ne,
and we represent a number a ∈ [N] by an n-bit string a1, . . . , an, where a =∑n

i=1 ai2n−i. Note that, in this section, ai is a string in {0, 1}n and ai is the ith
bit of a string a.

We solve the problem of finding a point in a rectangle by representing each
rectangle as a union of polynomially many systems of equations over F2, and
then use Theorem 3 to construct the resemblance preserving algorithm.

Let us start with the simple case where d = 1 and b1 = 〈1, . . . , 1〉 (in words,
b ∈ {0, 1}n is the all 1 string). That is, an input is a string a and a solution is a
string y ≥ a.

y ≥ a iff
(
∃i∈[n] (yi = 1 ∧ ai = 0) ∧ (∀1≤j<i yi = ai)

)
∨ (∀1≤j≤n (yi = ai)) .(1)

For example, y = 〈y1, y2, y3〉 ≥ 〈0, 1, 0〉 either if (y1 = 1), or (y1 = 0 ∧ y2 =
1 ∧ y3 = 1), or (y1 = 0 ∧ y2 = 1 ∧ y3 = 0).

Note that, by (1), the set of points y ≥ a is a union of solutions of at most
n + 1 systems of equations. Similarly, the set of points a ≤ y ≤ b is a union
of solutions of at most 2(n + 1) systems of equations: Let a < b and i0 be the
minimal index such that ai = 0 and bi = 1 (in particular, aj = bj for every
1 ≤ j ≤ i0 − 1).

a ≤ y ≤ b iff (∀1≤j<i0yj = aj) ∧ ((yi0 = ai0 ∧ a ≤ y) ∨ (yi0 = bi0 ∧ y ≤ b)) .(2)

In other words, we partitioned the segment Ia,b to at most 2(n+1) segments
such that the points in each segment are exactly the solutions of a system of
linear equations.

Given a rectangle in ({0, 1}n)d, we partition it to (O(n))d rectangles such
that the points in each rectangle correspond to solutions of a system of linear
equations, and use Theorem 3 to construct the resemblance preserving algorithm.
Notice that given a rectangle Ra1,...,ad,b1,...,bd , we can partition each segment
Iai,bi into O(n) segments Ii,1, . . . , Ii,O(n) as in (1) and (2). Thus,

Ra1,...,ad,b1,...,bd = Ia1,b1 × Ia2,b2 × · · · × Iad,bd

= (∪j1I1,j1)× (∪j2I2,j2)× · · · × (∪jd
Id,jd

)
= ∪j1,...,jd

I1,j1 × I2,j2 × · · · × Id,jd
.

Notice that for i1 6= i2, the variables of the equations representing Ii1,ji1
and

Ii2,ji2
are disjoint, and the points in each rectangle I1,j1 × I2,j2 × · · · × Id,jd

are
solutions to a system of linear equations.

Finally, if our input is a union of ` rectangles, we can represent it as a union
of `(O(n))d systems of equations, hence:

Theorem 4. There exists an efficient resemblance preserving algorithm for find-
ing a point in a union of ` rectangles in [N]d. The running time of the algorithm
is poly((log N)d, `).

The above algorithm is polynomial in ` and (log N)d while the size of the
input is O(`d log N), thus, it is polynomial when d is constant. It would be
interesting to construct an efficient algorithm for non-constant d. Notice that
a union of ` rectangles in [2]d is equivalent to an `-term DNF formula with
n variables. Thus, there is a polynomial resemblance preserving algorithm for
union of rectangles in [2]d.

Acknowledgments. We thank the anonymous CYRPTO referees for their use-
ful comments. Part of this research was performed when the authors visited
IPAM at UCLA. We thank Rafi Ostrovsky and the IPAM staff for inviting us
to IPAM and making our stay pleasant and productive.

References

1. A. Beimel, P. Carmi, K. Nissim, and E. Weinreb. Private approximation of search
problems. In Proc. of the 38th Symp. on the Theory of Comp., pages 119–128,
2006.

2. A. Beimel, R. Hallak, and K. Nissim. Private approximation of clustering and
vertex cover. In S. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 383–
403. 2007.

3. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computations. In Proc. of the 20th Symp.
on the Theory of Comp., pages 1–10, 1988.

4. E. R Berlekamp. Factoring polynomials over large finite fields. Math. Comp.,
24:713–735, 1970.

5. A. Z. Broder. On the resemblance and containment of documents. In Compression
and Complexity of Sequences 1997, pages 21–29, 1997.

6. A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise inde-
pendent permutations. J. of Computer and System Sciences, 60(3):630–659, 2000.

7. A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering
of the web. In In Proc. of World Wide Web conference, pages 1157 – 1166, 1997.

8. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure pro-
tocols. In Proc. of the 20th Symp. on the Theory of Comp., pages 11–19, 1988.

9. V. M. F. Dias, G. D. da Fonseca, C. M. H. de Figueiredo, and J. L. Szwarcfiter.
The stable marriage problem with restricted pairs. Theoretical Computer Science,
306(1–3):391–405, 2003.

10. J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. J. Strauss, and R. N. Wright.
Secure multiparty computation of approximations. ACM Trans. Algorithms,
2(3):435–472, 2006. Conference version in Proc. of the 28th ICALP, volume 2076
of LNCS, pages 927–938. 2001.

11. M. Franklin, M. Gondree, and P. Mohassel. Improved efficiency for private stable
matching. In M. Abe, editor, Topics in Cryptology – CT-RSA 2007, volume 4377
of LNCS, pages 163–177. 2007.

12. D. Gale and L. S. Shapley. College admissions and the stability of marriage.
American Mathematical Monthly, 69:9–15, 1962.

13. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
J. of the ACM, 33(4):792–807, 1986.

14. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proc. of the 19th Symp. on the Theory of Comp., pages 218–229, 1987.

15. P. Golle. A private stable matching algorithm. In G. Di Crescenzo and A. Ru-
bin, editors, 10th International Conference on Financial Cryptography and Data
Security, volume 4107 of LNCS, pages 65–80. 2006.

16. S. Halevi, R. Krauthgamer, E. Kushilevitz, and K. Nissim. Private approximation
of NP-hard functions. In Proc. of the 33th Symp. on the Theory of Comp., pages
550–559, 2001.

17. P. Indyk and D. Woodruff. Polylogarithmic private approximations and efficient
matching. In S. Halevi and T. Rabin, editors, TCC 2006, volume 3876 of LNCS,
pages 245–264. 2006.

18. M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algo-
rithm for the permanent of a matrix with nonnegative entries. J. of the ACM,
51(4):671–697, 2004.

19. A. C. Yao. Protocols for secure computations. In Proc. of the 23th IEEE Symp.
on Foundations of Computer Science, pages 160–164, 1982.

A Deterministic vs. Randomized Private Algorithms

We start with a search problem that admits a randomized private algorithm
(outputting a uniformly chosen solution on each instance), but no efficient de-
terministic one. For n = p · q and a ∈ Z∗

n with Jacobi Symbol (a
n) = 1 define

QR(n, a) = {b ∈ Z∗
n : (b

n) = 1 ∧ b ∈ QRn ⇔ a ∈ QRn} .

Claim 2. The problem QR admits a randomized polynomial time private algo-
rithm, but no efficient deterministic private algorithms, unless quadratic residu-
osity is decidable in deterministic polynomial time.

Our second example is of a search problem that admits a deterministic private
algorithm but no (non trivial) randomized one.

For a CNF formula φ over Boolean variables x1, . . . , xn define

ZERO − SAT (φ) = {a ∈ {0, 1}n : a = 0n ∨ φ(a)} .

If a randomized algorithm for ZERO − SAT assigns non-negligible probability
to some non-zero assignment whenever φ is satisfiable we say it is non-trivial.

Claim 3. The problem ZERO − SAT admits a deterministic polynomial time
private algorithm, but, unless NP ⊆ RP no non-trivial randomized private al-
gorithm for ZERO − SAT exists.

