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Abstract. To date the NTRUEncrypt security parameters have been
based on the existence of two types of attack: a meet-in-the-middle at-
tack due to Odlyzko, and a conservative extrapolation of the running
times of the best (known) lattice reduction schemes to recover the private
key. We show that there is in fact a continuum of more efficient attacks
between these two attacks. We show that by combining lattice reduction
and a meet-in-the-middle strategy one can reduce the number of loops
in attacking the NTRUEncrypt private key from 284.2 to 260.3, for the
k = 80 parameter set. In practice the attack is still expensive (depen-
dent on ones choice of cost-metric), although there are certain space/time
tradeoffs that can be applied. Asymptotically our attack remains expo-
nential in the security parameter k, but it dictates that NTRUEncrypt
parameters must be chosen so that the meet-in-the-middle attack has
complexity 2k even after an initial lattice basis reduction of complexity
2k.

1 Introduction

It is well known that the closest vector problem (CVP) can be solved efficiently
in the case that the given point in space is very close to a lattice vector [7, 18]. If
this CVP algorithm takes time t and a set S has the property that it includes at
least one point v0 ∈ S which is very close to a lattice vector, then clearly v0 can
be found in time O(|S|t) by exhaustively enumerating the set S. We show that
if the points of S can be repesented as S = S′⊕S′, i.e. for every (v, v′) ∈ S×S′

there exists an v′′ ∈ S′ such that v = v′ + v′′, then there are conditions under
which there is actually an efficient meet-in-the-middle algorithm on this space
to find the point v0 in time O(|S|1/2t).

We can translate this CVP result to a result about lattice basis reduction by
defining the set S to be some linear combinations of the last n−m rows of a given
basis {b1 . . . , bn}, and then using the CVP algorithm on the elements of S and the
basis {b1, . . . , bm}. We note that a similar approach is taken by Schnorr in [21]
for reducing generic lattices with the SHORT algorithm. Schnorr also suggests
that “birthday” improvements might be possible for his method (generalizing
results from [24]) but concludes that, in general, storage requirements may be
prohibitive.



In this paper we show that, in the case of searching for the NTRUEncrypt
private key, meet-in-the-middle techniques are indeed possible. We show that
Odlyzko’s storage ideas may be generalized to remain efficient even when used
after lattice reduction, and we optimize the set S for the structure of the NTRU-
Encrypt private key.

1.1 Roadmap

In section 2 we describe the key recovery problem behind NTRUEncrypt, and
we explain the best known attacks against it. We introduce the following ques-
tion regarding its parameters: “for a given N and q and security parameter k,
how low can df be?”: this is the fundamental mathematical question that our
paper addressses, and it ultimately shows that df cannot be as low as previ-
ously thought. This is important because df is one of the factors that govern the
efficiency of NTRUEncrypt, and so from a parameter generation point of view
there is a practical desire to keep it as low as possible.

In section 3 we give a brief summary of the theory lattices including the
usefulness of triangularization of lattice bases. In section 3.1 we discuss the
practical consequences of running lattice reduction schemes on the NTRU public
basis.

In section 4 we explain the mathematics behind the new hybrid technique,
and in section 5 we analyze the cost of the technique in theory and in practice.

As with many meet-in-the-middle techniques the storage requirements of
our technique are considerable. In section 6 we discuss methods to lessen these
requirements at the cost of increasing the running time.

In section 7 we discuss possible generalizations of our work in more generic
lattice situations, and give conclusions in section 8.

2 The NTRU Cryptosystem

NTRUEncrypt was invented in 1996, and was first published in [10]. It is based
in the ring R = Z[X ]/(XN − 1, q) whose elements can be represented by vectors
of length N with integer entries modulo q. To aid exposition we will differentiate
between a vector representation a ∈ VN (Z) and a ring representation a ∈ R by
the use of the LATEX fonts shown. The NTRUEncrypt private key is two “binary”
vectors f, g ∈ VN ({0, 1}) with df and dg ones respectively, and the remaining
entries zero1. The NTRUEncrypt public key is h = g/f in the ring R, where h

is typically viewed as h, a vector of length N with integer entries modulo q.
There are many good descriptions of how the NTRU cryptosystem works [9–

11, 14], but in this paper we directly take on the problem of recovering the
private key from the public information, so we do not need to delve in to details
of encryption and decryption. Out of interest we note that the encryption and

1 Other sets of small vectors are possible for the set of NTRUEncrypt private keys,
but this is the one we will initially concentrate on.



decryption algorithms are both very efficient operations (both encryption and
decryption are O(k2) in the security parameter k), and all known attacks against
NTRUEncrypt are exponential in the security parameter k (including the one
demonstrated in this paper). Another potential upside of NTRUEncrypt is its
apparent resistance to attack by quantum computers. The downsides to NTRU-
Encrypt are that the public key-size and ciphertext size are both slightly large,
and that there is expansion in encryption (a raw N -bit plaintext (after padding)
is encrypted to a (N log2 q)-bit ciphertext) so NTRUEncrypt lacks some of the
nice properties that an encryption-permutation allows.

The parameter choices for N, q, df , dg have undergone several changes since
the invention of NTRUEncrypt due to both progess in cryptanalysis [11], and fine
tuning of the parameters for efficiency reasons [14]. The currently recommended
choices for k = 80 bit security are N = 251, q = 197, df = 48, dg = 125. This
parameter set is known as ees251ep6 in the IEEE P1363.1 draft standard [16].

The attack demonstrated in this paper is applicable, to some degree, to all
the NTRUEncrypt parameter sets since its invention. Unfortunately it is most
effective on the currently recommended parameter sets because df has been
lowered considerably for efficiency reasons.

2.1 Lattice attacks against NTRU

The recovery of the NTRUEncrypt private key from public information can be
posed as a lattice problem. This was known by the inventors of NTRU [10], and
further explored in [5].

From the definition of h = g/f, it is clear that there is an length-(2N) integer
vector (k, f) such that

(k, f)

(

qI 0
H I

)

= (g, f), (1)

where H is a circulant matrix generated from h, i.e. Hi,j = hi+j mod N . Note
that the vector/matrix multiplication fH respects the multiplication fh in the
ring Z[X ]/(XN − 1), and the k part of the vector corresponds to the reduction
of each coefficient modulo q. The (2N) × (2N) basis ((qI, 0), (H, I)) is referred
to as the NTRU public lattice basis.

The discriminant of the NTRU public lattice basis is clearly qN , whilst the
(g, f) vector has size (df +dg)

1/2. The Gaussian heuristic therefore suggests that
there are no smaller vectors in the lattice than (g, f) and so lattice reduction
might be used to find it. We note that the NTRU public lattice basis does not
contain just one small vector (g, f) but all N “rotations” (g(i), f (i)) where g(i),
f (i) correspond to f(i) = fX i and g(i) = gX i respectively, for i = 0, . . . , N − 1,
since (fX i)h = gX i in the ring R.

Although the rotations of the (g, f) vectors are the smallest vectors in the
NTRU lattice, the best (known) direct lattice reduction techniques find it hard
to recover any of these vectors in practice. Indeed typically lattice reduction
methods appear to be fully exponential in the security parameter k. For the



lattice family to which the ees251ep6 parameter set belongs, it is stated in [14,
16] that lattice reduction has a complexity of at least

R = 20.4245N−3.44 (2)

for N > 120, to find any vector smaller that a q-vector. For N = 251 this
corresponds to time of 2103.1 to directly find a (g, f) rotation from the public
basis.

2.2 Odlyzko’s meet-in-the-middle attack on NTRU

NTRU parameter sets have always been secure against a meet-in-the-middle
attack discovered by Odlyzko, which is described in [15].

The idea is that if f1 and f2 are such that f = f1 + f2 then the entries of
x1 = f1h and x2 = −f2h differ only by 0 or 1 mod q, since (f1 + f2)h = g and g is
binary.

Assuming f has df ones and df is even, then the attack progresses by sam-
pling a binary ring element f1 with df/2 ones, and computing x1 = f1h.

The vector x1 corresponding to x1 is of length N with entries satisfying
−q/2 < (x1)i ≤ q/2. For each index i of x1 we determine a bit βi, where βi = 1
if (x1)i > 0 and 0 otherwise. We can therefore determine an N -bit string from
x1, namely a1 = β1 : β2 : . . . : βN , which we call an “address” or “label’. Let
β = 1−β denote the complement of a bit β, and let a denote the component-wise
complement of a bit-string a. The element f1 is stored in two “boxes”: one with
address a1, and one with address a1.

The meet-in-the-middle technique carries on sampling f1 as above, and stor-
ing them in boxes dependent on the x1. If two binary elements f1 and f2 are
sampled such that f1 + f2 = f then one can hope that the a1 corresponding to
x1 = f1h is the same as the a2 corresponding to x2 = f2h, since x1 = −x2 + g.
This will only be the case if the entries of g do not cause af the entries of x1 to
“change sign”, but this technicality can be dealt with by either simply accepting
the probability of the occurance, or by storing the f1 in more boxes if the x1

have coefficients that may change sign. These approaches are discussed further
in [15] and later in this report.

In this introduction we will assume that whenever f1 + f2 = f then with
certainty a1 = a2, i.e. sampling f1, f2 such that f1 + f2 = f can be detected by a
collision in a box. For any collisions we can retrieve the f1, f2 stored in the box,
and check if (f1 + f2)h is binary: if so we have found a very small vector in the
NTRU public basis; undoubtedly2 one of the rotations of (g, f).

To estimate the complexity of this attack, let V denote the set of f1 which
are actually a subset of the ones of some rotation of f. Assuming the rotations
have a small number of intersections we see that |V | ≈ N

( df

df /2

)

, and we can

2 It will almost certainly be a (g, f) rotation because of the way we performed the
search, although it is worth noting that discovering any short enough vector is tan-
tamount to breaking NTRUEncrypt, as observed in [5].



expect a collision in the set of such f1 after O(|V |1/2) samples. The probability
of sampling from this set is |V |/

(

N
df /2

)

, so the expected number of loops of the

algorithm before a collision is

L =
1√
N

(

N

df/2

)(

df

df/2

)

−1/2

. (3)

For the ees251ep6 parameter set this turns out to be 284.2.

2.3 Choosing NTRUEncrypt parameters

NTRU are typically conservative when choosing parameters, so the true lattice
security (when considering BKZ attacks only) is probably significantly higher
than equation 2 suggests, due to the upward concavity of the observed running
times. Similarly, ensuring that the number of loops, L, given by equation 3 is
greater than 280 is conservative for two reasons:

– There are hidden computational costs per loop, e.g. Odlyzko’s attack requires
summing together df/2 vectors of length N and reducing their coefficients
modulo q. If we count “one addition modulo q” as an “intrinsic operation”
then this cost could arguably add log2(Ndf/2) bits of security.

– The storage requirements of Odlyzko’s attack is slightly greater than the
number loops given by equation 2, since we may need to store the f1’s
in several boxes per loop (on average 8, say). Also the f1’s take at least
log2

(

N
df /2

)

bits to store.

Thus one might conclude that, in practice, Odlyzko’s attack on the ees251ep6

parameter set will require too many operations (295.8 modular additions) and/or
too much storage (294 bits) to be feasible, and hence the parameter set is more
than adequate for a k = 80 security level. Of these two constraints the storage
requirement is by far the larger obstacle given today’s hardware.

Although NTRU have been conservative in their parameter choices, this is
with respect to the best known attacks. In this paper we demonstrate a new class
of attack that may cause NTRU to re-evaluate their parameter sets. Indeed, as
a piece of mathematics, the contribution of this paper can be summed up as an
improved answer to the question “for a fixed N and q and a security level k,
how low can df go?”: we show that df cannot be as low as previously thought.

To gauge the practicality of our attack, we examine how it changes the run-
ning time and storage requirements of Odlyzko’s attack in section 5, and discuss
methods to make the storage requirements more feasible (at the cost of extra
computation) in section 6.

This paper is not about suggesting new parameter sets which would require a
large amount of analysis to justify well, however we do mention techniques that
can mitigate our attack in section 8. When it does come to choosing new NTRU
parameters we advocate the methodology outlined in [19], i.e. for a fixed PC
architecture working out how much time it takes to break a symmetric key algo-
rithm (e.g. DES), and how much time it takes to break a small NTRUEncrypt



example, and then extrapolating the two to work out when NTRUEncrypt will
require the same amout of work as an 80-bit symmetric algorithm (and similarly
for higher k-bit security levels).

The above methodology (of comparison with an exhaustive search on a DES
symmetric key) essentially benchmarks the PC in a standard way, and for exam-
ple, allows one to argue how much security 295.8 modular additions truly gives
(it is certainly less than a bit security level of k = 95.8).

3 Lattice basis representation and lattice reduction

We take a row-oriented view of matrices and allow some flexibity between basis
representations and matrix representations, e.g. we call a matrix BKZ-reduced
if the rows of the matrix form a BKZ-reduced basis [22].

For a thorough grounding on lattices see [3, 4], however for our purposes the
following will suffice: for a given basis B = {b1, . . . , bn} of R

n a lattice is defined
to be the set of points

L =

{

y ∈ R
n

∣

∣

∣

∣

∣

y =

n
∑

i=1

aibi, ai ∈ Z

}

Clearly many bases will generate the same set of lattice points; indeed if we
represent a basis B by a matrix B with rows {b1, . . . , bn} then it is exactly the
rows of UB for any U ∈ GLn(Z) that generate these points.

However it is often convenient to give ourselves even more freedom with
matrix representations of bases in that one can consider bases of isomorphic
lattices too3.

Definition 1. Two lattices L,L′ are called isomorphic if there is a length-preserving

bijection φ : L → L′ satisfying φ(x + y) = φ(x) + φ(y).

In terms of matrix representations this means that if the rows of B form a
basis for a lattice L then the rows of B′ = UBY where U ∈ GLn(Z) and Y is
orthonormal, form a basis for an isomorphic lattice L′, even though the rows of
B′ do not necessarily generate the same points of L.

The point of allowing the extra freedom of post-multiplying by an orthonor-
mal matrix is that if (for some reason) one can find an integer vector u such that
uB′ is small, then uU−1B is also small, i.e. solving lattice problems in an iso-
morphic lattice can help solve them in the original lattice. It is worth noting that
this freedom also allows one to always consider lower triangular lattice bases by
forming Y from the Gram-Schmidt procedure4. Explicitly Ti,j = µi,j |b∗j | where

µi,j = 〈bi, b
∗

j〉/|b∗j |2 for 1 ≤ j < i ≤ n and µi,i = 1.

3 This phenomenon is usually explained through the language of quadratic forms, but
such a presentation typically misses the concreteness of the isomorphic lattice bases,
which we prefer in this report.

4 It is worth saying that mathematicians do not always apply this transformation
because some non-lower triangular lattice bases naturally have integer entries (as



Given that there are many bases of the same lattice L, there is a significant
amount of research around defining which bases are “more reduced” than others,
and generating efficient algorithms to produce such bases [22, 8, 21]. The most
commonly used reduction scheme in cryptography is BKZ [22] and its efficient
implementation in the number theory library NTL [23].

Lattice reduction typically transforms a basis {b1, . . . , bn} so that the size of
the Gram-Schmidt vectors b∗i do not decrease “too quickly”. This allows one to
prove an approximation factor between the size of the first vector b1 and the size
of the smallest vector in the lattice λ1 (which is normally bounded by the size
of b∗n). Thus lattice reduction can be used to solve the (approximate) shortest
vector problem (SVP).

Another well-studied lattice problem is the (approximate) closest vector prob-
lem (CVP): one is given an arbitrary point in space y ∈ R

n and the problem
is to find the closest lattice point to this point (or more generally a lattice
point within a radius of a multiple of λ1). We make use of the following simple
CVP-algorithm when the lattice basis is given by the rows of a lower triangular
(n) × (n) matrix T (as explained above a basis can always be represented this
way, and this avoids explicit use of b∗i ). We remark that this algorithm has a
long history; it is sometimes called “weak reduction” or “size reduction” of the
vector y against the basis T and is an essential component of lattice reduction
techniques, however is usually referred to as Babai’s nearest plane algorithm
from the analysis in [2].

Algorithm 1 weakly reducing y against T
1: x← y
2: for i = n down to 1 do

3: let ui to be the nearest integer to xi/Ti,i

4: x← x− uiTi

5: end for

6: return the reduced vector x

The following lemma (first shown in [7]) shows that if a point in space is
“particularly close” to a lattice vector then it can be recovered by algorithm 1.

Lemma 1 (Furst, Kannan). Assume y = uT + x for some u ∈ Vn(Z), x ∈
Vn(R) and a lower triangular T ∈Mn(R). If the entries of x satisfy

−Ti,i/2 < xi ≤ Ti,i/2 (4)

for 1 ≤ i ≤ n, then x can be recovered by algorithm 1.

Proof. It is simple to confirm that the “error” vector x does not change any of
the “rounding” computations of ui in step 3 of algorithm 1.

opposed to general real entries), and putting a lattice in lower triangular form can
force the use of square roots of rational numbers (or real approximations) in this
case.



3.1 Reducing the NTRU public basis

The NTRU public basis is given5 in equation 1. The state of a partially-reduced
NTRU lattice can be expressed well by plotting the logq |b∗i | for i = 1, . . . , 2N ,
as done in [9]. Figure 1 shows the various states of reduction of an NTRU public
basis with the ees251ep6 parameter set.
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Fig. 1. A representation of lattice reduction on NTRU lattices via plotting logq |b
∗

i |.
The left figure is the public basis, the middle figure is after reduction with BKZ with
blocksize 15, the right is the fully reduced private basis.

As can be seen from the middle graph of figure 1, the first few b∗i vectors
of a partially-reduced NTRU basis typically remain q-vectors, whilst the last b∗i
vectors typically satisfy |b∗i | = 1. We note the (approximate) symmetry of these
graphs can be made exact by using the symplectic lattice reduction techniques
of [9]. Notice the central region of a partially-reduced NTRU basis is approxi-
mately linear in the log scale, i.e. it obeys the geometric series assumption (GSA)
as defined in [21].

Given that the first and last vectors are untouched, reducing an NTRU basis
can be speeded up by extracting a suitable lower triangular submatrix B′, re-
ducing this, and putting the basis back in a lower triangular form6. If the public
basis is represented by B, then this transformation can be written UBY = T ,
where the structure of U , B, Y and T are shown below:





Ir 0 0
0 U ′ 0
0 0 Ir′









qIr 0 0
∗ B′ 0
∗ ∗ Ir′









Ir 0 0
0 Y ′ 0
0 0 Ir′



 =





qIr 0 0
∗ T ′ 0
∗ ∗ Ir′



 . (5)

The (partially-reduced) matrix T also has N small vectors given by (g(i), f (i))Y ,
where (g(i), f (i)) are the original small vectors corresponding to f = fX i, g = gX i

for i = 1, . . . , N . From the structure of Y we see that these small vectors have
binary entries for the first r entries and the last r′ entries, and only the middle
entries are affected by Y ′.

5 We note that this basis description is slightly different from the original description
in [10], but we prefer putting the small q-vectors first.

6 This is completely akin to the treatment of blocks in a block reduction scheme.



Let m = 2N−r′ denote the number of vectors in the first two “blocks”, and let
{b′1, . . . , b′m−r} denote the rows of B′. Our strategy to recover the NTRUEncrypt
private key is to pick a submatrix B′ such that (b′m−r)

∗ can be made reasonably
large (so that lemma 1 may be usefully employed), whilst at the same time
making m reasonably large so that the last r′ entries of (g(i), f (i))Y can either
be guessed, or (less-restrictively) have a meet-in-the-middle attack mounted on
them.

We remark that the standard way to ensure (b′m−r)
∗ is large, is to try to

minimize the first vector in the dual matrix of B′, as described in [6, 12, 13, 20].

4 The hybrid lattice-reduction and meet-in-the-middle

method

Let T be as defined in equation 5, and let u, v, s be such that

(u|v)T = (s|v) = (g(i), f (i))Y,

for some i = 1, . . . , 2N and where u, s are of length m, and v is of length
r′ = 2N −m.

We start by showing that an algorithm that enumerates all possible v is
enough to recover (u|v), and then show that there is actually a meet-in-the-
middle algorithm to recover the same information. We note that knowledge of
(u|v) is clearly equivalent to knowledge of (s|v) and (g, f).

Lemma 2. The vector (0|v)T − (0|v) is a distance of |s| away from a lattice

point of T .

Proof. We know

(0|v)T − (0|v) = (u|v)T − (u|0)T − (0|v)

= (s|0)− (u|0)T.

Corollary 1. If s if “small enough” to satisfy the conditions of lemma 1 then

it can be found by algorithm 1.

In our analysis we always ensure that s satisfies the conditions of lemma 1 for
a large proportion7 of the rotations (g(i), f (i)). In principle this condition could
be slightly relaxed by using the methods of [18, 21], at the cost of doing some
extra “searching”.

We use the output of algorithm 1 to determine a number of “addresses” for
“boxes” to store meet-in-the-middle data in to. As mentioned in section 2.2 there
are slight complications in working out which boxes to store information in to
increase the probability of good collisions. In our analysis we always ensure that
r (the number of initial q-vectors untouched) is large enough so that the storage

7 This probability depends on the form of T and the effect of Y so can be checked
easily.



requirements of the meet-in-the-middle attack is less that 2r. This way we can
use Odlyzko’s storage strategy directly without having to consider i for which
Ti,i < q. We note that the following definition could be generalized to handle
the case when |xi| ≤ Ti,i/2 and the error on the xi is non-constant, unknown
but small (rather than the fixed value 1), but this is presently unnecessary.

Definition 2. For a fixed integer r, and any vector (x|0) with entries satisfying

−q/2 < xi ≤ q/2 for 1 ≤ i ≤ r we define an associated set, A(r)
x , of r-bit

integer “addresses” where A(r)
x contains every r-bit integer a satisfying both of

the following properties:

– bit ai = 1 for all indices i, 1 ≤ i ≤ r, such that xi > 1, and

– bit ai = 0 for all indices i, 1 ≤ i ≤ r, such that xi ≤ 0.

Example 1. To help explain definition 2 we do a simple example with r = 10,
q = 11, and

x = (2, 3,−4,−1, 1, 5,−3,−2, 0, 1).

In this case there are 2 entries satisfying xi = 1, so

A(r)
x = {11000100002, 11000100012

11001100002, 11001100012}.

Lemma 3. When the first r entries of (x|0) are random integers modulo q and

independent of each other, then the expected size of A(r)
x is 2z where

z =
r
∑

j=0

j

(

r

j

)

(q − 1)r−j

qr
.

Proof. Each xi = 1 doubles the entries of A(r)
x (one with bit ai = 0 and the

other with bit ai = 1), so the number of expected entries in A(r)
x is 2z where z

is the number of expected 1’s in the first r entries of x.
Assuming the entries of x are random modulo q and independent of each

other, the probability that x has j ones in its first r entries is

pj =

(

r

j

)

(q − 1)r−j

qr
,

and the expected value is therefore given by z =
∑r

j=0 jpj.

Example 2. In the case r = 159 and q = 197 then p0 ≈ 0.45, p1 ≈ 0.36, p2 ≈
0.14, p3 ≈ 0.04, so z ≈ 0.36 + 2(0.14) + 3(0.04) ≈ 0.76, and the probability that
z > 3 is very low (so in practice we discard such x since they are costly to store).

Lemma 4. If the first r entries of a vector s are binary, and −q/2 < xi − si ≤
q/2 for 1 ≤ i ≤ r, then the set A(r)

x ∩ A(r)
x−s is non-empty.



Proof. If the first r entries of a vector s are binary then the sign of the first r
entries of x − s are unchanged whenever xi > 1 or xi ≤ 0. If 0 < xi ≤ 1 then

the sign does change but in that case A(r)
x contained adresses with both choices

of bit ai.

The meet-in-the-middle attack is described in algorithm 2. To analyze its
properties we create the following definition.

Definition 3. A vector v1 of length r′ = 2N −m is called s-admissable if the

x1, u1 gotten from algorithm 1 satisfy:

(0|v1)T − (0|v1) = (x1|0)− (u1|0)T, and (6)

(0|v1)T − (s|v1) = (x1 − s|0)− (u1|0)T,

i.e. the subtraction of (s|0) does not affect the multiple of T taken away during

algorithm 1.

Algorithm 2 meet-in-the-middle on v

1: loop

2: guess a binary vector v1 of length r′ = 2N −m with c ones
3: use algorithm 1 to calculate x1, u1 such that (0|v1)T − (0|v1) = (x1|0)− (u1|0)T

4: store v1 in the boxes addressed by a, for every a ∈ A
(r)
x1
∪A

(r)
−x1

5: if there is already a value v2 stored in any of the above boxes then

6: let v = v1 +v2 and use algorithm 1 to calculate x, u such that (0|v)T − (0|v) =
(x|0)− (u|0)T

7: if (g|f) = (x|v)Y −1 is binary then

8: return f, g
9: end if

10: end if

11: end loop

Lemma 5. If a vector v1 is s-admissable, then the vector v2 = v − v1 is also

s-admissable.

Proof. We have

(0|v − v1)T − (0|v − v1) = (0|v)T − (0|v)− (0|v1)T + (0|v1)

= (s|0)− (u|0)T − (x1|0) + (u1|0)T

= (s− x1|0)− (u− u1|0)T

and

(0|v − v1)T − (s|v − v1) = (−x1|0)− (u− u1|0)T.



Theorem 1. Let v1, v2 be two s-admissable vectors such that v1 + v2 = v. If

xi, ui are gotten from applying algorithm 1 to (0|vi)T − (0|vi) for i = 1, 2, then

x1 + x2 = s.

Proof. We know

(0|v1)T − (s|v1) = (x1 − s|0)− (u1|0)T

(0|v2)T − (0|v2) = (x2|0)− (u2|0)T,

where −Ti,i/2 < (x1)i − si ≤ Ti,i/2, −Ti,i/2 < (x2)i ≤ Ti,i/2, so summing these
equations yields

(0|v)T − (s|v) = (x1 + x2 − s|0)− (u1 + u2|0)T

(u|0)T = (x1 + x2 − s|0)− (u1 + u2|0)T

(u− u1 − u2|0)T = (x1 + x2 − s|0).

Thus (x1)m + (x2)m − sm = 0 modulo Tm,m, but in fact we can deduce
(x1)m + (x2)m − sm = 0 over the integers because of the size resrictions on
(x1)m and (x2)m − sm (two real numbers modulo Tm,m cannot be as large as
2Tm,m). This implies um = (u1)m +(u2)m, and given that one can then re-apply
a similar argument to coefficients (m − 1), . . . , 1 to realize x1 + x2 = s, and
u1 + u2 = u.

Theorem 2. If v1, v2 are s-admissable such that v1 + v2 = v and they are

chosen in separate loops of algorithm 2 then there exists a box which contains

both v1 and v2.

Proof. Since v1 and v2 are both admissable and v = v1 + v2 then by theorem 1
we know x1 + x2 = s. We know v2 is contained in all the boxes addressed by

a ∈ A(r)
−x2

= A(r)
x1−s. But v1 is stored in all the boxes addressed by a ∈ A(r)

x1
so

by lemma 4 there is at least one box which contains both v1 and v2.

The problem of estimating the probability that a vector v1 chosen in step
2 of algorithm 2 is s-admissible can be reduced to the problem of calculating
the probability distribution of a coordinate ǫ of a point obtained by multiplying
a binary vector times an orthonormal matrix8. In particular, the square of a
coordinate of the image of a binary vector with d 1’s and m − r − d 0’s after
multiplication by an orthonormal matrix will have |ǫ| <

√
d and expected value

E(ǫ2) = d/(m − r). Denote by pd(δ, δ
′) the probability that δ ≤ |ǫ| < δ′ and

choose 0 = δ1 < δ2 < · · · < δK =
√

d. Then we have

8 That is, we are modelling Y ′ as a random orthonormal matrix, which can be approx-
imated by applying the Gram-Schmidt procedure (with normalization) to a random
matrix.



Lemma 6. Let Tm,m = qα and assume that the GSA holds. Then the probability

ps that a vector v1 chosen in step 2 of algorithm 2 is s-admissible satisfies

ps >

(

1− 1

q

)r/2 m
∏

i=r+1

(

K−1
∑

k=1

(

1− δk+1

qei

)

pd(δk, δk+1)

)

ps <

(

1− 1

q

)r/2 m
∏

i=r+1

(

K
∑

k=1

(

1− δk

qei

)

pd(δk, δk+1)

)

Here ei = ((α− 1)i + (m− αr))/(m− r).

Proof. When i > r, the ith coefficient of v1 is xi + si where xi is uniformly dis-
tributed in [−Ti,i/2, Ti,i/2], where Ti,i = qei . The density function of si is approx-
imated by a step function on intervals [δk, δk+1] and probabilities pd(δk, δk+1)
are obtained experimentally. The factors in the sum on k represent lower and up-
per approximations to an integral which involves the convolution of the density
functions of xi and si. When i < r, the factor 1−1/q is found by approximating
the probability that a uniform random variable in [−q/2, q/2) can be perturbed
by another random variable, uniform on {0, 1} and stay in the same q-interval
(we raise to the power r/2 because dg ≈ N/2).

Remark 1. Computations show that the upper bound for ps given by lemma 6
comes reasonably close to calculations of ps obtained by direct sampling and test-
ing (given T and Y ). For example, choosing K = 81 and taking the parameters of
the N = 251 example in the table, with α = 0.3 yields 2−17.29 < ps < 2−8.18, with
a consequent estimate 268.9 < |L∗| < 273.4. Sampling directly gave ps = 2−6.7

and |L∗| = 267.9.

Lemma 7. The probability that a vector v1 sampled in step 2 of algorithm 2 is

such that v = v1 + v2, for some v2 with c ones, is given by

ph = w

(

2c

c

)(

2N −m

c

)

−1

,

where w is the number of rotations of (g|f) resulting in 2c distinct ones in v.

Proof. This is just the ratio of the sizes of the respective sets, assuming no
intersections of the rotations.

Theorem 3. The expected number of loops of algorithm 2 before (f, g) is re-

turned is estimated by

L∗ =

(

2N −m

c

)(

psw

(

2c

c

))

−1/2

,

where w is the number of rotations of (g|f) resulting in 2c ones in v.



Proof. Let V denote the set of s-admissable vectors v1 with c ones, such that
v − v1 also has c ones. Assuming indepedence the probability of choosing an
element of V in step 2 of algorithm 2 is psph so we can expect to draw from
V about 1 in every (psph)−1 samples. Again assuming independence the size of
the set V is |V | = psw

(

2c
c

)

, and after about |V |1/2 samples of the set V we can
expect to have sampled a v1 and a v2 such that v1 + v2 = v.

Remark 2. Although the number L∗ seems the most natural measure of the cost
of the hybrid method, it does ignore the change in the cost per loop in going from
Odlyzko’s attack to the hybrid attack. We previously estimated the inner-loop
cost of Odlyzko’s attack as Ndf/2, whereas the corresponding cost of the hybrid
scheme is m2c/2 modular additions.

5 Results

To determine the practicality of our attack we have implemented it fully on a
small example, and have done a thorough analysis for the ees251ep6 parameter
set, namely: examples with m = 302 and m = 325 based on actual lattice
reduction data, and an example with m = 344 based on extrapolated data.

5.1 A small example

Algorithm 2 has been fully implemented for a small example with N = 53,
q = 37, df = dg = 16. In this example Odlyzko’s meet-in-the-middle attack
should have taken 220.1 loops whereas algorithm 2 has 213.1 loops.

With such a small example lattice reduction can often recover the NTRU-
Encrypt private key, so care was taken to avoid this. We extracted the lower
triangular submatrix from rows/columns 24 to 76 inclusive, and LLL-reduced
this basis (it took a few seconds using NTL on a 2GHz laptop with 1GB of
RAM running Cygwin on a Windows XP platform).

This left the last r′ = 30 to launch the meet-in-the-middle attack on. We
assumed there were 8 ones in these last 30 entries, which was true for 11 of the
57 rotations of (g, f).

We chose many combinations of c = 4 ones from these last r′ = 30, storing
the choices in boxes dependent on the output of algorithm 1. After 213.1 loops
we successfully found a rotation of the (g, f) vector.

On average we stored information in roughly 4 boxes per loop, so the storage
complexity was 215.1.

5.2 ees251ep6 with m = 302

In the first of the experiments of the ees251ep6 parameter set we extracted the
lower triangular submatrix from rows/columns 160 to 300 inclusive, and BKZ-
reduced this basis with blocksize 15. The form of the matrix T is shown in the
left side of figure 2.
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This left the last r′ = 200 to launch the meet-in-the-middle attack on. We
assumed there were 34 ones in these last 200 entries, which was true for 2 of the
251 rotations of (g, f).

We chose many combinations of c = 17 ones from these last r′ = 200, stor-
ing the choices in boxes dependent on the output of algorithm 1. Our analysis
predicts algorithm 2 will find the NTRUEncrypt private key after 266.9 loops.

5.3 A table of results with an extrapolation

From an initial analysis of BKZ lattice running times, the connection between
running time and number of q-vectors removed appears to be

y = 2378.28− 132.652x + 23.7371x logx (7)

where it takes 2y time to remove x q-vectors, and we assume x > 98. Out of
interest we note that the accuracy of this equation would imply that equation 2
is a severe underestimate of the lattice security of the ees251ep6 parameter set
against BKZ attacks.

Given equation 7 it seems reasonable to assume that in less time than it
takes to do 276.2 modular additions, one can hope to perform lattice reduction
with r = 136 and m = 344. If this is indeed the case then the security of the
ees251ep6 parameter set is at most that given by 276.2 modular additions and a
storage requirement of 265.6. A stronger initial lattice reduction would improve
both of these figures.

N q df m β t (secs) r c α ps w L L∗ #adds #store
53 37 16 76 2 5 23 4 0.35 2−6.3 11 220.1 213.1 226.6 219

107 67 32 151 15 360 36 7 0.235 2−8.6 2 244.0 228.3 244.6 236.2

251 197 48 302 15 780 159 17 0.287 2−6.8 9 284.2 266.9 286.4 276.2

251 197 48 325 22 48727 144 14 0.182 2−13 4 284.2 260.3 279.8 269.4

251 197 48 344 ∗ ∗ 136 12 0.106 2−20.4 4 284.2 256.7 276.2 265.6



The extrapolation was done assuming the GSA [21], which gives the relation

α =
2N −m− r

m− r
,

where α is as defined in lemma 6 and corresponds to the “height of the cliffs” in
figure 2, and we modelled Y ′ as an (m− r)× (m− r) random orthormal matrix
(these assumptions fit very well with the data from real examples).

We remark that, for a given m, the parameter c was chosen to be minimal
such that a randomly chosen f has probability ≥ 0.4 of having at least one
rotation with 2c ones in the last 2N − m entries. The parameter w holds the
expected number of such rotations, given that f has at least one such rotation.

The storage complexity “#store” is measured in bits and was assumed to be
8L∗ log2

(

2N−m
c

)

, i.e. that an average of 8 boxes per loop were used to store the
v1’s. β denotes the blocksize used in BKZ.

Note that “#adds” count the number of modular additions and does not cor-
respond to bit-security (see section 2.3 for a further discussion on this distinc-
tion). The usefulness of this measure is that it shows the factor of improvement
over existing attacks.

6 Lessening storage requirements

The storage requirements of the extrapolated data point for the ees251ep6 pa-
rameter set corresponds to a total of 265.6 bits. Although this is significantly
better than the storage requirements for Odlyzko’s attack (294 bits), it is still
very expensive given today’s hardware. In this section we discuss how to reduce
this requirement to a more manageable figure, e.g. a total of 253.6 bits of storage9.

The idea is to perform the attack as before, but now we assume we know
more about the structure of f . For example in the ees251ep6 parameter set after
reducing the first m = 344 rows, we assume there is a rotation of f satisfying:

← 93→ ← 108→ ← D = 50→
22 ones 2c′ = 20 ones c′′ = 6 ones

When f is randomly chosen with 48 ones, there is a probability of 0.4 that there
will be a rotation of f satisfying this pattern (if f is not of this structure the
method will end in failure, and another common form should be chosen). Given
that there is at least one rotation of f of this form, the expected number of
rotations of this form is w = 3.

The attacker10 chooses a fixed vector v0 of length r′ = 2N −m with c′′ of
the last D entries set to 1, and the remaining entries 0.

We now explain how to slightly modify algorithm 2 to solve CVP with the
point (0|v0)T rather than SVP. In step 2 the algorithm should guess a vector v′1

9 At the time of writing a 1TB hard drive costs about $400, so this amount of storage
can be had for approximately $500,000.

10 Or multiple attackers, since this part is totally parallelizable.



of length r′ = 2N −m such that v1 = v′1 + v0 has c ones (so v′1 has c′ = 11 ones
in the first r′ −D entries, assuming the above form of f).

In step 3 we then calculate the x1, u1, and x′

1, u
′

1 corresponding to both v1

and v′1 respectively. In step 4 we store v′1 in the boxes addressed by a for every

a ∈ A(r)
x1
∪ A(r)

−x1
∪ A(r)

x′

1

∪A(r)
−x′

1

.

In step 6 we let v = v′1 +v′2 +v0 and apply algorithm 1 as before. It is easy to
confirm that theorem 2 still holds where we now have v1 = v′1 + v0 and v2 = v′2,
so if these are s-admissable then there will be a collision in a box and v can be
recovered.

The cost per loop of the modified algorithm is roughly twice the running
time and storage of algorithm 2.

The number of loops of the modified algorithm is

L# =

(

2N −m−D

c′

)(

psw

(

2c′

c′

))

−1/2

,

and the cost per loop is m2c′ modular additions, and there are
(

D
c′′

)

choices for
v0. Thus the total work done is 289.2 modular additions, which is still better
than Odlyzko’s attack (295.8) but now we have brought the storage down to
8L# log2

(

2N−m−D
c′

)

= 253.6 bits, which is a factor of 240.4 less than Odlyzko’s
attack.

7 Generalizations

As mentioned in the introduction, the idea of this paper is really about achieving
a meet-in-the-middle technique when one has a set S = S′ ⊕ S′ which contains
a vector v0 which is close to a lattice point of a well-reduced lattice basis. We
have seen how the idea can be applied to NTRUEncrypt, but there is also hope
it can be applied in more generic lattice situations.

To place the approximate-SVP problem on a basis B = {b1, . . . , bn} in to the
above framework one can split the basis in to two parts: B1 = {b1, . . . , bm} and
B2 = {bm+1 . . . , bn}. The set S′ can then be generated by linear combinations
of B2 which are small in the space orthogonal to B1. In [21] Schnorr proposes
that B2 be sampled with the SHORT algorithm11, but many other approaches are
possible12, and indeed other approaches may result in shorter vectors (in the
space orthogonal to B1).

There are several competing criteria dictating what value of m, 1 ≤ m ≤ n
one should use: m should be small enough to ensure:

– S′ is large enough: An important criteria for the technique to work is that
there should be some vector v0 ∈ S = S′ ⊕ S′ which, when projected in

11 This can be seen as a slightly modified version of Babai’s nearest plane algorithm
which takes a binary auxillary “error” vector as input, and makes a slight error in
rounding wherever this vector has a non-zero entry.

12 For example an exhaustive search of small vectors within some bound.



to the space generated by B1, is close to a lattice point of B1. In the case
of NTRUEncrypt the structure of the private key guarantees this, but in a
more generic lattice situation one must ensure that S′ is large enough for
there to be a reasonable probability of this being true.

– b∗m is large enough: For the technique to work m must be chosen such that
lattice reduction is likely to b∗m large enough (with respect to the closeness
of v0 to a lattice point of B1) for the s-admissable probability to be non-
negligible.

However there are also reasons for making m large:

– There need to be enough boxes to store the multiple of B2 in to: If m is
too low there will be too many collisions and the technique will not work.
Interestingly this means that lattices resulting from subset sum problems do
not seem good candidates for this approach (they typically only contain one
non-trivial column).

– Sampling from B2 should not take too long.

There is hope that the parameter m, and the amount of initial lattice re-
duction can be fine tuned to optimize this meet-in-the-middle approach, and
possibly improve on Kannan’s exhaustive search algorithm [17]. Asymptotically
we know that Kannan’s algorithm will be beaten by sieving techniques [1], but
in relatively low dimensions there may be a space for a hybrid algorithm out-
performing both existing techniques. We leave the investigation of this idea to
future research.

As a final generalization we also note that algorithm 1 is not essential to the
method, indeed the s-admissable probability can be improved by using a better
CVP algorithm than Babai’s closest plane algorithm (e.g. mixing Babai’s CVP
(which is essentially blocksize 1) with searching in higher blocksizes 2, 3, . . .), but
this means a more costly CVP approach has to be performed for each loop, so
care should be taken to keep it relatively efficient13. When using such a higher
blocksize CVP approach it is possible to calculate the addresses for the boxes
from the multiple of the rows take away in the CVP process rather than the sign
of the xi.
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and Phil Hirschhorn for verifying the analysis in this paper, and Jill Pipher and
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8 Conclusions

We have demonstrated a new class of attack on the NTRU cryptosystem: one
where there is an initial amount of lattice reduction, followed by a generalized
meet-in-the-middle procedure.

13 For example, it could be only used where the b∗i are small.



One way this result can be viewed is as a large strengthening of the result
in [5]. In that paper is was shown that lattice reduction sufficient to retrieve a
vector of size less that q could be used to break NTRUEncrypt; in this paper we
show that far less lattice reduction is needed to mount a successful attack.

With regards to the ees251ep6 parameter set, we have peformed lattice
reduction to a sufficient degree to make our method 216 times quicker than
Odlyzko’s attack, whilst at the same time requiring a factor of 224.6 less storage.
However, due to the original conservative choice of NTRUEncrypt parameters
there still remains a substantially hard problem to recover the NTRUEncrypt
private key (primarily due to the storage requirements).

We extrapolated lattice running times to make our method 219.6 times quicker
than Odlyzko’s attack, and requiring a factor of 228.4, but the storage require-
ments were still substantial.

We have thus modified the attack to require a factor of 240.4 less memory,
and take time about one hundreth of that of Odlyzko’s attack. This is therefore
the most practical attack on NTRUEncrypt since its inception in 1996. Progress
in lattice reduction will improve our results (both the running time and storage
requirements), and so should be factored in if choosing new parameters.

Our attack is still exponential in the security parameter k, so it does not
“break” NTRUEncrypt in an asymptotic sense. However to avoid this attack
it is imperative to chose parameters so that the meet-in-the-middle attack has
complexity 2k even after an initial lattice basis reduction of complexity 2k. We
also note that when choosing parameters it seems overly-cautious to allow the
attacker up to 2k storage, especially for security levels k > 80, but some realistic
model of the attackers’ storage capabilities should be made.

We observe that in order to defend against this attack it is probably a good
idea to “thicken” the NTRUEncrypt private vector (g, f), i.e. to set df = dg ≈
N/2, or preferably to use a “trinary” vector (g, f) with −1’s, 0’s, and 1’s, to make
meet-in-the-middle attacks substantially harder without increasing N consider-
ably.
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