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Abstract. This paper introduces simulatable verifiable random func-
tions (sVRF). VRFs are similar to pseudorandom functions, except that
they are also verifiable: corresponding to each seed SK, there is a public
key PK, and for y = FPK(x), it is possible to prove that y is indeed the
value of the function seeded by SK. A simulatable VRF is a VRF for
which this proof can be simulated, so a simulator can pretend that the
value of FPK(x) is any y.
Our contributions are as follows. We introduce the notion of sVRF. We
give two constructions: one from general assumptions (based on NIZK),
but inefficient, just as a proof of concept; the other construction is prac-
tical and based on a special assumption about composite-order groups
with bilinear maps. We then use an sVRF to get a direct transformation
from a single-theorem non-interactive zero-knowledge proof system for a
language L to a multi-theorem non-interactive proof system for the same
language L.

1 Introduction

It has been more than twenty years since the discovery of zero-knowledge proofs.
In that time, they have attracted interest from the theoretical computer science
community (leading to the study of interactive proof systems and PCPs), theo-
retical cryptography community, and, more recently, cryptographic practice.

The proof protocols that have been implemented so far [Bra99,CH02,BCC04],
even though zero-knowledge in spirit, are not, strictly speaking, zero-knowledge
proofs as we usually define them. Typically, they are honest-verifier interactive
zero-knowledge proofs (sometimes, actually, arguments of knowledge) with the
interactive step removed using the Fiat-Shamir paradigm [FS87,GK03]. Interac-
tion is an expensive resource, and so using a heuristic such as the Fiat-Shamir
transform in order to remove interaction is more attractive than using an inter-
active proof.
Single-theorem NIZK In contrast to the Fiat-Shamir-based protocols adopted
in practice, that do not in fact provide more than just a heuristic security guar-
antee [GK03], there are also well-known provable techniques for achieving zero-
knowledge in non-interactive proofs. Blum et al. [BFM88,DMP88,BDMP91] in-
troduced the notion of a non-interactive zero-knowledge (NIZK) proof system.
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In such a proof system, some parameters of the system are set up securely ahead
of time. Specifically, a common random string σ is available to all participants.
The prover in such a proof system is given an x ∈ L for some language L and
a witness w attesting that x ∈ L. (For example, L can be the language of all
pairs (n, e) e is relatively prime to φ(n). The witness w can be the factorization
of n.) The prover computes a proof π, and the proof system is zero-knowledge
in the following sense: the simulator can pick its own σ′ for which it can find a
proof π′ for the statement x ∈ L. The values (σ′, π′) output by the simulator are
indistinguishable from (σ, π) that are generated by first picking a random σ and
then having the honest prover produce π for x ∈ L using witness w. Blum et al.
also gave several languages L with reasonably efficient NIZK proof systems.

Let us explain the Blum et al. NIZK proof system for the language L in the
example above: L = {(n, e) | gcd(φ(n), e) = 1}. First, recall that if e is not
relatively prime to φ(n), then the probability that for a random x ∈ Z∗

n there
exists y such that ye = x mod n is upper-bounded by 1/2. On the other hand,
if e is relatively prime to φ(n), then for all x ∈ Z∗

n there exists such a y. So
the proof system would go as follows: parse the common random string σ as
a sequence z1, . . . , z` of elements of Z∗

n, and for each zi, compute yi such that
ye

i = zi mod n. The proof π consists of the values y1, . . . , y`. The verifier simply
needs to check that each yi is the eth root of zi. For any specific instance (n, e),
the probability (over the choice of the common random string σ) that a cheating
prover can come up with a proof that passes the verification is 2−`. By the union
bound, letting ` = k(|n|+ |e|) guarantees that the probability, over the choice of
σ, that a cheating prover can find an instance (n, e) and a proof π passing the
verification, is negligible in k.

Note that the proof system described above, although expensive, is not pro-
hibitively so. Proof systems of this type have been shown to yield themselves to
further optimizations [DCP97]. So why aren’t such proofs attractive in practice?

Multi-theorem NIZK The problem with NIZK as initially defined and ex-
plained above was that one proof π completely used up the common random
string σ, and so to produce more proofs, fresh common randomness was required.
Blum et al. [BDMP91] showed a single-prover multi-theorem NIZK proof system
for 3SAT, and since 3SAT is NP-complete, the result followed for any language
in NP, assuming quadratic residuocity. Feige, Lapidot and Shamir [FLS99] con-
structed a multi-prover, multi-theorem NIZK proof system for all NP based on
trapdoor permutations. Recently, Groth, Ostrovsky and Sahai [GOS06] gave a
multi-theorem NIZK proof system for circuit satisfiability with very compact
common parameters and achieving perfect zero-knowledge (with computational
soundness), based on the assumption that the Boneh, Goh, Nissim [BGN05]
cryptosystem is secure.

In each of the multi-theorem NIZK results mentioned above, to prove that
x ∈ L for a language L in NP, the prover would proceed as follows: first, reduce
x to an instance of the right NP-complete problem, also keeping track of the
witness w. Then invoke the multi-theorem NIZK proof system constructed for
this NP-complete problem. In other words, even if the language L itself had an
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efficient single-theorem NIZK, existing multi-theorem NIZK constructions have
no way of exploiting it. The Feige et al. result, which is the most attractive
because it is based on general assumptions, is especially bad in this regard: their
construction explicitly includes a step that transforms every instance x into a
new instance x′ via a Cook-Levin reduction. These reductions are what makes
NIZK prohibitively expensive to be considered for use in practice.

In this paper, we give a construction for achieving multi-theorem NIZK for
any language L based on single-theorem NIZK for L, without having to reduce
instances of L to instances of any NP-complete languages. This construction is
based on a new building block: a simulatable verifiable random function (sVRF).

Simulatable VRFs. Verifiable random functions (VRFs) were introduced by
Micali, Rabin, and Vadhan [MRV99]. They are similar to pseudorandom func-
tions [GGM86], except that they are also verifiable. That is to say, associated
with a secret seed SK, there is a public key PK, domain DPK , range RPK

and a function FPK(·) : DPK 7→ RPK such that (1) y = FPK(x) is efficiently
computable given the corresponding SK; (2) a proof πPK(x) that this value
y corresponds to the public key PK is also efficiently computable given SK;
such a proof can exist only for a unique value y; (3) based purely on PK and
oracle calls to FPK(·) and the corresponding proof oracle, no adversary can
distinguish the value FPK(x) from a random value without explicitly query-
ing the function on input x. Several constructions of VRFs in the plain model
exist [MRV99,Lys02,Dod02,DY05]. In the common-random-string model, Gold-
wasser and Ostrovsky [GO92] showed that existence of VRFs (with polynomial-
size domains; one can also call such VRFs verifiable pseudorandom generators,
or VPRGs) is a necessary and sufficient condition for multi-theorem NIZK for all
NP. Dwork and Naor [DN00] showed that (approximate) VPRGs in the standard
model are necessary and sufficient for zaps (zaps are witness-indistinguishable
proof protocols consisting of two rounds; the first round is a message from the
verifier to the prover than can be reused for future instances).

We introduce simulatable VRFs (sVRFs). In the common parameters model,
FPK(·) is a VRF in the sense defined above for all honest settings of the common
parameters. However, there is also a way to simulate the common parameters
such that, corresponding to a PK, for any x ∈ DPK , y ∈ RPK , it is possible to
simulate a proof π that FPK(x) = y. The resulting simulation is indistinguishable
from the view obtained when the parameters are set up correctly.

Using an sVRF to transform single-theorem NIZK to multi-theorem
NIZK. A simulatable VRF with domain of size `(k) and binary range allows a
prover to come up with a fresh verifiably random string R of appropriate length
`(k) every time he wants to prove a new theorem. He simply comes up with a
new PK for a VRF, and evaluates FPK on input i to obtain the ith bit of R, Ri.
The VRF allows him to prove that R was chosen correctly. He can then XOR
R with a truly random public string σ1 to obtain a string σ to be used in a
single-theorem NIZK. The resulting construction is zero-knowledge because of
the simulatability properties of both the sVRF and the single-theorem NIZK. It
is sound because σ1 is a truly random string, and so it inherits the soundness
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from the single-theorem NIZK (note that it incurs a penalty in the soundness
error). Note that because our sVRF construction is in the public parameters
model, the resulting multi-theorem proof system is also in the public parameters
model (rather than the common random string model).

Since we give an efficient instantiation of sVRFs, our results essentially mean
that studying efficient single-theorem NIZK proof systems for languages of in-
terest is a good idea, because our construction gives an efficient transformation
from such proof systems to multi-theorem ones.

Using an sVRF instead of the random oracle. An sVRF shares some
characteristics with a programmable random oracle: assuming that the parame-
ters of the system were picked by the simulator, the simulator can program it to
take certain values on certain inputs. One cannot necessarily use it instead of the
hash function in constructions where the adversary gets the code for the hash
function. But it turns out that it can sometimes replace the random oracle in
constructions where the adversary is allowed oracle access to the hash function
and requires some means to be sure that the output is correct. For example,
using an sVRF instead of H in the RSA-FDH construction [BR93,Cor00] would
make the same proof of security hold without the random oracle. Of course, it
is not a useful insight: an sVRF is already a signature, so it is silly to use it
as a building block in constructing another signature. The reason we think the
above observation is worth-while is that it is an example of when using an sVRF
instead of an RO gives provable instead of heuristic guarantees.

Constructing an sVRF. Our main result is a direct construction of a simu-
latable VRF based on the Subgroup Decision assumption (SDA) [BGN05], and
an assumption related to the Q-BDHI assumption [BB04b]. Dodis and Yam-
polskiy [DY05] used the Q-BDHI assumption to extend the Boneh-Boyen short
signature scheme [BB04a] and derive a VRF. The Dodis-Yampolskiy VRF is of
the form Fs(x) = e(g, g)1/(s+x), where g is a generator of some group G1 of
prime order q, and e : G1 × G1 7→ G2 is a bilinear map. The secret key is s
while the public key is gs. The DY proof that y = Fs(x) is the value π = g1/(s+x)

whose correctness can be verified using the bilinear map.
Our sVRF is quite similar, only it is in a composite-order group with a

bilinear map: the order of G1 is an RSA modulus n = pq. This is what makes
simulatability possible. In our construction, the public parameters consist of
(g,A, D, H), all generators of G1. As before, the secret key is s, but now the
public key is As. Fs(x) = e(H, g)1/(s+x), and the proof is a randomized version
of the DY proof: π = (π1, π2, π3), where π1 = Hr/(s+x)/Dr, π2 = g1/r and
π3 = A(s+x)/r. It turns out that, when A generates the entire G1, there is a
unique y = Fs(x) for which a proof exists. However, when A belongs to the
order-p subgroup of G1 (as is going to be the case when the system parameters
are picked by the simulator), the verification tests correctness only as far as
the order-p subgroup is concerned, and so the order-q component of Fs(x) is
unconstrained. The proof of security requires that a strengthening of Q-BDHI
hold for the prime-order subgroups of G1, and that the SDA assumption holds
so that A picked by the simulator is indistinguishable from the correct A.
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We also give, as proof of concept, a construction under general assumptions,
based on multi-theorem NIZK.
Organization of the rest of this paper. In Section 2 we define sVRFs.
In Section 3 we give an sVRF construction based on general assumptions as a
proof of concept. In Section 4 we give our main result and its proof of security.
Finally, in Section 5 we give the transformation from single-theorem NIZK to
multi-theorem NIZK using sVRFs.

2 On Defining sVRFs

We begin by adapting the definition of Micali, Rabin and Vadhan [MRV99] in
the public parameters model.

Definition 1 (VRF in the public parameters model). Let Params(·) be
an algorithm generating public parameters p on input security parameter 1k. Let
D(p) and R(p) be families of efficiently samplable domains for all p ∈ Params.
The set of algorithms (G, Eval, Prove, Verify) constitutes a verifiable random
function (VRF) for parameter model Params, input domain D(·) and output
range R(·) if

Correctness Informally, correctness means that the verification algorithm
Verify will always accept (p,PK,x, y, π) when y = FPK(x), and π is the
proof of this fact generated using Prove. More formally, ∀k, p ∈ Params(1k),
x ∈ D(p),

Pr[(PK,SK)← G(p); y = Eval(p,SK,x);π ← Prove(p,SK,x);
b← Verify(p,PK,x, y, π) : b = 1] = 1

Pseudorandomness Informally, pseudorandomness means that, on input
(p,PK), even with oracle access to Eval(p,SK, ·) and Prove(p,SK, ·), no
adversary can distinguish FPK(x) from a random element of R(p) without
explicitly querying for it. More formally, ∀ PPT A, ∃ negligible ν such that

Pr[p← Params(1k); (PK,SK)← G(p);
(Qe, Qp, x, state)← AEval(p,SK,·),Prove(p,SK,·)(p,PK);

y0 = Eval(p,SK,x); y1 ← R(p); b← {0, 1};
(Q′

e, Q
′
p, b

′)← AEval(p,SK,·),Prove(p,SK,·)(state, yb)
: b′ = b ∧ x /∈ (Qe ∪Qp ∪Q′

e ∪Q′
p)] ≤ 1/2 + ν(k)

where Qe and Qp denote, respectively, the contents of the query tape that
records A’s queries to its Eval and Prove oracles in the first query phase,
and Q′

e and Q′
p denote the query tapes in the second query phase.

Verifiability For all k, for all p ∈ Params(1k), there do not exist (PK,x, y1, π1,
y2, π2) such that y1 6= y2, but Verify(p,PK,x, y1, π1) = Verify(p,PK,x, y2,
π2) = ACCEPT.
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Note that verifiability in the definition above can be relaxed so as to only
hold computationally (as opposed to unconditionally).

Simulatability, as defined below, is the novel aspect of sVRFs, setting them
apart from VRFs as previously defined. First, we give the definition, and then
we discuss variations.

Definition 2 (Simulatable VRF). Let (Params, G, Eval, Prove, Verify) be
a VRF (according to Definition 1). They constitute a simulatable VRF if there
exist algorithms (SimParams,SimG,SimProve) such that for all PPT A, A’s
views in the following two games are indistinguishable:

Game Real p← Params(1k) and then A(p) gets access to the following oracle
R: On query NewPK, R obtains and stores (PK,SK)← G(p), and returns
PK to A. On query (PK,x), R verifies that (PK,SK) has been stored for
some SK. If not it returns “error”. If so, it returns y = Eval(p,SK,x) and
π ← Prove(p,SK,x).

Game Simulated (p, t) ← SimParams(1k), and then A(p) gets access to the
following oracle S: On query NewPK, S obtains and stores (PK,SK) ←
SimG(p, t), and returns PK to A. On query (PK,x), S verifies if (PK,SK)
has been stored for some SK. If not, it returns “error”. If so, S (1) checks if
x has previously been queried, and if so, returns the answer stored; (2) oth-
erwise, S obtains y ← R(p) and π ← SimProve(p,SK,x, y, t), and returns
and stores (y, π).

2.1 Simplifying the Definition

The games in the above definition need to store multiple public keys and secret
keys, as well as responses to all the queries issued so far, and consistently re-
spond to multiple queries corresponding to all these various keys. It is clear that
this level of security is desirable: we want an sVRF to retain its security proper-
ties under composition with other instances within the same system. A natural
question is whether we can simplify the games by restricting the adversary to
just one NewPK query or just one (PK,x) query per PK without weakening the
security guarantees. In fact, the four possible combinations of such restrictions
yield four distinct security notions, as we show in the full version of this paper.

Although we cannot simplify Definition 2 in this way, we can give a seemingly
simpler definition (one that only allows one NewPK query from the adversary)
that is strictly stronger than Definition 2 in that it requires that the adversary
cannot distinguish the real game from the simulated one, even with the knowledge
of the trapdoor t.

Definition 3 (Trapdoor-indistinguishable sVRF). Let (Params, G, Eval,
Prove, Verify) be a VRF (as in Definition 1). They constitute a trapdoor-
indistinguishable (TI) sVRF if there exist algorithms (SimParams,SimG,
SimProve) such that the distribution Params(1k) is computationally indistin-
guishable from the distribution SimParams(1k) and for all PPT A, A’s views in
the following two games are indistinguishable:
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Game Real Proofs (p, t) ← SimParams(1k), (PK,SK) ← G(p) and then
A(p, t,PK) gets access to the following oracle R: On query x, R returns
y = Eval(p,SK,x) and π ← Prove(p,SK,x).

Game Simulated Proofs (p, t) ← SimParams(1k), (PK,SK) ← SimG(p, t),
and then A(p, t,PK) gets access to the following oracle S: On query x, S
(1) checks if x has previously been queried, and if so, returns the answer
stored; (2) otherwise, obtains y ← R(p) and π ← SimProve(p,SK,x, y, t),
and returns and stores (y, π).

By a fairly standard hybrid argument, we have the following lemma (see the
full version for the proof):

Lemma 1. If (Params, G, Eval, Prove, Verify) is a TI-sVRF, it is an sVRF.

2.2 Weak Trapdoor-Indistinguishable sVRF

We now define a somewhat weaker notion of TI sVRFs, in which a simulator can
only give fake proofs for those values of the output range that it has sampled
itself in some special way.

Definition 4 (Weak TI-sVRF). Let (G, Eval, Prove, Verify) be a VRF in
the Params(1k) model with domain D(·) and range R(·). They constitute a
weak trapdoor-indistinguishable (TI) sVRF if there exist algorithms (SimParams,
SimG,SimProve,SimSample) such that the distribution Params(1k) is computa-
tionally indistinguishable from the distribution SimParams(1k) and for all PPT
A, A’s views in the following two games are indistinguishable:

Game Real Proofs (p, t) ← SimParams(1k), (PK,SK) ← G(p) and then
A(p, t,PK) gets access to the following oracle: On query x, the oracle re-
turns y = Eval(p,SK,x) and π ← Prove(p,SK,x).

Game Simulated Proofs (p, t) ← SimParams(1k), (PK,SK) ← SimG(p, t),
and then A(p, t,PK) gets access to the following oracle: On query x, the
oracle (1) checks if x has previously been queried, and if so, returns the
answer stored; (2) otherwise, obtains (y, w) ← SimSample(p, t,SK,x) and
π ← SimProve(p,SK,x, y, t, w), and returns and stores (y, π).

We now show that a weak TI-sVRF where SimSample outputs a uniformly
random element of a sufficiently large set can be converted to a TI-sVRF with
binary range. Let (G, Eval, Prove, Verify) be a weak TI-sVRF in the Params
model with domain D(p), and range R(p) ⊆ {0, 1}m(k) for some polynomial m
for all p ∈ Params(1k). Consider the following algorithms:

Params∗(1k) Pick r ← {0, 1}m(k), p← Params(1k); return p∗ = (r, p).
G∗ On input p∗ = (r, p), output (PK∗,SK∗)← G(p).
Eval∗ and Prove∗ On input p∗ = (r, p), SK∗, and x ∈ D(p), compute y =

Eval(p,SK∗, x). Let y∗ = y · r, where by “·”, we denote the inner product,
i.e. y · r =

⊕|y|
i=1 yiri. Eval∗ outputs y∗. Prove∗ picks π ← Prove(p,SK∗, x)

and outputs π∗ = (π, y).
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Verify∗ On input p∗ = (r, p), PK∗, x ∈ D(p), y∗ ∈ {0, 1}, π∗ = (π, y): accept
iff Verify(p,PK,x, y, π) accepts and y∗ = r · y.

Lemma 2. Suppose (G, Eval, Prove, Verify) is a weak TI-sVRF with
(SimParams,SimSample,SimG,SimProve) as in Definition 4. Let ρ be such that
for all (p, t) ∈ SimParams(1k), for all x ∈ D(p), for all (SK,PK) ∈ SimG(p, t),
|SimSample(p, t,SK,x)| ≥ ρ(k), and SimSample is a uniform distribution over
its support. Let µ be such that for all p ∈ Params(1k), |D(p)| ≤ µ(k). If there ex-
ists a negligible function ν such that µ(k)ρ(k)−

1
3 = ν(k) then (G∗, Eval∗, Prove∗,

Verify∗) as constructed above are a TI-sVRF in the Params∗ model with domain
D(p), and range {0, 1}.

Proof. Correctness, verifiability and pseudorandomness follow easily from the
respective properties of the weak TI-sVRF (recall that a weak TI-sVRF is still
a VRF – the “weak” part refers to simulatability only). In particular, pseudo-
randomness follows by standard techniques such as the leftover hash lemma.

We must show TI-simulatability. We first prove a useful claim. Consider
specific values (p, t) ∈ SimParams(1k), (PK,SK) ∈ SimG(p, t). Since t and SK
are fixed, the distributions R′(x) = SimSample(p, t,SK,x) and Bad(x) = {r ∈
{0, 1}m(k) : |Pr[y ← R′(x) : y · r = 1] − .5| ≥ |R′(x)|− 1

3 } are well-defined.
In English, Bad(x) is the set of those r’s for which the random variable y · r
(where y is sampled uniformly at random from R′(x), i.e. sampled according to
SimSample(p, t,SK,x)) is biased by at least |R′(x)|− 1

3 from a random bit.

Claim. ∀x ∈ D(p), Pr[r ← {0, 1}m(k) : r ∈ Bad(x)] ≤ |R′(x)|− 1
3 .

Proof. (Of claim.) Suppose x ∈ D(p) is fixed. Let Weight(r) =
∑

y∈R′(x) y · r.
By definition of Bad(x), r ∈ Bad(x) if and only if |Weight(r)/|R′(x)| − .5| ≥
|R′(x)|− 1

3 . It is easy to see that, if the probability is taken over the choice of
r, then Exp[Weight(r)/|R′(x)|] = .5. On the other hand, for any pair y1 6=
y2 ∈ R′(x), y1 · r is independent from y2 · r, and so Weight(r) =

∑
y∈R′(x) y · r

is a sum of pairwise independent random variables. Thus, Var [Weight(r)] =∑
y∈R′(x) Var [y · r] = |R′(x)|/4, and Var [Weight(r)/|R′(x)|] = 1/4|R′(x)|. Plug-

ging Exp and Var for Weight(r)/|R′(x)| into Chebyshev’s inequality, we get
Pr[|Weight(r)/|R′(x)| − .5| ≥ |R′(x)|− 1

3 }] ≤ |R′(x)|− 1
3 which completes the

proof.

Now we will show that the simulatability property holds. Consider the fol-
lowing algorithms:

SimParams∗ On input 1k, obtain (p, t) ← SimParams(1k), r ← {0, 1}m(k).
Output p∗ = (r, p), t∗ = t.

SimG∗ On input (p∗, t∗), where p∗ = (r, p) obtain (PK,SK) ← SimG(p, t∗).
Output PK∗ = PK,SK∗ = SK.

SimProve∗ On input (p∗,SK∗, x, y∗, t∗) where p∗ = (r, p), repeat the follow-
ing up to k times until y · r = y∗: (y, w) ← SimSample(p, t,SK,x). If
after k calls to SimSample, y · r 6= y∗, output “fail”. Else obtain π ←
SimProve(p, t,SK,x, (y, w)). Output π∗ = (π, y).
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We define two intermediate games in which the adversary is given an oracle
that is similar to Game Simulated Proofs from the TI-sVRF definition in that
it does not use Eval and Prove; instead of Eval, it uses SimSample (from the
weak TI-sVRF definition) to obtain (y, w), and then outputs y∗ = y · r. The two
games generate the proofs in different ways: Game Intermediate Real Proof just
uses w and SimProve of the weak TI-sVRF definition to generate π, while Game
Intermediate Simulated Proof uses SimProve∗ defined above. More precisely:

Game Intermediate Real Proofs (p∗, t∗) ← SimParams∗(1k), (PK∗,SK∗)
← SimG∗(p∗, t∗), and then A(p∗, t∗,PK∗) gets access to the following oracle:
On query x, the oracle (1) checks if x has previously been queried, and if so,
returns the answer stored; (2) otherwise, obtains (y, w) ← SimSample(p, t,
SK,x), y∗ = y · r, and π ← SimProve(p,SK,x, y, t, w), π∗ = (π, y), and
returns and stores (y∗, π∗).

Game Intermediate Simulated Proofs (p∗, t∗) ← SimParams∗(1k), (PK∗,
SK∗) ← SimG∗(p∗, t∗), and then A(p∗, t∗,PK∗) gets access to the fol-
lowing oracle: On query x, the oracle (1) checks if x has previously been
queried, and if so, returns the answer stored; (2) otherwise, obtains (y′, w′)←
SimSample(p, t,SK,x), y∗ = y′ · r, and π∗ ← SimProve∗(p,SK,x, y∗, t), and
returns and stores (y∗, π∗).

We now argue that these intermediate games are indistinguishable from
Game Real Proofs and Game Simulated Proofs as specified by the definition of
TI-sVRF, instantiated with (SimParams,SimG,SimSample,SimProve) that fol-
low from simulatability of our weak TI-sVRF, and with (SimParams∗,SimG∗,
SimProve∗) defined above. First, it is straightforward to see that an adversary
distinguishing between Game Real Proofs and Game Intermediate Real Proofs
directly contradicts the simulatability property of weak TI-sVRFs.

The only difference between Game Intermediate Simulated Proofs and Game
Simulated Proofs, is the choice of the bit y∗: in the former, it is chosen using
SimSample, i.e. indistinguishably from the way it is chosen in the real game. In
the latter, it is chosen at random. If we condition on the event that for all x,
r /∈ Bad(x), these two distributions are statistically close.

The only thing left to show is that the two intermediate games defined above
are indistinguishable. If we condition on the event that we never fail, then the
two games are identical. Note that if for all x, r /∈ Bad(x), then the probability
that we fail on a particular query is ≤ (1/2 + |R′(x)|− 1

3 )k which is negligible.
Thus we have shown that if the probability that r ∈ Bad(x) for some x is

negligible, then Game Real Proofs is indistinguishable from Game Simulated
Proofs. By the union bound, combined with the claim, Pr[r ← {0, 1}m(k) : ∃x ∈
D(p) such that r ∈ Bad(x)] ≤ |D(p)||R′(x)|− 1

3 , which is equal to ν(k) by the
premise of the lemma. ut

From Lemmas 1 and 2, we see that from a weak TI-sVRF satisfying the condi-
tions of Lemma 2, we can construct an equally efficient sVRF with range {0, 1}.
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Remark. Note that, even though the support of SimSample(p, t,SK,x) is quite
large, the construction above only extracts one bit of randomness from it. Al-
though it can be easily extended to extract a logarithmic number of random bits,
there does not seem to be a black-box construction extracting a superlogarith-
mic number of bits. Suppose ext is a procedure that extracts ` bits from y, so
y∗ = ext(y) is of length `. Then how would SimProve∗ work to generate a proof
that y∗ is correct? It needs to call SimProve(p,SK,x, y, t, w) for some y such
that y∗ = ext(y) and w is an appropriate witness. It seems that the only way
to obtain such a pair (y, w) is by calling SimSample(p, t,SK,x); in expectation,
2` calls to SimSample are needed to obtain an appropriate pair (y, w); if ` is
superlogarithmic, this is prohibitively inefficient.

3 Construction Based on General Assumptions

In the common-random-string (CRS) model, sVRFs can be constructed from any
one-way function and an unconditionally sound multi-theorem non-interactive
zero-knowledge proof system (NIZKProve, NIZKVerify) for NP (we review the
notion of NIZK in Section 5). Pseudorandom functions (PRFs) can be obtained
from one-way functions [HILL99,GGM86] (in the sequel, by Fs(x) we denote
a PRF with seed s and input x). In the CRS model, one-way functions also
imply unconditionally binding computationally hiding non-interactive commit-
ment [Nao91] (in the sequel, denoted as Commit(x, q, r), where x is the value to
which one commits, q is the public parameter, and r is the randomness). We
describe the construction below. In the full version, we prove it is an sVRF.

Params Corresponding to the security parameter k, choose a common random
string σ of length `(k), where `(k) bits suffice for multi-theorem NIZK
[BDMP91,FLS99,GOS06]. Choose a random 2k-bit string q as the public
parameter for the Naor commitment scheme. The parameters are p = (σ, q).

Domain and range The function has domain D(p) = {0, 1}p1(k), and range
R(p) = {0, 1}p2(k), where p1 and p2 are functions bounded by a polynomial.

G Pick a random seed s for a pseudorandom function Fs : {0, 1}p1(k) 7→
{0, 1}p2(k). Let PK = Commit(s, q, r), SK = (s, r), where r is the randomness
needed for the commitment.

Eval On input x, output y = Fs(x).
Prove On input x, run NIZKProve using CRS σ to output a NIZK proof π of

the following statement: ∃(s, r) | PK = Commit(s, q, r) ∧ y = Fs(x).
Verify On input (PK, y, π), verify the proof π using the NIZKVerify algorithm.

4 Efficient Construction

We first present a construction for a weak TI-sVRF with a large output range.
As we have shown, this can then be transformed into an sVRF with range {0, 1}.
The security relies on the following assumptions.
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Definition 5 ((Q, ν)-BDHI [BB04a]). A family G of groups satisfies the
(Q(k), ν(k))-bilinear Diffie-Hellman inversion assumption if no PPT A, on in-
put (instance, challenge) can distinguish if its challenge is of type 1 or type 2
with advantage asymptotically higher than ν(k) where instance and challenge
are defined as follows: instance = (G1, G2, q, e, g, gα, gα2

, gα3
, . . . , gαQ(k)

) where
q is a prime of length poly(k), G1, G2 are groups of order q returned by G(q),
e : G1 × G1 → G2 is a bilinear map, g ← G1, α ← Z∗

q , challenge of type 1 is
e(g, g)

1
α , while challenge of type 2 is e(g, g)R for random R← Z∗

q .

Definition 6 ((Q, ν)-BDHBI). An family G of groups satisfies the (Q(k), ν(k))
bilinear Diffie-Hellman basegroup inversion assumption if no PPT A, on input
(instance, challenge) can distinguish if its challenge is of type 1 or type 2 with
advantage asymptotically higher than ν(k), where instance and challenge are
defined as follows: instance = (G1, G2, q, e, g, gα, gα2

, gα3
, . . . , gαQ(k)

, gβ) where
q is a prime of length poly(k), G1, G2 are groups of order q returned by G(q),
e : G1 × G1 → G2 is a bilinear map, g ← G1, α ← Z∗

q , β ← Z∗
q , challenge of

type 1 is g
1

αβ , while challenge of type 2 is gR for random R← Z∗
q .

The assumption in Definition 6 is a new assumption which can be shown to
imply Q-BDHI. We will assume that it holds for the prime order subgroup of
composite order bilinear groups that can be efficiently instantiated [BGN05].

Definition 7 (SDA [BGN05]). A family G of groups satisfies the subgroup
decision assumption if no PPT A, on input (instance, challenge) can distinguish
if its challenge is of type 1 or type 2, where instance and challenge are defined
as follows: instance = (G1, G2, n, e, h) where n = pq is a product of two primes
of length poly(k) (for k a sec. param.), G1, G2 are groups of order n returned
by G(q, p), e : G1 ×G1 → G2 is a bilinear map, h is a random generator of G1,
challenge of type 1 is g, a random generator of G1, while challenge of type 2 is
gp, a random order-p element of G1.

The weak TI-sVRF construction is as follows:

Params On input 1k, choose groups G1, G2 of order n = pq for primes p, q,
where |p| and |q| are polynomial in k, with bilinear map e : G1 × G1 →
G2. Choose random generators g,H, A,D for G1. Params will output p =
(G1, G2, n, e, g,H, A,D).

Domain and range The input domain D(p) consists of integers 1 ≤ x ≤ l(k)
where l(k) < 2|q|−1 (We will later see the connection between l(k) and Q(k)
by which our assumption is parameterized.) Note that D(p) depends only
on k, not on p. R(p) = G2.

G On input p, pick s← Z∗
n, output SK = s, PK = As.

Eval On input (p,SK,x), output e(H, g)
1

s+x .
Prove On input (p,SK,x), pick r ← Z∗

n, and output π = (π1, π2, π3), where
π1 = H

r
s+x /Dr, π2 = g

1
r , π3 = A

x+s
r .

Verify On input (p,SK,x, y, π), parse π = (π1, π2, π3) and verify that e(π1, π2)
e(D, g) = y, e(π3, g) = e(AxPK,π2), e(π1, π3)e(D,AxPK) = e(H,A).
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Theorem 1. (G, Eval, Prove, Verify) as described above constitute a weak TI-
sVRF for parameter model Params, input domain D of size l, and output range
G2 (where G2 is as output by Params) under the SDA assumption combined
with the (l(k), ν(k)/l2(k))-BDHBI, where ν is an upper bound on the asymptotic
advantage that any probabilistic polynomial-time algorithm has in breaking the
simulatability game of Definition 4.

Proof. Correctness follows from construction.
Verifiability: Suppose there exists an adversary who, given parameters p =
(G1, G2, n, e, g,H = gh, A = ga, D = gd) generated by Params can produce
PK, y, y′, π = (π1, π2, π3), π′ = (π′

1, π
′
2, π

′
3) such that Verify(p,PK, y, π) =

Verify(p,PK, y′, π′) = 1. Then we will show that y = y′.
Let λ, µ, µ′, σ, φ, θ, σ′, φ′, θ′ ∈ Zn be the exponents such that PK = gλ, y =

gµ, y′ = gµ′ , π1 = gσ, π2 = gφ, π3 = gθ, π′
1 = gσ′ , π′

2 = gφ′ , π′
3 = gθ′ .

If the verifications succeed, then we get that the following equations hold in
Zn: σφ + d = µ, θ = (ax + λ)φ, θσ + d(ax + λ) = ha.

Solving this system of equations gives us: ha = µ(ax+λ). Similarly, if (y′, π′)
satisfy the verification equations, then we know that ha = µ′(ax + λ). H,A are
generators for G1, so h, a ∈ Z∗

n, and therefore, µ′(ax+λ) ∈ Z∗
n, and µ(ax+λ) ∈

Z∗
n. This in turn means that µ′, µ, (ax + λ) ∈ Z∗

n.
From the solutions to the above equations, we know µ(ax + λ) = µ′(ax + λ).

Since (ax + λ) ∈ Z∗
n, we can compute a unique inverse (ax + λ)−1, and conclude

that µ = µ′, and y = y′.
Note that this argument relies crucially on the fact that h, a ∈ Z∗

n. In our
simulation, we will instead choose a = 0 mod q, which will allow us to avoid
this binding property.
Pseudorandomness follows under the Q-BDHI Assumption from pseudoran-
domnesss of the Dodis-Yampolskiy VRF [DY05].
Simulatability: Consider the following simulator algorithms:

SimParams(1k) Choose groups G1, G2 of order n = pq for prime p, q, where
|p| and |q| are polynomial in k, with bilinear map e : G1 × G1 → G2. Let
Gp be the order p subgroup of G1, and let Gq be the order q subgroup
of G1. Let (A, gp,Hp, Dp) ← G4

p and (gq,Hq, Dq) ← G3
q. Let g = gpgq,

H = HpHq, and D = DpDq. Output p = (G1, G2, n, e, g,H, A,D), t =
(gp, gq,Hp,Hq, Dp, Dq).
This is identical to Params except that A ∈ Gp, so that the verification
algorithm cannot properly verify the Gq components of y and π.

SimG(p, t) (SK,PK)← G(p).
SimSample On input (p, t,SK,x), pick w ← Z∗

q .
Let y = e(Hp, gp)

1
s+x e(gq, gq)w. Output (y, w). (Note y’s Gp component will

be correct, while its Gq component will be random.)
SimProve On input (p,SK,x, y, t, w), pick r ← Z∗

n;
let π1 = (H

r
s+x
p /Dr

p)(g
wr
q /Dr

q), π2 = g
1
r , π3 = A

x+s
r . Output π = (π1, π2, π3).

(Note that π’s Gp components are correct, while its Gq components are
chosen so as to allow us to fake the proof.)
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Lemma 3. The distribution Params(1k) is indistinguishable from the distribu-
tion SimParams(1k) by the Subgroup Decision Assumption.

Proof. The only difference between these two distributions is that in Params,
A is chosen at random from G1, and in SimParams, A is chosen at random
from Gp. Thus, these two distributions are indistinguishable by the Subgroup
Decision assumption by a straightforward reduction. ut

Lemma 4. For the algorithms described above, Game Real Proofs and Game
Simulated Proofs (as in Definition 4) are indistinguishable with advantage more
that ν(k) by the (l(k), ν(k)/l2(k))-BDHBI assumption.

Before we prove this lemma, we will describe and prove an intermediate
assumption that follows from the assumptions that we have already made. We
state this assumption in terms of any prime order bilinear group. However, we
will later assume that this assumption (and the Q-BDHBI assumption) holds
over the prime order subgroup of a composite order bilinear group.

Definition 8 ((Q, ν)-Intermediate assumption). A family G of groups sat-
isfies the (Q(k), ν(k))-intermediate assumption if for all subsets X of Z2a(k)−1

(where a(k) is a polynomial), of size Q(k)− 1 for all x∗ ∈ Z2a(k)−1 \X, no PPT
A, on input (instance, challenge) can distinguish if its challenge is of type 1 or
type 2 with advantage asymptotically higher than ν(k), for instance and challenge
defined as follows: instance = (G1, G2, q, e, g, H, D, {(Hrx

1
s+x /Drx , g

1
rx )}∀x∈X)

where q is an a(k)-bit prime, G1, G2 are groups of order q returned by G(q),
e : G1 × G1 → G2 is a bilinear map, (g,H, D) ← G3

1, and {rx}x∈X and s were
all picked at random from Z∗

q ; challenge of type 1 is (Hr∗ 1
s+x∗ /Dr∗, g

1
r∗ ) where

r∗ ← Z∗
q , while challenge of type 2 is (gR1 , gR2) for R1 and R2 random from Z∗

q .

Lemma 5. (l, ν)-BDHBI assumption implies (l, ν)-intermediate assumption.

Proof. Suppose there exists an adversary A who breaks the intermediate as-
sumption for set X of cardinality l−1, and x∗ /∈ X. Then we show an algorithm
B that can break l-BDHBI Assumption.

Algorithm B will behave as follows: Receive G, q, e, g, gα, . . . gαl

, gβ , and Z =
g

1
αβ or Z = gR for random R ∈ Z∗

q .
Choose random values ∆1,∆2 ← Z∗

q . Implicitly, let γ = γ(α) = ∆1(α −
∆2)

∏
x∈X(α + (x − x∗)). Compute H = gγ . Note that since this exponent is

just an l degree polynomial in α, we can compute this value using g, . . . gαl

. If
we implicitly define s = α − x∗, we will get H = g∆1(α−∆2)

Q
x∈X(s+x). (Note

that now we know neither s, nor α explicitly.) Note that because of ∆1, H
is uniformly distributed over G1, and is independent of g. Now we want to
provide D. Implicitly we will define d = γ−δ

α , where δ = ∆1∆2

∏
x∈X(x − x∗)

is the constant term of the polynomial in α (represented by γ(α)). Note now
that δ is a quantity B can compute, while d is only defined implicitly. Since
d is a polynomial expression in α, D = gd can be expressed as a sum of terms
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g, gα, . . . , gαl−1
, and computed using the given values. Finally, note that, because

of ∆2, D is uniformly distributed over G1, and is independent of (g,H).
For all x̂ ∈ X: Let γ′(x̂) = ∆1(α − ∆2)

∏
x∈X,x 6=x̂(α + (x − x∗)) = γ

x̂+s .

Compute v = gγ′(x̂) = g
γ

s+x̂ = H
1

s+x̂ . We then choose a random rx̂ ← Z∗
n. We

compute and output (vrx̂/Drx̂ , g
1

rx̂ ).
For x∗: Implicitly define r∗ = 1

β . Compute u1 = Zδ. If Z = g
1

αβ , then this is

equal to g
δ

αβ = g
γ

αβ − γ−δ
αβ = g

γ
αβ /g

γ−δ
αβ = Hr∗ 1

s+x∗ /Dr∗ . Otherwise, this is equal
to gR1 for random R1. Compute u2 = (gβ) = (g

1
r∗ ). Output (u1, u2).

Finally, if A guesses that he received (Hr∗ 1
s+x∗ /Dr∗ , g

1
r∗ ), B guesses that

Z = g
1

αβ , else that Z = gR
q . If A’s guess is correct, then B’s guess is correct. ut

Proof. (of Lemma 4) We first define a series of hybrid games:

Game Hybrid i: Obtain (p, t)← SimParams(1k), and (PK,SK)←
SimG(p, t) and then A(p, t,PK) gets access to the following oracle: The
oracle begins by storing j = 0. On query x, the oracle (1) checks if x
has previously been queried, and if so, returns the answer stored. Oth-
erwise, (2) if j < i the oracle obtains (y, w) ← SimSample(p, t,SK,x)
and π ← SimProve(p,SK,x, y, w, t), returns and stores (y, π), and incre-
ments j. (3) Or if j ≥ i, the oracle computes y = Eval(p,SK,x) and
π ← Prove(p,SK,x), returns and stores (y, π) and increments j.

Note that in this case, G(p) is identical to SimG(p, t) for all p, t, so Game
Hybrid 0 is identical to Game Real Proofs. Game Hybrid Q, where Q is the
maximum number of distinct oracle queries (not including repeated queries)
that the adversary is allowed to make, is identical to Game Simulated Proofs.
Thus, we have only to show the following lemma:

Lemma 6. Suppose the (l, ν)-BDHBI Assumption holds in one of the two sub-
groups of a composite bilinear group. Then, when the size of the domain is at
most l, no PPT adversary can distinguish Game Hybrid i−1 from Game Hybrid
i with advantage higher than νl.

Proof. Suppose there exists an adversary A who can distinguish Game Hybrid
i − 1 from Game Hybrid i when the domain D is of size l. Then we show an
algorithm B that can break the l-intermediate assumption with advantage ε.

First we make a guess x∗ about which input A will give in its ith distinct
oracle query. Since |D| = l, and all values given to A will be independent of x∗,
we will be correct with probability 1/l.

Now, we will show an algorithm B, which can, with nonnegligible probability,
break the intermediate assumption for set X = D \ {x∗} and the x∗ chosen

above. B will receive G, p, q, e, gp, gq,Hq, Dq, {(H
rx

sq+x

q /Drx
q , g

1
rx
q )}∀x∈X , (Z1, Z2)

for gq,Hq, Dq ← Gq, and randomly chosen (but unknown) {rx}x∈X , sq ← Z∗
q .

Here, either (Z1, Z2) = (H
r∗ 1

sq+x∗
q /Dr∗

q , g
1

r∗
q ) or (Z1, Z2) = (gR1

q , gR2
q ) for random

R1, R2 ← Z∗
q .
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First, B prepares the parameters as follows: Choose Hp, A, Dp ← Gp and
compute g = gpgq, H = HpHq, D = DpDq. Set p = (G1, G2, n, e, g,H, A,D).
Let sp ← Z∗

p, and PK = Asp . Implicitly, set s ∈ Z∗
n to the the element

such that s mod p = sp, and s mod q = sq. B sends p and trapdoor t =
(gp, gq,Hp,Hq, Dp, Dq) to A.

Now B must answer A’s queries. We assume (WLOG) that A does not repeat
queries.

When A sends its jth query, x̂, B proceeds as follows:
If j < i: if x̂ = x∗, then B has guessed wrong about which value A will
choose in his ith distinct query (if it is used again later, it will be repeated
and thus not distinct), so B aborts. Otherwise, B chooses a random w′ ∈

Z∗
q . Let y = e(H

1
sp+x̂

p , gp)e(Hq, gq)w′
. Choose a random r ← Z∗

n. Let π1 =

(H
r 1

sp+x̂

p /Dr
p)(H

w′r
q /Dr

q). Let π2 = g
1
r and π3 = A

x̂+sp
r . If we implicitly set

w = w′hq, (where Hq = g
hq
q ) then these value will be distributed as in the

output of SimSample and SimProve. Output (y, π = (π1, π2, π3)).
If j = i: If x̂ 6= x∗, then B has guessed wrong, so it aborts. Otherwise,

choose random rp ← Z∗
p. Implicitly set r ∈ Z∗

n to be the element such that r

mod q = r∗ and r mod p = rp. Compute π1 = H
rp

1
x∗+sp

p /D
rp
p Z1. Note that, if

Z1 = H
r∗ 1

sq+x∗
q /Dr∗

q , then this is equal to H
r

s+x∗ /Dr. Otherwise, this is equal

to H
rp

1
x∗+sp

p /D
rp
p gR1

q . Now compute π2 = g
1

rp
p Z2, if Z2 = g

1
r∗
q , then this value

will be g
1
r . Otherwise it will be g

1
rp
p gR2

q Compute π3 = A
sp+x∗

rp = A
s+x∗

r . Finally,
compute y = e(π1, π2)e(D, g). Output (y, π = (π1, π2, π3)) to the adversary.

If j > i, we know x̂ 6= x∗, and x̂ ∈ X. Let V1 = H
rx̂

1
sq+x̂

q /Drx̂
q , and V2 = g

1
rx̂ ,

as provided in B’s input. B chooses a random rp ← Z∗
p. Implicitly, set r ∈ Z∗

n

for this query to be the element such that r mod p = rp, and r mod q =

rx̂. B computes π1 = (H
rp

1
sp+x̂

p /D
rp
p )V1 = Hr 1

s+x̂ /Dr, π2 = g
1

rp
p V2 = g

1
r , and

π3 = A
sp+x̂

rp = A
x̂+s

r . Finally, B computes y = e(π1, π2)e(D, g) and outputs
(y, π = (π1, π2, π3)) to A.

Finally, B gets A’s guess bit b. If A guesses that this is Game Hybrid i −
1, B guesses that (Z1, Z2) = (H

r∗ 1
sq+x∗

q /Dr∗
q , g

1
r∗
q ); otherwise B guesses that

(Z1, Z2) = (gR1
q , gR2

q ). If A guesses correctly, B’s guess will also be correct.
B has a 1

l probability of not aborting. Suppose that when B aborts, it returns
a random bit. Then B’s quess is correct with probability (1− 1

l )∗
1
2 + 1

l ∗(
1
2 +ε) =

1
2 + ε

l , where ε is A’s advantage. Thus, if A’s advantage is ε > νl then B’s
advantage is higher than ν, contradicting the assumption. ut

For the theorem to follow, we observe that the overall reduction from breaking
the simulatability game to breaking the BDHBI assumption uses at most (l +
1) hybrids, and so the adversary’s advantage ε translates into the reduction’s
advantage ε/l2 in breaking BDHBI. ut
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Remark. Since the construction above satisfies the premise of Lemma 2, it can
be converted to an sVRF with binary range using the construction in Section 2.2.

5 Multi-Theorem NIZK from One-Theorem NIZK via
sVRFs

Here, we omit the definition of single-theorem and multi-theorem NIZK, but
refer the reader to Blum et al. [BDMP91] and Feige, Lapidot, Shamir [FLS99].
Instead, we informally sketch this definition:

Algorithms NIZKProve and NIZKVerify The algorithm NIZKProve takes as
input the common random string σ of length `(k), and values (x,w), |x| ≤
q(k), such that x ∈ L, and w is a witness to this. NIZKProve outputs a proof
Π. NIZKVerify is the algorithm that takes (σ, x,Π) as input, and outputs
ACCEPT or REJECT.

Perfect completeness For all x ∈ L, for all witnesses w for x, for all values
of the public random string σ, and for all outputs π of NIZKProve(σ, x, w),
NIZKVerify(σ, x, π) = ACCEPT.

Soundness s(k) For all adversarial prover algorithms A, for a randomly cho-
sen σ, the probability that A can produce (x, π) such that x /∈ L but
NIZKVerify(σ, x, π) = ACCEPT, is s(k).

Single-theorem ZK There exists an algorithm SimProveOne that, on input
1k and x ∈ L, |x| ≤ q(k), outputs simulated CRS σS together with a sim-
ulated proof ΠS , such that (σS ,ΠS) are distributed indistinguishably from
(σ,Π) produced by generating a random CRS σ, and obtaining Π by running
NIZKProve.

Multi-theorem ZK There exist algorithms SimCRS and NIZKSimProve, as fol-
lows: SimCRS(1k) outputs (σ, s). For all x, NIZKSimProve(σ, s, x) outputs
a simulated proof ΠS . Even for a sequence of adversarially and adaptively
picked (x1, . . . , xm) (m is polynomial in k), if for all 1 ≤ i ≤ m, xi ∈
L, then the simulated proofs ΠS

1 , . . . ,ΠS
m are distributed indistinguishably

from proofs Π1, . . . ,Πm that are computed by running NIZKProve(σ, xi, wi),
where wi is some witness that xi ∈ L.

Suppose that, for a language L, we are given a single-theorem NIZK proof
system (ProveOne, VerOne) in the CRS model, with perfect completeness and
unconditional soundness error s(k). Let `(k) denote the function such that an
`(k)-bit random string serves as the CRS for this proof system. Let q(k) denote
the polynomial upper bound on the size of the input x. Suppose also that we
are given a simulatable VRF (G, Eval, Prove, Verify) in the parameter model
Params, whose domain is [1, `(k)], with range {0, 1}. Consider the following
construction for multi-theorem NIZK in the common reference string model for
instances of size k:

Generate common parameters The algorithm NIZKParams: Obtain σ1 ←
{0, 1}`(k). Let p← Params(1k). The values (σ1, p) are the parameters of the
system.
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Prove The algorithm NIZKProve: On input instance x ∈ L with witness w, and
common parameters (σ1, p) do: Obtain (PK,SK)← G(1k, p). Let R be the
`(k)-bit string computed as follows: for 1 ≤ i ≤ `(k), Ri = Eval(p,SK, i),
where Ri denotes the ith bit of R. For 1 ≤ i ≤ `(k), let πi ← Prove(p,SK, i).
Let σ = σ1 ⊕ R. Obtain Π ′ ← ProveOne(σ, x, w). Output the proof Π =
(PK,R, π1, . . . , p`(k),Π

′).
Verify The algorithm NIZKVerify: On input x and Π, and common parameters

(σ1, p), do: (1) for 1 ≤ i ≤ `(i), check that Verify(p,PK, i,Ri, πi) accepts;
(2) let σ = σ1 ⊕ R; check that VerOne(σ, x,Π ′) accepts; if all these checks
passed, accept, otherwise, reject.

Theorem 2. If for a language L, (ProveOne, VerOne) is a single-theorem NIZK
proof system in the `(k)-bit CRS model for instances of length up to q(k) with per-
fect completeness and unconditional soundness error s(k), and (G, Eval, Prove,
Verify) in the parameter model Params(1k), is a strong simulatable VRF with
domain [1, `(k)] and range {0, 1}, then the above construction is a multi-theorem
NIZK proof system in the public parameters model that comprises the `(k)-bit
CRS and Params(1k), with perfect completeness and unconditional soundness
error s(k)2u(k), where u denotes the bit length of a PK output by G(p) on input
p← Params(1k).

Proof. (Sketch) The perfect completeness property follows from the perfect com-
pleteness property of the single-theorem NIZK.

Let us show the multi-theorem zero-knowledge property. Recall that, by the
definition of (strong) sVRF, we have a simulator consisting of SimParams, SimG
and SimProve such that, if (PK,SK) were generated by SimG, then for a ran-
domly sampled y from the range of the sVRF, and for any x in the domain,
SimProve can generate a fake proof that y = Eval(SK,x). (See Section 2.)

Also recall that by the definition of NIZK, there exists a simulator
SimProveOne such that no adversary A can distinguish between the following
two distributions for any x ∈ L and any witness w for x: (1) choose σ ←
{0, 1}`(k), and let Π ← ProveOne(σ, x, w); give (σ,Π) to A; (2) (σ,Π) ←
SimProveOne(1k, x); give (σ,Π) to A.

Consider the following simulator S for our multi-theorem NIZK construc-
tion. The simulator will consist of SimCRS that generates the simulated pa-
rameters, and of NIZKSimProve that generates the simulated proof. SimCRS
works as follows: generate (p, t) ← SimParams, and σ1 ← {0, 1}`(k); publish
(σ1, p) as the parameters of the system. NIZKSimProve works like this: gener-
ate (σ,Π ′) ← SimProveOne(1k, x). Then let R = σ ⊕ σ1. Let (PK,SK) ←
SimG(p, t). For 1 ≤ i ≤ `(k), let πi = SimProve(p,SK,x,Ri, t). Output the
proof Π = (PK,R, π1, . . . , p`(k),Π

′). In the full version, we show that the view
that the adversary obtains in the simulation is indistinguishable from the view
obtained when interacting with the prover.

We now show soundness. We are given that, for σ ← {0, 1}`(k), the probability
that there exists x /∈ L and a proof Π ′ such that Verify(σ, x,Π ′) = 1, is s(k).

Consider p ← Params, and (PK,SK) ← G(1k). Let R be as defined in
NIZKProve: Ri = Eval(SK, i). Note that by the verifiability property of the
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sVRF, there is a unique R for which there exists a proof of correctness (π1, . . . ,
π`(k)). The probability, over the choice of σ1, that there exists x /∈ L and a proof
Π ′ such that Verify(R ⊕ σ1, x,Π ′) = 1 (if such an x exists, we say that PK
is bad for σ1), is still s(k), since we first fixed p and PK, and then randomly
chose σ1. By the union bound, since there are 2u(k) possible PK’s, for every p,
the probability that there exists a bad PK for a particular σ1, is s(k)2u(k). ut

Remark. Note that if an NIZK proof system is in the hidden-random-string
(HRS) model (such as those due to Feige, Lapidot and Shamir [FLS99] and
Kilian and Petrank [KP98]), then we can take advantage of it as follows: the
hidden random string can be obtained the way that σ is currently obtained by
the prover in the construction above; only in the construction above, the prover
reveals the entire string σ and the proof that each bit of σ is computed correctly;
while in the HRS model, the prover only reveals the subset of bits of the hidden
random string that he needs to reveal. This observation was inspired by Dwork
and Naor’s construction of zaps from VRFs and verifiable PRGs [DN00] based
on NIZK using HRS model. We give more details on consequences in the HRS
model in the full version.
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