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Abstract. We introduce a novel attack concept against trace and re-
voke schemes called pirate evolution. In this setting, the attacker, called
an evolving pirate, is handed a number of traitor keys and produces a
number of generations of pirate decoders that are successively disabled
by the trace and revoke system. A trace and revoke scheme is susceptible
to pirate evolution when the number of decoders that the evolving pirate
produces exceeds the number of traitor keys that were at his possession.
Pirate evolution can threaten trace and revoke schemes even in cases
where both the revocation and traceability properties are ideally satis-
fied: this is because pirate evolution may enable an attacker to “magnify”
an initial key-leakage incident and exploit the traitor keys available to
him to produce a great number of pirate boxes that will take a long
time to disable. Even moderately successful pirate evolution affects the
economics of deployment for a trace and revoke system and thus it is
important that it is quantified prior to deployment.
In this work, we formalize the concept of pirate evolution and we demon-
strate the susceptibility of the trace and revoke schemes of Naor, Naor
and Lotspiech (NNL) from Crypto 2001 to an evolving pirate that can
produce up to t · log N generations of pirate decoders given an initial set
of t traitor keys. This is particularly important in the context of AACS,
the new standard for high definition DVDs (HD-DVD and Blue-Ray)
that employ the subset difference method of NNL: for example using
our attack strategy, a pirate can potentially produce more than 300 pi-
rate decoder generations by using only 10 traitor keys, i.e., key-leakage
incidents in AACS can be substantially magnified.

1 Introduction

A trace and revoke scheme is an encryption scheme that is suitable for digital
content distribution to a large set of receivers. In such a scheme, every receiver
possesses a decryption key that is capable of inverting the content scrambling
mechanism. The defining characteristics of a trace and revoke scheme are the
following: (i) revocation: the sender can scramble content with a “broadcast pat-
tern” in such a way so that the decryption capability of any subset of the receiver
population can be disabled, (ii) tracing: given a rogue decryption device (called a
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pirate decoder) that was produced using the keys of a number of receivers (called
traitors) it is possible to render such device useless from future transmissions.
This can be done by identifying the traitors and revoking them or in some other
fashion (that may not involve the direct identification of any traitor).

Trace and revoke schemes conceptually are a combination of two crypto-
graphic primitives that have been originally suggested and studied indepen-
dently: broadcast encryption, introduced by Fiat and Naor in [10] and studied
further in e.g., [13, 14, 22, 8, 15, 16, 21], and traitor tracing and related codes, in-
troduced by Chor, Fiat and Naor in [6] and studied further in e.g., [33, 23, 20, 2,
28–30, 17–19, 31, 34, 5, 27]. The combination of the two primitives appeared first
in [24] and explored further in [9]. Trace and revoke schemes for stateless receivers
were proposed in [22] and explored further in [15, 16]. The stateless receiver set-
ting is of particular interest since it does not require receivers to maintain state
during the life-time of the system; this greatly simplifies the system aspects and
deployment management of a trace and revoke scheme.

The security requirements for trace and revoke schemes are relatively well
understood when one considers the revocation or tracing components in isola-
tion: the revocation component should be coalition resistant to an adversary
that adaptively joins the system, is entirely revoked and subsequently attempts
to decrypt a ciphertext. The tracing component should also be coalition resis-
tant: an adversary given a set of keys should be incapable of producing a pirate
decoder that cannot have at least one traitor identified. When Naor, Naor and
Lotspiech [22] introduced the broadcast encryption framework of subset cover,
they made the nice observation that if a broadcast encryption scheme satisfies a
property called “bifurcation” then it is possible to construct an efficient tracing
procedure that will produce ciphertexts that are unreadable by any given rogue
pirate decoder; this satisfies the requirements for a trace and revoke scheme
(albeit without identifying traitors directly). They proposed two combinatorial
designs (called the complete-subtree and subset-difference method) for broad-
cast encryption that satisfy bifurcation and thus produced two trace and revoke
schemes. The subset-difference scheme is particularly attractive as it enjoys a
linear communication overhead during encryption (linear in r the number of re-
voked users) and it was employed as the basis for the new high definition DVD
encryption standard, the AACS [1].

It is common in cryptographic design when a construction combines simul-
taneously two security functionalities (even when they are well understood in
isolation) that the possibility for new forms of attacks springs up. In our case, in
a trace and revoke scheme the adversaries that have been considered so far were
attacking directly the revocation component (they were revoked and attempted
to evade revocation) or the traceability component (they produced a pirate de-
coder that attempted to evade the tracing algorithm). This raises the question,
in a trace and revoke scheme, are these the only relevant attack scenarios?

Pirate Evolution. Pirate evolution is a novel attack concept against a trace
and revoke scheme that exploits the properties of the combined functionality of
tracing and revocation in such a scheme. In a pirate evolution attack, a pirate
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obtains a set of traitor keys through a “key-leaking” incident. Using this set of
keys the pirate produces an initial pirate decoder. When this pirate decoder is
captured and disabled by the transmission system using the tracing mechanism,
the pirate “evolves” the first pirate decoder by issuing a second version that
succeeds in decrypting ciphertexts that have the broadcast pattern disabling the
first decoder. The same step is repeated again and the pirate continues to evolve
a new version of the previous decoder whenever the current version of pirate
decoder becomes disabled from the system. A pirate that behaves as above will
be called an evolving pirate and each version of the pirate decoder will be called
a generation (as presumably many copies of the same pirate decoder may be
spread by the pirate).

This is a novel attack concept as the adversary here is not trying to evade the
revocation or the traceability component. Instead he tries to remain active in the
system for as long as possible in spite of the efforts of the administrators of the
system. We say that a trace and revoke scheme is immune to pirate evolution
if the number of generations that an evolving pirate can produce equals the
number of traitor keys that have been corrupted (i.e., the number of traitors).
The number of traitors is a natural lower bound to the generations that an
evolving pirate can produce: trivially, an evolving pirate can set each version it
releases to be equal to the decoder of one of the traitors. Nevertheless, the number
of generations that a pirate may produce can be substantially larger depending
on the combinatorial properties of the underlying trace and revoke system. We
call the maximum number of decoders an evolving pirate can produce, the pirate
evolution bound evo of the trace and revoke scheme. Note that this bound will
be a function of the number of traitors t as well as of other parameters in the
system (such as the number of users).

When evo is larger than t, we say that a trace and revoke scheme is susceptible
to pirate evolution. When evo is much larger than t, this means that an initial
leaking incident can be “magnified” and be of a scale much larger than what
originally expected. Interestingly, a system may satisfy both the tracing and
revocation properties in isolation and still be rendered entirely useless if evo is
sufficiently large (say super-poly in t). In this case the trace and revoke scheme
could be defeated by simply taking too long to catch up with an evolving pirate
that could keep exploiting a minor initial key leakage incident to produce a
multitude of pirate decoders in succession.

Even when evo is just moderately larger than t, it is an important consid-
eration for a trace and revoke scheme in an actual deployment. The economics
of a deployment would be affected and we believe that resilience against pirate
evolution attacks should be part of the suggested considerations.

In this work, we introduce and study pirate evolution in the subset cover
framework of stateless receivers of [22]. We first formalize the concept of pirate
evolution through the means of an attack game played between the evolving
pirate and a challenger that verifies certain properties about the pirate decoders
produced by the evolving pirate. Next, we prove that it is in fact possible to
design trace and revoke schemes that are immune against pirate evolution by
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presenting a simple design that renders any evolving pirate incapable of pro-
ducing more pirate decoders than traitors. This result (albeit not very efficient
as a trace and revoke scheme) shows that immunity against pirate evolution is
attainable in principle. Still, it is interesting to note that immunity may come
at a high cost for certain systems and thus it could be desirable in many set-
tings to sacrifice immunity in favor of efficiency if the amount of pirate evolution
that is possible is deemed to be within acceptable limits for the economics of a
certain system deployment (compare this to the usual example of a bank that
allows a few fraudulent transactions if the incurred losses can be factored into
the profits).

Next, we focus on the complete-subtree and subset-difference trace and revoke
systems of [22]. We demonstrate both these schemes are susceptible to pirate
evolution. Each of our pirate evolution attacks requires careful scheduling of
how the traitor keys are expended by the pirate; moreover in both cases there is
sensitivity to the “geometry” of the leaking incident. For the complete subtree
method we present a pirate evolution attack that given t traitor keys, it enables
an evolving pirate to produce up to t log(N/t) generations where N is the total
number of users in the system (actually number of leaves in the tree, as the set
of currently active users may be much less). For the subset difference method we
present a pirate evolution attack that given t traitor keys, it enables an evolving
pirate to produce up to t log N generations of pirate decoders.

In the context of AACS, [1], the new encryption standard for high definition
DVDs, where the subset-difference method of [22] is deployed, the pirate evolu-
tion attack we present suggests that each single traitor key can be used to yield
up to 31 generations of pirate decoders (refer to section 3.3).

2 The Subset-Cover Revocation Framework

The Subset-Cover revocation framework [22] is an abstraction that can be used
to formulate a variety of revocation methods. It defines a set of subsets that
cover the whole user population and assigns (long-lived) keys to each subset;
each user receives a collection of such keys (or derived keys). We denote by N
the set of all users where |N| = N and R ⊂ N the set of users that are to be
revoked at a certain instance where |R| = r. Note that N is not necessarily the
set of currently active users but the number of all users that are anticipated in
the lifetime of the system.

The goal of the sender is to transmit a message M to all users such that any
u ∈ N\R can recover the message whereas the revoked users in R can not recover
it. Note that the non-recovery property should also extend to any coalition of
revoked users. The framework is based on a collection of subsets {Sj}j∈J where
Sj ⊆ N such that any subset S ⊆ N can be partitioned into disjoint subsets
of {Sj}j∈J . Each subset Sj is associated with a long-lived key Lj . Users are
assumed to be initialized privately with a set of keys such that u has access to
Lj if and only if u ∈ Sj . The private data assigned to user u in this intialization
step will be denoted by Iu. In particular we define Iu = {j ∈ J | u ∈ Sj}
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and Ku = {Lj | j ∈ Iu}. Given a revoked set R, the remaining users N \ R are
partitioned into disjoint {Si1 , . . . ,Sim

} ⊂ {Sj}j∈J so that N\R =
⋃m

j=1 Sij
. The

transmission of the message M is done in a hybrid fashion. First a random session
key K is encrypted with all long-lived keys Lij corresponding to the partition,
and the message M is encrypted with the session key. Two encryption functions
are being used in this framework: (1) FK : {0, 1}∗ 7→ {0, 1}∗ to encrypt the
message. (2) QL : {0, 1}l 7→ {0, 1}l to encrypt the session key. Each broadacast
ciphertext will have the following form:

〈[i1, i2, . . . im,QLi1
(K),QLi2

(K), . . .QLim
(K)︸ ︷︷ ︸

HEADER

],FK(M)︸ ︷︷ ︸
BODY

〉 (1)

The receiver u decrypts a given ciphertext C = 〈[i1, i2, . . . im, C1, C2, . . . Cm],
M ′〉 as follows: (i) Find ij such that u ∈ Sij , if not respond null, (ii) Obtain
Lij

from Ku. (iii) Decrypt the session key: K ′ = Q−1
Lij

(Cj). (iv) Decrypt the

message: M = F−1
K (M ′). In [22], two methods in the subset cover framework

are presented called the Complete Subtree CS and the Subset Difference SD.

Tracing Traitors in the Subset Cover Framework. Beyond revoking sets
of users that are not supposed to receive content, trace and revoke schemes are
supposed to be able to disable the rogue pirate decoders which are constructed
using a set of traitor’s keys that are available to the pirate. One way this can be
achieved is to identify a traitor given access to a pirate box and then add him to
the set of revoked users. Given that the goal of tracing is to disable the pirate
box, the NNL tracing algorithm focuses on just this security goal. In the NNL
setting, it is sufficient to find a “pattern” which makes the pirate box unable to
decrypt.

Regarding the tracing operation, the following assumptions are used for the
pirate decoder: (1) the tracing operation is black-box, i.e., it allows the tracer
to examine only the outcome of the pirate decoder as an oracle. (2) the pirate
decoder is not capable of recording history; (3) the pirate decoder lacks a “lock-
ing” mechanism which will prevent the tracer to pose more queries once the
box detects that it is under tracing testing. (4) the pirate decoder succeeds in
decoding with probability greater than or equal to a threshold q.

Based on the above, the goal of the tracing algorithm is to output either a
non-empty subset of traitors, or a partition of N \ R =

⋃m
j=1 Sij

for the given
revoked users R, such that if this partition is used to distribute content M in
the framework as described above it is impossible to be decrypted by the pirate
box with sufficiently high probability (larger than the threshold q); at the same
time, all good users can still decrypt.

The tracing algorithm can be thought of as a repeated application of the fol-
lowing basic procedure that takes as input a partition: First it is tested whether
the box decrypts correctly with the given partition

⋃m
j=1 Sij

(with probability p
greater than the threshold). If not, the subset tracing outputs the partition as
the output of the tracing algorithm. Otherwise, it outputs one of the subsets
containing at least one of the traitors. The tracing algorithm then partitions
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that subset somehow and inputs the new partition (that is more “refined”) to
the next iteration of the basic procedure. If the subset resulting by the basic
procedure contains only one possible candidate, then we can revoke that user
since it is a traitor. Here is how the basic procedure works:

Let pj be the probability that the box decodes the special tracing ciphertext

〈[i1, i2, . . . im,QLi1
(R),QLi2

(R), . . .QLij
(R),QLij+1

(K), . . .QLim
(K)],FK(M)〉

where R is a random string of the same length as the key K. Note that p0 = p
and pm = 0, hence there must be some 0 < j ≤ m for which |pj−1 − pj | ≥ p

m .
Eventually, this leads the existence of a traitor in the subset Sij under the
assumption that it is negligible to break the encryption scheme Q and the key
assignment method.

The above can be turned into a full-fledged tracing algorithm, as long as
the Subset-Cover revocation scheme satisfies the “Bifurcation property”: any
subset Sk can be partitioned into not extremely uneven sets Sk1 and Sk2 . Both
CS and SD methods allow us to partition any subset Sk into two subsets with the
Bifurcation property. For the Complete Subset, it is simply taking the subsets
rooted at the children of node vk. For the SD method, given Si,j we take the
subsets Si,c and Sc,j where vc is a child of the node vi and vj is on the subset
rooted at vc. Formally, we have the following definition for tracing algorithm
and encryption procedure after tracing pirate boxes to disable them recovering
message:

Definition 1. For a given set of revoked users R and pirate boxes B1, B2, · · · , Bs

caught by the sender, the encryption function first finds a partition S which
renders the pirate boxes useless and outputs the ciphertext. Let T be the trac-
ing function outputting the partition to render the pirate boxes useless, then:
T B1,B2,···,Bs(R) = S. Denote the ciphertext created by the encryption scheme in-
terchangeably by following notations: C = EB1,B2,···,Bs

R (M) or C = ES(M), where
E−1

k (C) = M for k /∈ R, and any pirate box Bi, 0 < i ≤ s, decrypts the ciphertext
with probability less than threshold q, i.e. Prob[Bi(C) = M ] < q.

According to the above definition, the sender applies tracing algorithm on
the pirate boxes he has access to before broadcasting the message.

3 Pirate Evolution

In this section we introduce the concept of pirate evolution. We present a game
based definition that is played with the adversary which is the “evolving pirate.”
Let t be the number of traitor keys in the hands of the pirate. The traitor
keys are made available to the pirate through a key-leaking “incident” L that
somehow chooses a subset of size t from the set {I1, . . . , IN} (the set of all
users’ private data assigned by a function G with a security parameter λ). We
permit L to be also based on the current set of revoked users R. Specifically, if
T = L(I1, I2, · · · In, t, R) then |T| = t, T ⊆ {Iu | u ∈ N \ R}. This models the



Pirate Evolution 7

fact that the evolving pirate may be able to select the users that he corrupts.
Separating the evolving pirate from the leaking incident is important though
as it enables us to describe how a pirate can deal with leaking incidents that
are not necessarily the most favorable (the pirate evolution attacks that we will
describe in the sequel will operate with any given leaking incident and there will
be leaking incidents that are more favorable than others). We note that partial
leaking incidents can also be considered within our framework.

Once the leaking incident determines the private user data that will be avail-
able to the evolving pirate (i.e., the traitor key material), the evolving pirate P
receives the keys and produces a “master” pirate box B. The pirate is allowed
to have oracle access to an oracle ER(M) that returns ciphertexts distributed
according to plaintext distribution that is employed by the digital content distri-
bution system (i.e., the access we consider is not adaptive); an adaptive version
of the definition (similar to a chosen plaintext attack against symmetric encryp-
tion) is also possible.

Given the master pirate box, an iterative process is initiated: the master
pirate box spawns successively a sequence of pirate decoders B1, B2, . . . where
Bi = B(1t+log N , `) for ` = 1, 2, . . .. Note that we loosely think that the master
box is simply the compact representation of a vector of pirate boxes; the time
complexity allowed for its operation is polynomial in t + log N + log ` (this can
be generalized in other contexts if needed — we found it to be sufficient for the
evolving pirates strategies we present here). Each pirate box is tested whether it
decrypts correctly the plaintexts that are transmitted in the digital content dis-
tribution system with success probability at least q. The first pirate box is tested
against the “initial” encryption function ER(·), whereas any subsequent box is
tested against EB1,B2,···Bi−1

R (·) which is the encryption that corresponds to the
conjunctive revocation of the set R and the tracing of all previous pirate boxes.
The iteration stops when the master pirate box B is incapable of producing a
pirate decoder with decryption success exceeding the threshold q. Each iteration
of the master box corresponds to a “generation” of pirate boxes. The number of
successfully decoding pirate generations that the master box can spawn is the
output of the game-based definition given below. The trace and revoke scheme
is susceptible to pirate evolution if the number of generations returned by the
master box is greater than t. Note that the amount of susceptibility varies with
the difference between the number of generations and t; the pirate evolution
bound evo is the highest number of generations any evolving pirate can produce.
Formally, we have the following:

Definition 2. Consider the game of figure 1 given two probabilistic machines
P,L and parameters R ⊆ {1, 2, · · ·n}, t, r = |R|, q. Let PER

P,L(t) be the output
of the game. We say that the trace and revoke scheme TR = (G,Q,F) is immune
to pirate evolution with respect to key-leaking incident L if, for any probabilis-
tic polynomial time adversary P, any R and any t ∈ {1, . . . , |N − R|}, it holds
PER

P,L(t) = t. We define the pirate evolution bound evo[TR] of a trace and revoke
scheme TR as the supremum of all PER

P,L(t), for any leaking incident L, any set
of revoked users R and any evolving pirate P; note that evo[TR] is a function
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〈I1, I2, · · · IN 〉 ← G(1λ; ρ; N) where ρ← Coins
T← L(I1, I2, · · · In, t, R); K = {Ku | u : Iu ∈ T}
B ← PER(M)(T, K) where ER(M) is an oracle that returns ER(m) with m←M
` = 0
repeat ` = ` + 1

B` ← B(1t+log N , `)

until Prob[B`(E
B1,B2,···B`−1
R (m)) = m] < q with m←M

output `.

Fig. 1. The attack game played with an evolving pirate.

of t and possibly of other parameters as well. A scheme is susceptible to pirate
evolution if its pirate evolution bound satisfies evo[TR] > t.

Note that immunity against pirate evolution attacks is possibly a stringent
property; even though we show that it is attainable (cf. the next section) it could
be sacrificed in favor of efficiency. Naturally, using a trace and revoke scheme
that is susceptible to a pirate evolution that produces many pirate decoders may
put the system’s managers at a perilous condition once a leaking incident occurs
(and as practice has shown leaking incidents are unavoidable). The decision
to employ a particular trace-and-revoke scheme in a certain practical setting
should be made based on a variety of requirements and constraints and the
system’s behavior with respect to pirate evolution should be one of the relevant
parameters that must be considered in the security analysis.

3.1 A Trace and Revoke Scheme Immune to Pirate-Evolution

In this section we show a simple trace and revoke design that achieves immunity
against pirate-evolution. The system simply encrypts the session key with the
unique key of each user in the system that is not revoked. This kind of linear
length trace and revoke scheme can be formalized in the context of the Subset-
Cover framework as follows:

Definition 3. Let |Sj | = 1 for all j ∈ J = {1, 2, · · ·N}, i.e. the collection is
consist of single element sets. Thus, for any user u, |Ku| = |{Lu}| = 1 holds.
The key assignment G(1λ, N) is done by choosing a random key for each Sj.
The encryption functions Q and F are encryption functions used in any Subset-
Cover framework. We say such trace and revoke scheme (G,Q,F) is called linear
length scheme since the size of cover for non-revoked users in N\R will be linear
in |N| − |R|.

The header of a ciphertext C contains the encryption of session key QLu(K)
if user u ∈ N \R. Under the assumption of sufficiently strong Q(·) no other user
will be able recover session key through QLu

(K) and a user u will not be able to
recover session key unless the header contains QLu

(K). We show that immunity
to pirate evolution is achievable:
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Theorem 1. The trace and revoke scheme as defined in Definition 3 is immune
to pirate evolution, i.e. for all polynomial-time adversaries P and for any key
leaking incident L, PER

P,L(t) = t.

3.2 Pirate Evolution for the Complete Subtree Method

In this section, we demonstrate that the complete subtree method (CS) of [22] is
susceptible to pirate evolution. Specifically, we present an evolving pirate that
can produce up to t log N/t pirate boxes, given t traitor keys. Below we present
some definitions that will be used throughout this section:

Definition 4. The partition S = T (R) is the set of subsets Si1 ,Si2 , · · ·Sim

where, 0 < j ≤ m, ij ∈ J corresponds to a node in the full binary tree. Denote
the root of subtree containing the users in S ∈ {Sj}j∈J by root(S), in general
we will be using root() as a function outputting root of a given tree. Suppose
T = L(I1, · · · , In, t,R), then we say the Steiner tree ST (T,S) is the minimal
subtree of the binary tree rooted at root(S) that connects all the leaves on which
the users in T ∩ S are placed.

We denote the unique key of a node v by L(v). It is possible for any u ∈ S to
deduce L(root(S)) from its private information Iu,Ku. A pirate box Box(L(v)) is
a decoder that uses the key associated to S where root(S) = v; it decrypts ES(· )
iff there exists a S ∈ S s.t. root(S) = v holds. in other terms, Box(L(v)) decrypts
C = ER(· ) iff the header of C contains the encryption QL(v)(K).

Figure 2 is an illustration for the partition of non-revoked users and the set
of traitors in a broadcasting scheme using the CS method. The description of the

Fig. 2. Complete Subtree with cover and set of traitors

evolving pirate relies on a simple observation that is the following lemma:

Lemma 1. For a given set of revoked users R let T Pi(R) be the partition gen-
erated after tracing pirate box P = Box(L(v)). Let S be the subset such that
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root(S) = v holds. Suppose S = SL ∪SR where subset SL (resp. SR) is left (resp.
right) part of the subtree rooted at v. It holds that: S ∈ T (R) if and only if
SL ∈ T P (R) and SR ∈ T P (R).

According to the above lemma, the pirate will be able to produce a new
version of pirate box after Pi = Box(L(root(S))) is caught. That is true because
after tracing Pi, a traitor u is either in SL or SR, and the pirate still will be
able to produce a new box by using the key associated to SL( or SR depends on
which one contains u). The motivation of the evolving pirate is exploiting the
above observation to successively generate pirate boxes.

We define the master pirate box B produced by the adversary PER(M)(T,K)
as producing a vector of pirate boxes. B constructs the sequence of pirate boxes
by walking on the nodes of the forest of Steiner trees {ST (T,S) | S ∈ T (R)}.
More technically, it recursively runs a procedure called makeboxes on each Tree =
ST (T,S) which first creates a pirate box Box by using the unique key assigned
to the node root(Tree). It then splits the Tree into two trees. The splitting is
needed because tracing Box will result in the partition of the subset S. Thus the
splitting procedure is based on the partition of subset S into two equal subsets
(in CS tracing works by splitting into the two subtrees rooted at the children of
root(Tree)). The master box B then runs makeboxes independently on both of
the trees resulted from the partition. Figure 3 is the summary of the evolving
pirate strategy. The number of generations that can be produced equals the
number of nodes in the forest of Steiner trees {ST (T,S) | S ∈ T (R)}.

1. For each S ∈ T (R) run makeboxes(ST (T, S)) till the `-th box is produced.
makeboxes(Tree)
1. Take any user u placed on a leaf of Tree.
2. Output Box(L(root(Tree))) where L(root(Tree)) is available from Ku

3. Let STL and STR be respectively the left and right subtrees of Tree.
4. run makeboxes(STL)
5. run makeboxes(STR)

Fig. 3. The description of master box program B(1t+log N , `) parameterized by
T (R), T,Ku for u ∈ T that is produced by the evolving pirate for the complete subtree
method.

Theorem 2 is formalizing and proving the correctness of the above procedure,
i.e. the next generation should be able to decrypt the message encrypted after
tracing has disabled all previous boxes.

Theorem 2. Let P1, P2, · · · , Pv+1 be a sequence of pirate boxes constructed by
the evolving pirate strategy described in Figure 3. Suppose C = EP1,P2,···,Pv

R (M),
then Prob[Pv+1(C) = M ] ≥ q, provided that v is less than the number of nodes
in the forest of trees {ST (T,S) | S ∈ T (R)}.
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Leaking Incidents. For the polynomial time adversary P described in Figure 3,
PER

P,L(t) is the number of nodes in the forest of the Steiner trees of the traitors.
Theorem 3 and Theorem 4 give some bounds on this quantity depending on the
leaking incident.

Theorem 3. Let N be the set of N users represented by a full binary tree in
the Complete Subtree method. For a given R, any leaking incident L corrupting
t users in a single subset S ∈ T (R) enables an evolving pirate with respect to L
so that PER

P,L(t) ≥ 2t− 2 + log(|S|/t).

Theorem 4. Let N be the set of N users represented by a full binary tree. For
a given R, there exists a leaking incident L corrupting t users in a single subset
S ∈ T (R) so that PER

P,L(t) ≥ 2t− 1 + t log(|S|/t).

Fig. 4. The illustration of the bounds on the number of pirate boxes produced (a) All
of the traitors are descendants of a same node with height log t (b) None of the paths
with length log(|S|/t) from leaves to the root intersect.

Figure 4 shows the cases where it is possible to achieve the bounds given in
above two theorems. Figure 4(a) is yielding the bound in Theorem 3 and, Figure
4(b) is yielding the bound in Theorem 4. The maximum number of generations
can be achieved following Figure 4(b) in a configuration of the system when there
is no revoked user; in this case there is a single element in the partition, namely
S containing N users. It follows that the pirate can produce up to t log(N/t)
generations and thus:

Corollary 1. The pirate evolution bound for the CS method satisfies evo[CS] ≥
t log(N/t).

3.3 Pirate Evolution for the Subset Difference Method

In this section we turn our attention to the Subset Difference (SD) method of
[22] that is part of the AACS standard [1]. Compared to the Complete Subtree
method, the subsets in the SD method are represented by pairs of nodes. We
define the required notations as follows:
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Definition 5. Let Si,j ∈ {Si,j}(i,j)∈J be the set of all leaves in the subtree
rooted at vi but not of vj. We define the function set : {(vi, vj) | (i, j) ∈ J } →
{Si,j}(i,j)∈J such that the inverse function set−1() maps a subset to its cor-
responding pair of nodes. Since Si,j is somehow related to a tree, we still use
root(Si,j) to output vi. Suppose T = L(I1, · · · , t,R), then we say the Steiner tree
ST (T, vi, vj) is the minimal subtree of the binary tree rooted at vi, excluding
the descendants of vj, that connects all the leaves in T ∩ set(vi, vj) and node
vj. A pirate box Box(vi, vj ,Ku) is a decoder that uses the key associated to
set(vi, vj) as inferred by the private data Ku assigned to the user u. For simplic-
ity, we also denote the pirate decoder by Box(vi, vj , u)(omitting Ku). By defini-
tion; Box(vi, vj , u) inverts ES(·) iff there exists a S ∈ S such that set(vi, vj) = S
holds.

The susceptibility of the SD method to pirate evolution relies on the following
simple observation regarding the tracing algorithm and the way it operates on
a given pirate box:

Lemma 2. For a given set of revoked users R let T P (R) be the partition gen-
erated after tracing pirate box P = Box(vi, vj , u). Suppose vc is the child of vi

that is on the path from vi to vj; note that in this case set(vi, vj) = set(vi, vc)∪
set(vc, vj). It holds that: set(vi, vj) ∈ T (R) if and only if set(vi, vc) ∈ T P (R)
and set(vc, vj) ∈ T P (R).

We will exploit the above lemma to successively generate pirate boxes. This
is possible because after tracing P = Box(vi, vj , u), the traitor u is still in one of
the subsets in the partition T P (R). We will present an evolving pirate strategy
based on the forest of Steiner trees {ST (T, vi, vj) | set(vi, vj) ∈ T (R)} by walking
on the paths of Steiner trees that will be predefined according to a scheduling of
traitors. Unlike our evolving pirate strategy for the CS method, we are focusing
on paths instead of nodes because of the inherent structure of the SD method and
the way tracing works by merging subsets under a simple condition that is shown
in lemma 3. The merging performed by NNL (whose main objective is to curb
the ciphertext expansion) is, as we observe, an opportunity for pirate evolution
as it leads to the reuse of some nodes in different pairs, i.e. different subsets
in the collection {Si,j}(i,j)∈J . In general, the merging will occur whenever it is
allowed based on lemma 3 with the following exception: S1 will not be merged
if the partition contains another subset S2 such that they have resulted from a
split-up of a single subset at an earlier iteration of the subset-tracing procedure.
The reader may refer to [22].

Lemma 3. Let Vi, v1, v2, · · · vd, Vj be any sequence of vertices which occur in
this order along some root-to-leaf path in the tree corresponding to the subset
set(Vi, Vj), then set(Vi, Vj) = set(Vi, v1) ∪ set(v1, v2) ∪ · · · ∪ set(vd, Vj).

According to the way tracing works on the SD, whenever the partition con-
tains a series of subsets {set(vi, v1), set(v1, v2), · · · , set(vd, vj)} they can poten-
tially be merged using Lemma 3 into one single subset set(vi, vj). To illustrate
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how evolution for SD method works, we first give an example of a partition of
non-revoked users and the set of traitors in Figure 5. Let’s focus on the subset
rooted at g that is magnified in Figure 6(a) and start creating pirate boxes.

Fig. 5. Subset Difference with cover and set of traitors

Suppose that the evolving pirate uses the keys of the traitor T4 first; the
sequence of pirate boxes created until T4 is entirely revoked would be B1 =
Box(1, 5, T4), B2 = Box(2, 5, T4) and B3 = Box(3, 5, T4). Due to lemma 2
tracing all these boxes would end up with revoking T4 and T B1,B2,B3(R) =
{set(1, 2), set(2, 3)}. Note that in light of lemma 3 the tracing algorithm will
merge these two subsets to have the single subset set(1, 3) shown in Figure 6(b).
This illustrates the fact that an evolving pirate against the SD method may use
the keys of a traitor as many times as the height of the subset it belongs to without
necessarily restricting the same opportunity for other traitors that are scheduled
to be used later. Indeed, we can execute a pirate box construction using the keys
of traitor T3 that would be as many as the height of the tree (compare this to the
Complete Subtree method where this is not achievable and using the keys of one
traitors strips the opportunity to use such keys for other traitors scheduled later).
Proceeding with our example, the master pirate box B will now be able to create
a pirate box Box(1, 3, T3) (recall that T B1,B2,B3(R) = {set(1, 3)}) followed by
another box Box(1, 2, T3) and so on until T3 is entirely revoked. Even though
we have the opportunity now to make more boxes per traitor compared to the
complete subset method, special care is needed to choose the order with which
we are expending the traitor keys as we will illustrate below. This is in sharp
contrast to the complete subset method where the scheduling of traitors makes
no difference in terms of the number of pirate box generations that the master
box can spawn. To see the importance of scheduling the traitors appropriately,
suppose that we use the traitor T3 first instead of T4; then, the sequence of pi-
rate boxes created until T3 is entirely revoked would be B1 = Box(1, 5, T3), B2 =
Box(1, 2, T3), B3 = Box(8, 9, T3) and B4 = Box(10, 12, T3) (refer to figure 6(b)
for the node numbering). Tracing all these boxes would end up with revoking T3
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Fig. 6. (a) The subset S1,5 of Figure 5 that contains all the traitors. The master pirate
box will start producing boxes according to this subset. (b) The partition after pirate
evolution using T4 took place; T4 is revoked from the system. (c) The partition after
pirate evolution using T3 took place; T3 is revoked from the system.

and T B1,B2,B3,B4(R) = {set(2, 5), set(8, 10), set(10, 11)}. Note that this subset
collection will also be merged by tracing algorithm, resulting the partition given
in figure 6(c). The pirate then will be able to create a pirate box Box(2, 5, T4)
and so on until T4 is revoked. Observe that now T4 is isolated in its own subtree,
and the master pirate box will be able to make fewer boxes using the keys of T4.
Thus, it would have been preferable to start the pirate evolution with traitor T4.

We observe that the evolving pirate strategy can be based on a representation
of the Steiner tree by means of paths hanging off each other hierarchically such
that each path stems from an internal node to a traitor placed on a leaf. Each
time we choose a traitor, we actually choose a path to walk on to construct
pirate boxes. We observe two criteria to maximize the number of pirate decoders.
(1) Once a traitor is revoked, we choose a shortest path hanging off the path
containing the recently revoked traitor. (2) If there are more than one shortest
path, a path with large number of paths hanging off itself would be preferable.
Choosing a traitor amounts to choosing a path according to this criteria (in
a recursive way). In the next paragraphs we formalize these observations. We
introduce a special annotation of the Steiner Tree ST (T, u, v), where set(u, v) is
one of the subsets in the partition, that will enable us to choose the best ordering
of the traitors.

Definition 6. A traitor annotation of a Steiner tree ST (T, u, v) is the mapping
from its nodes to T∪{⊥} that is defined in Figure 7. We say ST (T, u, v) is anno-
tated by f . Denote the parent of a node v by parent(v), the sibling by sibling(v),
the height by height(v). We define the rank of a traitor s given an annotation f
as the number of nodes with 2 children that are annotated by s. We denote the
rank of s ∈ T by rank(s). Given a Steiner tree ST annotated by f , for any u ∈ T
the u-path(ST) is the path that is made out of all nodes that are annotated by u.
Similarly, we define ⊥-path(ST) and further we call it as the basic path of the
tree ST . We denote u-path(ST) by a vector of nodes, u-path(ST)=〈v1, v2, · · · vs〉
where vi = parent(vi+1) for 0 < i < s and u = f(vi); we also denote v1 and vs

in this path by topf (u) and bottomf (u) respectively.
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annotation(Tree ST (T, i, j))
Initially annotate each leaf l with its corresponding traitor u ∈ T, i.e. f(l) = u
rank(u) = 0, for each u ∈ T
f(j) =⊥ and rank(⊥) = 0.
Annotate each node from bottom to top by following rule:

f(parent(v)) =

8<
:

f(v) sibling(v) 6∈ Tree ∨ f(v) =⊥
f(v) rank(f(v)) ≥ rank(f(sibling(v)))
f(sibling(v)) otherwise

9=
;

update rank(f(parent(v))) = rank(f(parent(v))) + 1 if sibling(v) ∈ Tree
output f

Fig. 7. Computing the traitor annotation for a given Steiner tree

Lemma 4. For a given set of revoked users R and the set of traitors T, let
Tree = ST (T, vi, vj) ∈ {ST (T, g, r) | set(g, r) ∈ T (R)} be one of the Steiner
trees. Consider the annotation of Tree given in Figure 7. Suppose the shortest
path hanging off the ⊥-path(Tree) is annotated by u. Let u1 = topf (u) and us =
bottomf (u) where s is the length of the u-path(Tree). It holds that: (1) There
exists a sequence of pirate boxes B1, B2, · · ·Bk, each using a private key derived
from Ku where k = height(Tree) + Au and Au ∈ {0, 1} such that Au = 1 if
and only if sibling(u1) has a single child in Tree. (2) T B1,B2,···Bk(R) = {T (R) \
set(vi, vj)} ∪ {set(vi, parent(u1)), set(u1, us)}.

We next describe our evolving pirate strategy against the SD method. We
define the master pirate box B produced by the adversary PER(M)(T,K) as fol-
lows: B recursively runs a procedure for each subset S = set(vi, vj) ∈ T (R)
which is called makeboxes, with input the traitor annotated Steiner tree Tree =
ST (T, vi, vj). Observe below that whenever the recursive call is made, the anno-
tation of Tree satisfies that the root is annotated with ⊥. The basic procedure
works as follows:

The root vi is annotated as ⊥. Let u-path(Tree)=〈u1, u2, · · ·us〉 be the short-
est path hanging off the⊥-path(Tree). The master box B constructs Box(vi, vj , u)
and more pirate decoders by applying lemma 2. After creating pirate boxes as
many as the height of Tree (plus one possibly if Au = 1, cf. lemma 4), the traitor
u will be entirely revoked by the system. Lemma 4 tells us that the partition
after revoking u will include the subsets set(vi, parent(u1)) and set(u1, us). We
update the path 〈u1, u2, · · ·us〉 in ST (T, u1, us) by annotating it ⊥ since u is no
more in (set(u1, us)). The master box B then runs makeboxes independently on
both of the trees ST (T, vi, parent(u1)) and ST (T, u1, us). Refer to figure 8 for
the detailed specification of the evolving pirate strategy.

In the following theorem we prove the correctness of the strategy, i.e. that
each box will decrypt the ciphertexts that are generated assuming all previous
boxes are traced. We also show the maximum number of pirate decoders that
can be created.

Theorem 5. Let P1, P2, · · · , Pk+1 be a sequence of pirate boxes constructed by
the pirate evolution strategy described in Figure 8. Suppose C = EP1,P2,···,Pk

R (M),
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1. For each Si,j = set(vi, vj) ∈ T (R)
2. Compute f = annotation(ST (T, vi, vj))
3. Run makeboxes(ST (T, vi, vj), f) till the `-th pirate box is produced.
makeboxes(Tree, annotation f)
1. Let ⊥-path in Tree be 〈k1, k2, · · · km〉. Note that k1 = vi and km = vj

2. Choose the shortest path hanging off the ⊥-path, i.e. pick l = max(l : sibling(kl) ∈
Tree) to use the keys of traitor u = f(sibling(kl)); if no such path exists, exit.
3. Denote u-path by 〈u1, u2, · · ·us〉
4. Output Box(k1, km, u), Box(k2, km, u), · · ·Box(kl−1, km, u)
5. Output Box(kl−1, kl, u) iff l < m.
6. Output Box(u1, sibling(u2), u), Box(u2, sibling(u3), u), ..Box(us−1, sibling(us), u)
8. Update f(ui) =⊥, for 0 < i ≤ s
9. makeboxes(ST (T, u1, us), f)
10. makeboxes(ST (T, k1, kl−1), f)

Fig. 8. The description of master box program B(1t+log N , `) parameterized by T (R), T,
Ku for u ∈ T that is produced by the evolving pirate for the Subset Difference method.

then Prob[Pk+1(C) = M ] ≥ q, provided that

k <
∑

set(vi,vj)∈T (R)

rank(⊥) · height(vi) +
∑

u∈T∩set(vi,vj)

Cu + Au


where Cu = rank(u)· | u-path(ST (T, vi, vj)) |.

Leaking Incidents. For the evolving pirate P described in Figure 8, the value of
PER

P,L(t) follows from theorem 5. Theorem 6 gives some bounds on this quantity
depending on the leaking incident for the SD method.

Theorem 6. Let N be the set of N users represented by a full binary tree in the
SD method. For a given R, there exists a leaking incident L corrupting t users
in S ∈ T (R)(for simplicity assume S is complete subset, and thus log |S| is an
integer), that enables an evolving pirate with respect to L so that

PER
P,L(t) =

{ t log |S|, t ≤ log |S|+ 1
t log( |S|2m ) + 2m log( |S|

2m−3 )− log |S| − 3,

t ∈
{

2m−1 log(
|S|

2m−2
)+1, . . . , 2m log(

|S|
2m−1

)
}

for 0 < m < log |S|

To see the above existence result, consider the following: our goal is to choose
t traitors in the set S. Once a leaf is chosen in a complete subtree to place
a traitor, we will next choose to place other traitors in the subtrees hanging
off the path of that traitor.The first traitor chosen in each hanging subtree, it
contributes to the number PER

P,L(t) as many pirate generations as the height of
the tree (say h = log |S|). After this first stage of placement, we have h subtrees
each containing one traitor and each have different heights. We recursively place
the remaining traitors in these subtrees by using the highest possible subtrees
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first. In short, we can think of the leaking incident of theorem 6 as follows:
the first traitor is placed in an arbitrary leaf; then, h stages follow: in stage m
(where m = 0, . . . , h − 1), the remaining traitors are placed on the subtrees of
height h − m. At stage m > 0 we can place 2m−1(h − m) traitors (where we
place h traitors at stage 0). By the end of stage m we will have already placed
2m log( |S|

2m−1 ) traitors. Note that a traitor placed at stage m will contribute h−m
pirate boxes following our evolving pirate strategy. The formula in theorem 6
gives the sum of all pirate generations for each traitor.

The maximum number of generations can be achieved following the leaking
incident of Theorem 6 in a configuration of the system when there is no revoked
user; in this case there is a single element in the partition, namely S containing
N users. The corollary below follows easily from theorem 6.

Corollary 2. The pirate evolution bound for the SD method satisfies evo[SD] ≥
t log N for t ≤ log N . It also satisfies that evo[SD] ≥ t log N

2 for t ≤
√

N · log N
2 .

Relation to the AACS. The AACS standard for Blue-Ray disks and HD-
DVDs uses the SD method with N = 231 nodes. It follows that a leaking incident
with t traitors enables our evolving pirate strategy to generate up to 31·t genera-
tions of pirate boxes in the case that the system has an initial state of ciphertexts
with a single element in the partition; note that if the starting configuration of
the system has more elements in the partition (e.g., 28 elements each correspond-
ing to 223 users) the total number of generations would be 23 · t for t ≤ 23, and
so on.
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